TMS2018 147th Annual Meeting & Exhibition

PROGRAM AT-A-GLANCE

TOPIC COLOR KEY:

Additive Manufacturing	Light Metals (Al & Mg)
Materials Processing, Corrosion & Functional	Characterization
Materials	Nanostructured Materials
Mechanics & Physical Metallurgy	Advanced Materials
	Energy & Environment
Nuclear Materials	
	CDSM & Materials Design

www.tms.org/TMS2018 · #TMSAnnualMeeting

Additive Technologies Additive Manufacturing Joint Keynote Session					
Additive Manufacturing Joint Keynote Session					
Joint Keynote Session	MON PM	2:30 PM	231ABC	111	
Additive Manufacturing of Metals: Establishing Location Specific Proc	essing-Micros	tructure-Prop	erty Relationship	s III	
Additive Manufacturing: A Revolution in Materials Processing	MON AM	8:00 AM	231AB	88	
Poster Session	MON EVE	6:00 PM	Hall CD	285	
Mechanical Behavior of Additively Manufactured Materials	TUE AM	8:30 AM	231AB	134	
High Temperature Alloys and Properties	TUE PM	2:00 PM	231AB	162	
Post-build Thermal Processing: Effects on Microstructure and Properties	WED AM	8:30 AM	231AB	190	
Emerging Materials and Processes	WED PM	2:00 PM	231AB	219	
Modeling of Additive Manufacturing Processes	WED PM	2:00 PM	232A	220	
Additive Manufacturing of Advanced Light-weight Materials	THU AM	8:30 AM	231AB	247	
Advanced Characterization and Innovative Applications	THU PM	2:00 PM	231AB	268	
Additive Manufacturing of Metals: Fatigue and Fracture					
Session I	MON AM	8:00 AM	232A	88	
Poster Session	MON EVE	6:00 PM	Hall CD	286	
Session II	TUE AM	8:30 AM	232A	134	
Session III	TUE PM	2:00 PM	232A	162	
Session IV	WED AM	8:30 AM	232A	191	
Additive Manufacturing: Building the Pathway towards Process and M	aterial Qualific	cation			
High Speed Imaging in Additive Manufacturing	MON AM	8:00 AM	230	89	
Poster Session	MON EVE	6:00 PM	Hall CD	286	
Beam Line Science in Additive Manufacturing	TUE AM	8:30 AM	230	135	
Modeling in Additive Manufacturing	TUE PM	2:00 PM	230	163	
Metals in Additive Manufacturing I	WED AM	8:30 AM	230	191	
Metals in Additive Manufacturing II	WED PM	2:00 PM	230	220	
Qualification in Additive Manufacturing	THU AM	8:30 AM	230	248	
Advances in Additive Manufacturing of Titanium and Titanium Based	Alloys				
Overview of Additive Manufacturing for Titanium Alloys	MON AM	8:00 AM	231C	91	
Poster Session	MON EVE	6:00 PM	Hall CD	287	
Processing for Quality	TUE AM	8:30 AM	231C	137	
Solidification and Microstructure I	TUE PM	2:00 PM	231C	165	
ICME for Additive Manufacturing	WED AM	8:30 AM	231C	194	
Solidification and Microstructure II	WED PM	2:00 PM	231C	223	
Emerging Methods and Materials	THU AM	8:30 AM	231C	250	

66

Symposium and Session	Day	Time	Room	Page
Alloy Development and Powder Manufacture for Additive Manufacturin	g			
ICME General Approaches	WED AM	8:30 AM	232B	195
Powder Development	WED PM	2:00 PM	232B	224
Design of Aluminum Alloys	THU AM	8:30 AM	232B	251
Design of Ni and Fe Alloys	THU PM	2:00 PM	232B	269
Application of Solidification Fundamentals to Challenges in Metal Add	itive Manufact	turing		
Process to Microstructure Relationships	MON AM	8:00 AM	232B	92
Advanced Characterization	TUE AM	8:30 AM	232B	139
Solidification Modeling	TUE PM	2:00 PM	232B	167
Multi-material Additive Manufacturing: Processing and Materials Desig	gn			
Functionally Graded Metals and Composites	TUE AM	8:30 AM	232C	154
Architectured and Mesostructured Materials	TUE PM	2:00 PM	232C	183
Non-beam Based and Emerging AM Technologies for Metals	WED AM	8:30 AM	232C	212
Extrusion, Stereolithography, Binder Jetting, and Others	WED PM	2:00 PM	232C	242
aterials Processing				
9th International Symposium on High Temperature Metallurgical Proce	essing			
Energy-efficient and Clean Metallurgical Technology	MON AM	8:00 AM	227B	87
Simulation and Modeling of High Temperature Metallurgical Process	MON PM	2:30 PM	227B	109
Poster Session I	MON EVE	6:00 PM	Hall CD	283
Poster Session II	MON EVE	6:00 PM	Hall CD	284
Alloys and Materials Preparation	TUE AM	8:30 AM	227B	133
Fundamental Research on High Temperature Metallurgical Processing	TUE PM	2:00 PM	227B	160
Extraction and Recovery of Metals	WED AM	8:30 AM	227B	189
Treatment and Recycling of Metallurgical Slag/Solid Wastes	WED PM	2:00 PM	227B	218
Ironmaking, Steelmaking and Casting	THU AM	8:30 AM	227B	247
Agglomeration and Direct Reduction of Complex Iron Ores	THU PM	2:00 PM	227B	267
CFD Modeling and Simulation in Materials Processing				
Casting and Solidification I	MON AM	8:00 AM	228B	93
Casting and Solidification II	MON PM	2:30 PM	228B	115
Processing I	TUE AM	8:30 AM	228B	142
Processing II	TUE PM	2:00 PM	228B	170
Processing III	WED AM	8:30 AM	228B	200
Materials Processing Fundamentals				
Steelmaking - Processing	MON AM	9:00 AM	228A	104

Symposium and Session	Day	Time	Room	Page
Steelmaking - Properties	MON PM	2:30 PM	228A	126
Poster Session	MON EVE	6:00 PM	Hall CD	293
Multiphysics - Process Modeling and Sensing	TUE AM	8:30 AM	228A	153
Alloy Processing and Properties Modeling	TUE PM	2:00 PM	228A	181
Extractive and Recovery Processing	WED PM	2:00 PM	228B	241
Powder Metallurgy of Light, Reactive and Other Non-ferrous Metals				
Poster Session	MON EVE	6:00 PM	Hall CD	294
Metal Powder Production	TUE AM	8:30 AM	225A	157
Aluminium Powder Metallurgy and Composites	TUE PM	2:00 PM	225A	185
Porous Metal Materials	WED AM	8:30 AM	225A	215
Powder Metallurgy Processes of Various Materials	WED PM	2:00 PM	225A	244
Titanium Powder Metallurgy and Additive Manufacturing I	THU AM	8:30 AM	225A	264
Titanium Powder Metallurgy and Additive Manufacturing II	THU PM	2:00 PM	225A	278
Rare Metal Extraction & Processing				•
Rare Earth Element I	MON AM	8:00 AM	227C	107
Rare Earth Elements II and Platinum Group Metals	MON PM	2:30 PM	227C	129
Poster Session	MON EVE	6:00 PM	Hall CD	294
Base and Rare Metals	TUE AM	8:30 AM	227C	157
Ti, V, Mo & W	TUE PM	2:00 PM	227C	185
echanics & Structural Reliability				
Coupling Experiments and Modeling to Understand Plasticity and Fa	ilure			
Plasticity	MON AM	8:00 AM	126B	98
Fatigue	MON PM	2:30 PM	126B	119
Poster Session	MON EVE	6:00 PM	Hall CD	289
Plasticity Induced Damage	TUE AM	8:30 AM	126B	146
Dislocation Scale Plasticity	TUE PM	2:00 PM	126B	173
Plasticity in HCP Alloys	WED AM	8:30 AM	126B	204
Deformation and Damage Mechanisms in High Temperature Ni, Co a	nd Fe-based S	Superalloys		
1A: Grain Size Development During Forging & Heat Treatment in		8.00 AM	1264	08

1A: Grain Size Development During Forging & Heat Treatment in Ni-based Superalloys. 1B: Recrystallization & Grain Growth Ni- based Superalloys.	MON AM	8:00 AM	126A	98
2A: Precipitation Dissolution, Liquation in & Welding of Ni-based Superalloys. 2B: Effects of Ordering and Precipitate Behavior in Ni-based Superalloys.	MON PM	2:30 PM	126A	119
Poster Session	MON EVE	6:00 PM	Exhibit Hall E	289
3A: Characterising Strain Localization in Ni-based Superalloys.3B Characterization & Understanding of Deformation in Ni- based Superalloys.	TUE AM	8:30 AM	126A	146

68

Symposium and Session	Day	Time	Room	Page
4A: Characterization of Creep Deformation & Damage in Ni- based Superalloys. 4B: Characterization of Creep or Fatigue Deformation & Damage in Ni-based Superalloys	TUE PM	2:00 PM	126A	17:
5A: Fe-based Superalloy Development & Properties. 5B: Deformation & Damage in Fe and Ni-based Superalloys	WED AM	8:30 AM	126A	20
6A:Ni-based Superalloy Development & Properties. 6B: Microstructure & Properties of Co-based Superalloys.	WED PM	2:00 PM	126A	23
Dynamic Behavior of Materials VIII				
Effect of Microstructure of Dynamic Response I	MON AM	8:00 AM	127B	99
Energetic Materials	MON PM	2:30 PM	127B	12
Poster Session	MON EVE	6:00 PM	Hall CD	29
Dynamic Response of BCC Materials	TUE AM	8:30 AM	127B	14
Effect of Microstructure of Dynamic Response II	TUE PM	2:00 PM	127B	17
Dynamic Response of HCP Materials	WED AM	8:30 AM	127B	20
Effect of Microstructure of Dynamic Response III	WED PM	2:00 PM	127B	23
Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention	on			
Data-driven Investigations of Fatigue	MON AM	8:00 AM	125B	10
Multiscale Modeling Approaches to Improve Fatigue Predictions	MON PM	2:30 PM	125B	12
Poster Session	MON EVE	6:00 PM	Hall CD	29
Multi-mechanical Interactions During Extreme Environment Fatigue Loadings	TUE AM	8:30 AM	125B	14
Relationships among Processing, Microstructure, and Fatigue Properties	TUE PM	2:00 PM	125B	17
Fatigue Characterization Using Advanced Experimental Methods in 2D and 3D	WED AM	8:30 AM	125B	20
Fatigue Behaviors in Engineering Materials	WED PM	2:00 PM	125B	23
Fracture: 65 Years after the Weibull Distribution and the Williams Singu	llarity			
Session I	MON AM	8:00 AM	128B	10
Session II	MON PM	2:30 PM	128B	12
Poster Session	MON EVE	6:00 PM	Hall CD	29
Session III	TUE AM	8:30 AM	128B	14
Session IV	TUE PM	2:00 PM	128A	17
Thermo-mechanical Response of Materials with Special Emphasis on	In-situ Techni	ques		
High Temperature Mechanical Properties of Materials I	TUE AM	8:30 AM	101A	15
High Temperature Mechanical Properties of Materials II	TUE PM	2:00 PM	101A	18
In-Situ TEM/SEM Nanomechanics	WED AM	8:30 AM	101A	21
Nanomechanics with Synchrotron Diffraction	WED PM	2:00 PM	101A	24

Symposiu	im and Session	Day	Time	Room	Page
rrosion					
Environn	nentally Assisted Cracking: Theory and Practice				
Stre	ess Corrosion Cracking I	MON PM	2:30 PM	127A	121
Hyc	drogen Embrittlement	TUE PM	2:00 PM	105A	175
Pos	ster Session	TUE EVE	6:00 PM	Hall CD	301
Stre	ess Corrosion Cracking II	WED AM	8:30 AM	105A	206
Env	vironmental Degradation of Structural Materials	WED PM	2:00 PM	105A	235
Env	vironmentally Assisted Cracking in Aluminum Alloys	THU AM	8:30 AM	102A	259
High Ten	nperature Corrosion of Structural Materials				•
Pos	ster Session	TUE EVE	6:00 PM	Hall CD	304
	base Alloys and Corrosive Environments at Elevated nperatures	WED AM	8:30 AM	227C	208
Fe-l	base Alloys, Effect of CO2, and Coatings	WED PM	2:00 PM	227C	237
	Corrosion, Materials Developed for Corrosive Environments Elevated Temperatures, and Ti-alloys I	THU AM	8:30 AM	227C	261
	Corrosion, Materials Developed for Corrosive Environments Elevated Temperatures, and Ti-alloys II	THU PM	2:00 PM	227C	275
Surface	Engineering for Improved Corrosion Resistance				
Ses	ssion I	MON PM	2:30 PM	227A	131
Ses	ssion II	TUE AM	8:30 AM	227A	158
Ses	ssion III	TUE PM	2:00 PM	227A	186
Pos	ster Session	TUE EVE	6:00 PM	Hall CD	307
clear Mat	terials				
Accelera	ted Materials Evaluation for Nuclear Application Utilizing Test	Reactors, Ion	Beam Facili	ties and Integrate	d Mode
lon	Irradiation and In-situ TEM	MON AM	8:00 AM	102A	87
Neu	utron Irradiation and Ion vs Neutron	MON PM	2:30 PM	102A	11(
Pos	ster Session	MON EVE	6:00 PM	Hall CD	285
Мо	deling-simulation and Fundamental Studies	TUE AM	8:30 AM	102A	133
Cer	ramics and Nuclear Fuels	TUE PM	2:00 PM	102A	160
Med	chanical Behavior and Technique Development	WED AM	8:30 AM	102A	189
Fac	ility Overviews and Materials Development	WED PM	2:00 PM	102A	218
Accident	Tolerant Fuels for Light Water Reactor				
ATF	Program Overview	MON AM	8:00 AM	104A	88
Мо	deling & Simulation	MON PM	2:30 PM	104A	11(
Pos	ster Session	MON EVE	6:00 PM	Hall CD	285
Adv	vanced Fuels	TUE AM	8:30 AM	104A	133
Stru	uctural Materials	TUE PM	2:00 PM	104A	161

70

Symposium and Session	Day	Time	Room	Page
Ceramic Cladding & Coatings	WED AM	8:30 AM	104A	190
Cladding Materials	WED PM	2:00 PM	104A	219
Computational Materials Science and Engineering for Nuclear Energy				·
Nuclear Fuels and Cladding I	MON AM	8:00 AM	102B	97
Nuclear Fuels and Cladding II	MON PM	2:30 PM	102B	118
Structural Materials I	TUE AM	8:30 AM	102B	145
Structural Materials II	TUE PM	2:00 PM	102B	172
Novel Models and Method Development	WED AM	8:30 AM	102B	202
Fundamentals of Radiation Effects I	WED PM	2:00 PM	102B	231
Fundamentals of Radiation Effects II	THU AM	8:30 AM	102B	257
Materials and Fuels for the Current and Advanced Nuclear Reactors V	'II			
Fuels I	MON AM	8:00 AM	104B	103
Nuclear Materials	MON PM	2:30 PM	104B	125
Poster Session	MON EVE	6:00 PM	Hall CD	293
Fuels II	TUE AM	8:30 AM	104B	151
Structural Materials I	TUE PM	2:00 PM	104B	180
Structural Materials II	WED AM	8:30 AM	104B	210
Structural Materials III	WED PM	2:00 PM	104B	239
Structural Materials IV	WED PM	2:00 PM	103A	240
Modeling	THU AM	8:30 AM	103A	262
Structural Materials V	THU AM	8:30 AM	104B	263
Structural Materials VI	THU PM	2:00 PM	104B	276
Physical Metallurgy				
Computational Thermodynamics and Kinetics				
Structure and Property	MON AM	8:00 AM	128A	97
Transport	MON PM	2:30 PM	128A	118
Transport and Structure	TUE AM	8:30 AM	128A	145
Poster Session	TUE EVE	6:00 PM	Hall CD	301
Phase Equilibria and Transformations	WED AM	8:30 AM	128A	203
Thermochemistry and Thermomechanics	WED PM	2:00 PM	128A	232
Phase Field	THU AM	8:30 AM	128A	258
Coupling Advanced Characterization and Modeling Tools for Understa Mechanisms: An MPMD Symposium in Honor of Hamish Fraser	nding Fundan	nental Phase	Transformation	
Session I	TUE AM	8:30 AM	127A	145
Session II	TUE PM	2:00 PM	127A	173

Session III

204

127A

WED AM

8:30 AM

Sym	posium and Session	Day	Time	Room	Page
	Session IV	WED PM	2:00 PM	127A	232
Fro	ntiers in Solidification Science and Engineering				
	Eutectic and Dendritic Growth	TUE PM	2:00 PM	126C	17
	Poster Session	TUE EVE	6:00 PM	Hall CD	30
	Nucleation and Grain Refinement	WED AM	8:30 AM	126C	20
	Effect of Microgravity and/or Convection on Solidification	WED PM	2:00 PM	126C	23
	Solidification Microstructures, Defects, Processing Methods, and Advanced Imaging	THU AM	8:30 AM	126C	26
	Computational Modelling of Solidification: From Nano to Macro Scales	THU PM	2:00 PM	126C	27
	me-Rothery Award Symposium: Computational Thermodynamics ar terials Design	nd Its Implica	tions to Kinet	ics, Properties, a	nd
	Keynote Session	MON AM	8:00 AM	127C	10
	Density Functional Theory Methods	MON PM	2:30 PM	127C	12
	CALPHAD Methods	TUE AM	8:30 AM	127C	15
	Computational Thermodynamic Approaches	TUE PM	2:00 PM	127C	17
	Data Science and Diffusion	WED AM	8:30 AM	127C	20
	Early Career Scientist	WED PM	2:00 PM	127C	23
	chanical Characteristics and Application Properties of Metals and N nor of Donato Firrao	lon-metals fo	r Technology	: An EPD Sympos	sium in
	Compounds and Alloys	MON AM	8:00 AM	123	10
	Steel	MON PM	2:30 PM	123	12
	Corrosion and Fatigue	TUE AM	8:30 AM	123	15
	Mechanical Properties	TUE PM	2:00 PM	123	18
					Î

Non-equilibrium Features of Grain Boundaries

Thermal Stability of Non-equilibrium Grain Boundaries	MON AM	8:00 AM	125A	106
Structure of Non-equilibrium Grain Boundaries	MON PM	2:30 PM	125A	128
Mechanical Responses of Non-equilibrium Grain Boundaries - Part I	TUE AM	8:30 AM	125A	155
Mechanical Responses of Non-equilibrium Grain Boundaries - Part II	TUE PM	2:00 PM	125A	184

Phase Transformation Across Multiscale Material Interfaces

Structural Materials	MON AM	8:00 AM	126C	106
Modeling and Joined Materials	MON PM	2:30 PM	126C	129
Nanoscale Interfaces, Grain Boundaries and Coatings	TUE AM	8:30 AM	126C	156
Phase Transformations and Microstructural Evolution				
Phase Transformations in Steels I	MON AM	8:00 AM	129A	106
Phase Transformations in Steels II	MON PM	2:30 PM	129A	129

Symposium and Session	Day	Time	Room	Page
Poster Session I	MON EVE	6:00 PM	Hall CD	293
Phase Transformations in Non-ferrous Systems I	TUE AM	8:30 AM	129A	156
Phase Transformations in Non-ferrous Systems II	TUE PM	2:00 PM	129A	184
Poster Session II	TUE EVE	6:00 PM	Hall CD	306
Phase Transformations in Titanium I	WED AM	8:30 AM	129A	214
Special Topics in Phase Transformations I	WED AM	8:30 AM	124B	214
Phase Transformations in Titanium II	WED PM	2:00 PM	129A	243
Special Topics in Phase Transformations II	WED PM	2:00 PM	124B	243
ght Metals				
2018 Light Metals Keynote				
Sustainability in the Aluminum Industry: Climate Neutral Industry with Zero Emissions and Zero Waste?	MON AM	8:30 AM	222ABC	86
Alumina and Bauxite				
Digestion and Precipitation	MON PM	2:30 PM	221A	113
Fundamentals, Product Quality, Efficiency and Modeling	TUE AM	8:30 AM	221A	139
Valorisation of Bayer Process Residues: Red Mud Treatment and Scandium Extraction	WED AM	8:30 AM	221A	195
Processing of Low Grade Bauxite: Flotation and Pretreatment	WED PM	2:00 PM	221A	224
Aluminum Alloys, Processing, and Characterization				
Characterizations and Applications of High Strength Aluminum Alloys	MON PM	2:30 PM	221B	114
Poster Session I - Development of Aluminum Alloy Processing	MON EVE	6:00 PM	Hall CD	287
Poster Session II - Characterizations of Aluminum Alloys	MON EVE	6:00 PM	Hall CD	288
Behavior of Casting Alloys	TUE AM	8:30 AM	221B	139
Aluminum Alloy Development	TUE PM	2:00 PM	221B	167
Microstructures and Mechanical Properties of Aluminum Alloys	WED AM	8:30 AM	221B	196
Simulations and Studies of Processing	WED PM	2:00 PM	221B	225
Emerging Technologies	THU AM	8:30 AM	221B	252
Aluminum Reduction Technology				
Cell Operations, Control & Improvements	MON PM	2:30 PM	221C	114
Poster Session	MON EVE	6:00 PM	Hall CD	288
Joint Session: Alumina Quality	TUE PM	2:00 PM	221C	167
Cell Design & Modelling	WED AM	8:30 AM	221C	196
Fundamentals, Electrolyte Chemistry & Market	WED PM	2:00 PM	221C	225
Environment, Gas Treatment & Alumina Transport	THU AM	8:30 AM	221C	252
Cell Technology Development	THU PM	2:00 PM	221C	269

Symposium and Session	Day	Time	Room	Page
Cast Shop Technology				
HSE and Cast House Operation	MON PM	2:30 PM	222A	115
Poster Session	MON EVE	6:00 PM	Hall CD	288
Melt Treatment	WED AM	8:30 AM	222A	199
Casting and Cast House Products	THU AM	8:30 AM	222A	254
Continuous Casting	THU PM	2:00 PM	222A	271
Cast Shop Technology: Energy Joint Session				
Cast Shop Technology: Energy Joint Session	TUE AM	8:30 AM	222A	141
Cast Shop Technology: Fundamentals of Aluminum Alloy Solidification	n Joint Sessio	า		
Poster Session	MON EVE	6:00 PM	Hall CD	289
Cast Shop Technology: Fundamentals of Aluminum Alloy Solidification Joint Session	WED PM	2:00 PM	222A	227
Cast Shop Technology: Recycling and Sustainability Joint Session				
Poster Session	MON EVE	6:00 PM	Hall CD	289
Cast Shop Technology: Recycling and Sustainability Joint Session	TUE PM	2:00 PM	222A	169
Electrode Technology Symposium for Aluminum Production				
Anode Raw Materials	MON PM	2:30 PM	222C	120
Joint Session with Aluminum Reduction	TUE AM	8:30 AM	222C	147
Anode Materials and Properties	TUE PM	2:00 PM	222C	175
Cathode Materials and Properties	WED AM	8:30 AM	222C	205
Anode Forming and Baking	WED PM	2:00 PM	222C	234
Environmental Challenges and Opportunities for the Magnesium Indu	stry: Recycling	g and Sustair	nability Joint Sess	ion
Poster Session	MON EVE	6:00 PM	Hall CD	291
Magnesium Alloy Development: An LMD Symposium in Honor of Karl	Kainer			
Poster Session	MON EVE	6:00 PM	Hall CD	291
Cast Alloys	TUE AM	8:30 AM	223	151
Wrought Alloys	TUE PM	2:00 PM	223	179
Degradation and Microstructure	WED AM	8:30 AM	223	210
Magnesium Technology 2018				
Keynote Session	MON AM	8:00 AM	224A	103
Corrosion and Surface Protection	MON PM	2:30 PM	224A	125
Poster Pitches	MON PM	4:30 PM	224A	125
Poster Session	MON EVE	6:00 PM	Hall CD	292
Alloy Design	TUE PM	2:00 PM	224A	180
Primary Production and Casting	WED PM	2:00 PM	224A	239

Symposium and Session	Day	Time	Room	Page
Deformation Mechanisms	THU AM	8:30 AM	224A	262
Thermo-Mechanical Processing	THU PM	2:00 PM	224A	276
Scandium Extraction and Use in Aluminum Alloys				,
Scandium Extraction	MON PM	2:30 PM	222B	131
Aluminium Scandium Alloys	TUE AM	8:30 AM	222B	158
Characterization			r	
Advanced Characterization Techniques for Quantifying and Modeling I	Deformation			
Local Strain & Misorientation I	MON AM	8:00 AM	122B	89
Local Strain & Misorientation II	MON PM	2:30 PM	122B	111
Damage / Phase Transformation Plasticity	TUE AM	8:30 AM	122B	135
Dislocations and Planar Faults	TUE PM	2:00 PM	122B	163
Poster Session	TUE EVE	6:00 PM	Hall CD	295
Constitutive Behavior I	WED AM	8:30 AM	122B	192
Plasticity Modeling / Experiments	WED PM	2:00 PM	122B	221
Constitutive Behavior II	THU AM	8:30 AM	122B	248
Advanced Real Time Optical Imaging				,
Iron and Steelmaking I	WED AM	8:30 AM	123	193
High Temperature Phenomena	WED PM	2:00 PM	123	223
Iron and Steelmaking II	THU AM	8:30 AM	123	250
Iron and Steelmaking III	THU PM	2:00 PM	123	268
Atom Probe Tomography for Advanced Characterization of Metals, Min	nerals and Ma	terials		
General Methods and Development	TUE AM	8:30 AM	124A	140
Novel Applications and Modelling	TUE PM	2:00 PM	124A	168
Light-weight Alloys	WED AM	8:30 AM	124A	197
Fe-based Alloys and High-entropy Alloys	WED PM	2:00 PM	124A	225
Nuclear Materials	THU AM	8:30 AM	124A	252
Characterization of Minerals, Metals, and Materials				
Characterization Methods	MON AM	8:00 AM	122C	94
Characterization of Non-ferrous Metals	MON AM	8:00 AM	124B	94
Characterization of Ceramics	MON PM	2:30 PM	122C	116
Microstructure and Performance of Materials	MON PM	2:30 PM	124B	116
Characterization and Uses of Metallurgical Slags	TUE AM	8:30 AM	122C	142
Characterization of Polymer and Composite Materials	TUE PM	2:00 PM	122C	170
Poster Session	TUE EVE	6:00 PM	Hall CD	297
Analysis of Surfaces and Interfaces	WED AM	8:30 AM	122C	200

PROGRAM AT-A-GLANCE

Sym	posium and Session	Day	Time	Room	Page
	Characterization Methods II	WED PM	2:00 PM	122C	228
	Characterization of Powder Materials	WED PM	2:00 PM	125A	228
	Mechanical Behaviors of Materials	WED PM	2:00 PM	126B	229
	Characterization of Ferrous Materials	THU AM	8:30 AM	122C	255
	Mineral Processing and Analysis	THU AM	8:30 AM	125A	255
	Nanostructure and Characterization of Materials	THU AM	8:30 AM	126B	256
	Thermal Processing and Analysis	THU PM	2:00 PM	122C	271

Nanostructured Materials

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials

3D Structures and Hybrid Materials	MON AM	8:00 AM	101B	86
2D Nanoelectronics	MON PM	2:30 PM	101B	109
Nanomaterials for Environmental and Energy Applications	TUE AM	8:30 AM	101B	132
Design and Synthesis of 2D Materials	TUE PM	2:00 PM	101B	160
Poster Session	TUE EVE	6:00 PM	Hall CD	294
Nanomaterials, Characterization, and Applications	WED AM	8:30 AM	101B	188
Joint with Bio-Nano Interface Engineering and Applications Symposium	WED PM	2:00 PM	101B	217

Frontiers in Advanced Functional Thin Films and Nanostructured Materials

Session I	MON AM	8:00 AM	103A	100
Session II	MON PM	2:30 PM	103A	122
Session III	TUE AM	8:30 AM	103A	149
Session IV	TUE PM	2:00 PM	103A	177
Poster Session	TUE EVE	6:00 PM	Hall CD	301

Mechanical Behavior at the Nanoscale IV

Nanoporous Materials and Thin Films	MON AM	8:00 AM	101C	104			
Twinning at the Nanoscale	MON PM	2:30 PM	101C	126			
Nanolayers and Nanocomposites	TUE AM	8:30 AM	101C	153			
2D and Unique Structured Materials	TUE PM	2:00 PM	101C	182			
Poster Session	TUE EVE	6:00 PM	Hall CD	304			
Material Properties in Small Dimensions	WED AM	8:30 AM	101C	211			
Temperature, Rate and Environmental Effects	WED AM	8:30 AM	103A	212			
Damage, Failure and Fracture	WED PM	2:00 PM	101C	241			
Crystallite Effects and the Nanoscale	THU AM	8:30 AM	101C	263			
Atomistic Simulations	THU PM	2:00 PM	101C	277			
nocomposites V: Structure-Property Relationships in Nanostructured Materials							

NanolaminatesMON AM8:00 AM102C105

Symposium and Session	Day	Time	Room	Page
Nanostructures and Polymer Nanocomposites	MON PM	2:30 PM	102C	128
Nanocarbon/Metal Composites	TUE AM	8:30 AM	102C	155
Metallic and Ceramic Nanocomposites	TUE PM	2:00 PM	102C	183
Poster Session	TUE EVE	6:00 PM	Hall CD	305
Metal Matrix Nanocomposites	WED AM	8:30 AM	102C	213
Surface Interactions in Materials			1	<u> </u>
Chemical and Physical Interactions	MON AM	8:00 AM	101A	108
Physical and Mechanical Interactions	MON PM	2:30 PM	101A	131
Poster Session	TUE EVE	6:00 PM	Hall CD	307
Thermal and Mechanical Stability of Nanocrystalline Materials			I.	1
Poster Session	MON EVE	6:00 PM	Hall CD	294
Thermal Stability of Nanocrystalline Metals I	TUE PM	2:00 PM	128B	187
Thermal Stability of Nanocrystalline Metals II	WED AM	8:30 AM	128B	215
Joint Session with Non-equilibrium Features of Grain Boundaries	WED PM	2:00 PM	128B	245
Mechanical Stability and Deformation Behavior	THU AM	8:30 AM	128B	265
Nanotwin and Oxide Induced Stabilization	THU AM	8:30 AM	127C	266
Composites and Heterophase Interfaces	THU PM	2:00 PM	128B	279
Ultrafine-Grained Materials X				
Pioneers of ECAE/ECAP and HPT	MON AM	8:00 AM	103B	109
Pioneers of Alternative SPD Methods	MON PM	2:30 PM	103B	132
Temperature Effects and Thermal Stability	TUE AM	8:30 AM	103B	159
Early Career Scientist	TUE PM	2:00 PM	103B	188
Poster Session	TUE EVE	6:00 PM	Hall CD	307
Grain Boundary Diffusion and Migration: Joint Session with Non- Equilibrium Features on Grain Boundaries	WED AM	8:30 AM	125A	216
Rolling Studies	WED AM	8:30 AM	103B	217
Radiation Tolerance and Particulate Approaches	WED PM	2:00 PM	102C	246
Surface Processing and Twinning Phenomena	WED PM	2:00 PM	103B	246
High Pressure Torsion and Equal Channel Angular Extrusion/ Pressing Studies	THU AM	8:30 AM	103B	266
Texture Studies and Microstructural Evolution	THU AM	8:30 AM	102C	267
Bulk Processing and Applications	THU PM	2:00 PM	103B	280
Advanced Materials				
Advanced High-Strength Steels				
High Mn Steels	MON AM	8:00 AM	121C	90
	MON PM	2:30 PM	121C	111

PROGRAM AT-A-GLANCE

Symposium and Session	Day	Time	Room	Page
1st Generation AHSS	TUE AM	8:30 AM	121C	136
Medium Mn Steels	TUE PM	2:00 PM	121C	164
Poster Session	TUE EVE	6:00 PM	Hall CD	295
Hydrogen Embrittlement, Fracture and Damage	WED AM	8:30 AM	121C	192
Phase Transformation and Thermo-mechanical Processing	WED PM	2:00 PM	121C	221
Bainitic and Stainless Steels	THU AM	8:30 AM	121C	249
Bulk Metallic Glasses XV	-			
Alloy Development and Application I	TUE AM	8:30 AM	122A	141
Structures and Mechanical Properties I	TUE PM	2:00 PM	122A	169
Poster Session	TUE EVE	6:00 PM	Hall CD	297
Alloy Development and Application II	WED AM	8:30 AM	122A	199
Structures and Mechanical Properties II	WED PM	2:00 PM	122A	227
Structures and Modeling	THU AM	8:30 AM	122A	254
Modeling and Thermal Properties	THU PM	2:00 PM	122A	270
Structures and Characterization	THU PM	2:00 PM	121C	271
High-Entropy Alloys VI				«
Alloy Development and Applications I	MON AM	8:00 AM	121B	101
Thermal and Other Properties I	MON AM	8:00 AM	122A	101
Alloy Development and Applications II	MON PM	2:30 PM	121B	123
Thermal and Other Properties II	MON PM	2:30 PM	122A	123
Structures and Mechanical Properties I	TUE AM	8:30 AM	121B	149
Structures and Mechanical Properties II	TUE PM	2:00 PM	121B	178
Poster Session	TUE EVE	6:00 PM	Hall CD	303
Structures and Characterization I	WED AM	8:30 AM	121A	207
Structures and Modeling I	WED AM	8:30 AM	121B	208
Mechanical and Other Properties I	WED PM	2:00 PM	121B	236
Structures and Characterization II	WED PM	2:00 PM	121A	237
Mechanical and Other Properties II	THU AM	8:30 AM	121A	260
Structures and Modeling II	THU AM	8:30 AM	121B	261
Alloy Development and Applications III	THU PM	2:00 PM	121B	274
Mechanical and Other Properties III	THU PM	2:00 PM	121A	275
Metal-Matrix Composites Innovations, Advances and Applications: An	SMD Sympo	sium in Hono	r of William C. Ha	rrigan, Jr.
Aluminum and Lightweight Metal Matrix Composites	MON AM	8:00 AM	121A	105
Synthesis and Developments of Emerging Composites	MON PM	2:30 PM	121A	127

TUE AM

8:30 AM

121A

154

Basic History and Advances in Metal Matrix Composites

TECHNICAL PROGRAM

Symp	posium and Session	Day	Time	Room	Page
	Mechanical Behavior of Metal Matrix Composites	TUE PM	2:00 PM	121A	18
	Poster Session	TUE EVE	6:00 PM	Hall CD	30
Refr	actory Metals 2018			L	
	Refractory Metal Silicides and Composites	MON AM	8:00 AM	124A	10
	Refractory Metals and Alloys	MON PM	2:30 PM	124A	13
ectror	nic Materials (Grouped with Materials Processing, Corrosion & Functiona	al Materials)			
Adv	anced Microelectronic Packaging, Emerging Interconnection Techr	nology, and P	b-free Solder		,
	3D Microelectronic Packaging	MON AM	8:00 AM	226C	91
	Quality and Reliability of Advanced Microelectronic Packaging I	MON PM	2:30 PM	226C	11
	Advanced Microelectronic Packaging Materials	TUE AM	8:30 AM	226C	13
	Quality and Reliability of Advanced Microelectronic Packaging II	TUE PM	2:00 PM	226C	16
	Poster Session	TUE EVE	6:00 PM	Hall CD	29
	Emerging Interconnects	WED AM	8:30 AM	226C	19
	Pb Free Solder Alloy I	WED PM	2:00 PM	226C	22
	Pb Free Solder Alloy II	THU AM	8:30 AM	226C	25
Alloy	ys and Compounds for Thermoelectric and Solar Cell Applications	VI			
	Session I	MON AM	8:00 AM	226B	92
	Session II	MON PM	2:30 PM	226B	11
	Session III	TUE AM	8:30 AM	226B	13
	Session IV	TUE PM	2:00 PM	226B	16
	Student Poster Session	TUE EVE	6:00 PM	Hall CD	29
	Session V	WED AM	8:30 AM	226B	19
Pha	se Stability, Phase Transformations, and Reactive Phase Formatio	n in Electroni	c Materials X	.VII	
	Poster Session	TUE EVE	6:00 PM	Hall CD	30
	Phase Stability of Advanced Electronic Interconnection I	WED AM	8:30 AM	227A	21
	Electromigration and Stability of Electronic Materials	WED PM	2:00 PM	227A	24
	Phase Stability of Advanced Electronic Interconnection II	THU AM	8:30 AM	227A	26
	Phase Stability of Energy Materials	THU PM	2:00 PM	227A	27
Rec	ent Advances in Functional Materials for Printed, Flexible and Wea	arable Electro	nics		
	Poster Session	TUE EVE	6:00 PM	Hall CD	30
	Printed Electronics and Additive Manufacturing	WED PM	2:00 PM	226B	24
	2D/3D Sensors and Devices	THU AM	8:30 AM	226B	26
	Material, Process Integration, and Characterization	THU PM	2:00 PM	226B	27
Sola	ar Cell Silicon				
	Poster Session	TUE EVE	6:00 PM	Hall CD	30

Symposium and Session		Day	Time	Room	Page
Silicon Photovoltaics		WED PM	2:00 PM	223	244
Silicon Recycling, Refining, and Imp	urity Removal	THU AM	8:30 AM	223	265
Silicon Production, Crystallization, a	nd Properties	THU PM	2:00 PM	223	279

Energy & Environment

Advanced Magnetic Materials for Energy and Power Conversion Applications

Application of Advanced Soft Magnetic Materials in Power Electronics and Motors	MON AM	8:00 AM	229A	90
Advances in Permanent Magnet Alloys	MON PM	2:30 PM	229A	112
Poster Session - Magnetism in Energy Applications	MON EVE	6:00 PM	Hall CD	287
Development in Rare Earth Free Permanent Magnet Alloys	TUE AM	8:30 AM	229A	136
Alloy Development and Application of Magneto-thermal Materials	TUE PM	2:00 PM	229A	164
Additive Manufacturing and Advanced Processing of Permanent Magnetic Materials	WED AM	8:30 AM	229A	193
Additive Manufacturing and Advanced Processing of Soft Magnetic Materials	WED PM	2:00 PM	229A	222
Development and Application of Soft Magnetic Materials	THU AM	8:30 AM	229A	249

Deriving Value from Challenging Waste Streams: Recycling and Sustainability Joint Session

Poster Session	MON EVE	6:00 PM	Hall CD	290
Urban Mining and Electronic Waste	WED PM	2:00 PM	224B	233
Industrial Streams I	THU AM	8:30 AM	224B	259
Industrial Streams II	THU PM	2:00 PM	224B	273

Energy Technologies and $\rm CO_2$ Management Symposium

CO ₂ Capture	MON AM	8:00 AM	224B	99
Carbon-based Energy Materials and Sustainable Metallurgical Processes	MON PM	2:30 PM	224B	121
Poster Session	MON EVE	6:00 PM	Hall CD	291
Novel Energy Technologies	TUE AM	8:30 AM	224B	148
Technologies for Energy Efficiency	TUE PM	2:00 PM	224B	175

Materials for Energy Conversion and Storage

Energy Storage I	MON AM	8:00 AM	229B	103
Solid Oxide Fuel Cells I	MON PM	2:30 PM	229B	126
Poster Session	MON EVE	6:00 PM	Hall CD	293
Solid Oxide Fuel Cells II	TUE AM	8:30 AM	229B	152
Energy Storage II	TUE PM	2:00 PM	229B	181
Functional Materials I	WED AM	8:30 AM	229B	211
Energy Harvesting I	WED PM	2:00 PM	229B	240
Energy Storage III	THU AM	8:30 AM	229B	263

80

Symposium and Session	Day	Time	Room	Page
Energy Storage IV	THU PM	2:00 PM	229B	277
Perfluorocarbon Generation and Emissions from Industrial Processes			I	1
PFC Generation Mechanisms from Industrial Processes	TUE PM	2:00 PM	222B	184
PFC Measurements, Reduction and Abatement Methods	WED AM	8:30 AM	222B	213
PFC Emissions Accounting Methods and Global Inventory	WED PM	2:00 PM	222B	242
Stored Renewable Energy in Coal	L		L	
Stored Renewable Energy in Coal	WED AM	8:30 AM	224B	215
omaterials (Grouped with Materials Processing, Corrosion & Functional Mater	rials)			
Bio-nano Interfaces and Engineering Applications Symposium				
Bio-Nano Interfaces I	MON AM	8:00 AM	225A	93
Bio-Nano Interfaces II	MON PM	2:30 PM	225A	114
Bio-Nano Interfaces III	TUE AM	8:30 AM	105A	140
Biodegradable Materials for Medical Applications				•
Poster Session	TUE EVE	6:00 PM	Hall CD	296
Magnesium Alloys I	WED AM	8:30 AM	226A	197
Magnesium Alloys II	WED PM	2:00 PM	226A	226
Biodegradable Metals	THU AM	8:30 AM	226A	253
Polymers and Glasses	THU PM	2:00 PM	226A	270
Biological Materials Science	<u> </u>			^
Structural Biological Materials	MON AM	8:00 AM	225B	93
Synthesis of Bio-inspired Materials and Structures	MON PM	2:30 PM	225B	115
Biomaterials and Biomedical Applications I	TUE AM	8:30 AM	225B	141
Bones, Teeth, and Dental Materials	TUE PM	2:00 PM	225B	168
Poster Session	TUE EVE	6:00 PM	Hall CD	296
Functional Biological Materials	WED AM	8:30 AM	225B	198
Biomaterials and Biomedical Applications II	WED PM	2:00 PM	225B	226
Recent Developments in Biological, Structural and Functional Thin Fil	ms & Coating	S		•
Biomedical & Polymeric Applications	MON AM	8:00 AM	226A	107
Functional Films & Coatings I	MON PM	2:30 PM	226A	130
Functional Coatings for Green Technology and Sustainability	TUE AM	8:30 AM	226A	157
Functional Films & Coatings II	TUE PM	2:00 PM	226A	186
Poster Session	TUE EVE	6:00 PM	Hall CD	306

Symposium and Session Day	Time	Room	Page
---------------------------	------	------	------

Materials Design

Algorithm Development in Materials Science and Engineering

TUE AM	8:30 AM	130	138
TUE PM	2:00 PM	130	166
WED AM	8:30 AM	130	194
WED PM	2:00 PM	130	223
THU AM	8:30 AM	130	251
THU PM	2:00 PM	130	268
	TUE PM WED AM WED PM THU AM	TUE PM 2:00 PM WED AM 8:30 AM WED PM 2:00 PM THU AM 8:30 AM	TUE PM 2:00 PM 130 WED AM 8:30 AM 130 WED PM 2:00 PM 130 THU AM 8:30 AM 130

Building an ICME Infrastructure: Developing Tools that Integrate Across Length and Time Scales to Accelerate Materials Design

ICME Gap Analysis: Multiscale Modeling and Characterization o Structural Materials: I	f WED AM	8:30 AM	132C	198
ICME Gap Analysis: Multiscale Modeling and Characterization o Structural Materials: II	f WED PM	2:00 PM	132C	227
Materials Design Collaboration Platforms and Tools	THU AM	8:30 AM	132C	253
Integration Tools and Methods for Linking Processing-structure- property Relationships	THU PM	2:00 PM	132C	270

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations

1 8:00 AM	131A	95
	1	1 30
8:30 AM	131A	143
1 2:00 PM	131A	171
E 6:00 PM	Hall CD	299
1 8:30 AM	131A	201
1 2:00 PM	131A	229
1 8:30 AM	131A	256
1 2:00 PM	131A	272
1 2:00 PM	131B	272
	A 2:00 PM E 6:00 PM M 8:30 AM M 2:00 PM M 8:30 AM M 2:00 PM M 8:30 AM M 2:00 PM	A 2:00 PM 131A E 6:00 PM Hall CD M 8:30 AM 131A M 2:00 PM 131A M 2:00 PM 131A M 8:30 AM 131A M 2:00 PM 131A M 8:30 AM 131A

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations

Phase Field Simulations I: Functional Materials and Microstructure Evolution	MON AM	8:00 AM	131B	96
Phase Field Simulations II: Lightweight Alloys	MON PM	4:40 PM	131B	117
Dislocation, Plasticity, and Fracture	TUE AM	8:30 AM	131B	143
Multiscale Modeling	TUE PM	2:00 PM	131B	171
Poster Session	TUE EVE	6:00 PM	Hall CD	300
Microstructure and Processing Simulations I	WED AM	8:30 AM	131B	201
Microstructure and Processing Simulations II	WED PM	2:00 PM	131B	230
Mechanical and Process Simulations	THU AM	8:30 AM	131B	257

Symposium and Session	Day	Time	Room	Page
Computational Design and Simulation of Materials (CDSM 2018): Com	putational De	esign of Mate	erials	
Computational Design of Materials: CALPHAD	MON AM	8:00 AM	131C	96
Computational Design of Materials: Uncertainty	MON PM	4:40 PM	131C	11
Computational Design of Materials: Case Studies	TUE AM	8:30 AM	131C	14
Computational Design of Materials: Machine Learning	TUE PM	2:00 PM	131C	17
Poster Session	TUE EVE	6:00 PM	Hall CD	30
Computational Design: Microstructure and Mechanical Behaviors	WED AM	8:30 AM	131C	20
Computational Design: Tools and Data	WED PM	2:00 PM	131C	23
Computational Design and Simulation of Materials (CDSM 2018): Plen	ary			
Plenary	MON PM	2:30 PM	131B	11
Computational Materials Discovery and Optimization				
Materials Informatics	MON AM	8:00 AM	132B	97
Materials Interfaces, 2D Materials, and Nanomaterials	MON PM	2:30 PM	132B	11
Bulk Materials: Thermal, Magnetic, and Optical Properties	TUE AM	8:30 AM	132B	14
Materials for Energy Technologies	TUE PM	2:00 PM	132B	17
Poster Session	TUE EVE	6:00 PM	Hall CD	30
Computational Method and Experimental Approaches for Model Devel and Stochastic Predictions	opment and V	/alidation, Ur	ncertainty Quantif	fication,
Poster Session	TUE EVE	6:00 PM	Hall CD	30
Mathematical and Machine Learning Approaches Applied to UQ	WED AM	8:30 AM	132B	20
Development, UQ and Validation of Classical Potential	WED PM	2:00 PM	132B	23
UQ of Quantum Calculations (DFT and Other Approaches)	THU AM	8:30 AM	132B	25
UQ and Validation of Mesoscale Simulations	THU PM	2:00 PM	132B	27
Design for Mechanical Behavior of Architectured Materials via Topolog	y Optimizatio	n		
Optimal Design of Microlattices and Architected Materials	MON AM	8:00 AM	132C	99
Architected and Topology Optimization (TO) Design for Dynamic, Nonlinear, and Energy Applications	MON PM	2:30 PM	132C	12
Design and Topology Optimization (TO) Considering Manufacturability, Microstructure, and Surface Effects	TUE AM	8:30 AM	132C	14
Recent Advancements and Material Applications of Topology Optimization (TO)	TUE PM	2:00 PM	132C	17
Poster Session	TUE EVE	6:00 PM	Hall CD	30
Integrative Materials Design III: Performance and Sustainability				
New Directions, Process Optimization, and Computational Modeling in Additive Manufacturing	MON AM	8:00 AM	132A	10
Microstructure Evolution and Fatigue Performance in Additive Manufacturing & Other Advanced Manufacturing Technologies	MON PM	2:30 PM	132A	12
Advanced Materials Characterization & Multi-scale Computational Modeling for Integrative Design and Reliability	TUE AM	8:30 AM	132A	15

Sym	posium and Session	Day	Time	Room	Page
	Role of ICME, Data Management & Integrative Design for Fatigue and High Temperature Performance	TUE PM	2:00 PM	132A	179
	Integrative Materials Design and Manufacturing: Approaches, Advances, and Applications	WED AM	8:30 AM	132A	209
	Energy and Sustainability Considerations in Integrative Materials Design and Manufacturing	WED PM	2:00 PM	132A	238
ecial	l Topics				
201	8 EPD Distinguished Lecture				
	Distinguished Lecture and Award Presentation	MON AM	8:00 AM	228A	86
201	8 Technical Division Student Poster Competition				
	2018 Technical Division Student Poster Competition	MON EVE	6:00 PM	Hall CD	281
201	8 Technical Division Young Professional Poster Competition				
	2018 Technical Division Young Professional Poster Competition	MON EVE	6:00 PM	Hall CD	283
Acta	a Materialia Symposium				
	Award Session	TUE PM	3:15 PM	129B	161
All-0	Conference Plenary				
	Defining the Future of Materials and Manufacturing Innovation	MON PM	12:00 PM	301	109
Blad	desmithing 2018				
	Poster Session	TUE EVE	6:00 PM	Hall CD	297
	Bladesmithing I	WED AM	8:30 AM	224A	198
	leration of European Materials Societies (FEMS) Keynote Symposi terials Perspective	um: Energy a	nd Transport	ation from a Euro	pean
	Keynote Session I	WED AM	8:30 AM	228A	206
	Keynote Session II	WED PM	2:00 PM	228A	236
Ger	neral Poster Session				`
	General Poster Session	TUE EVE	6:00 PM	Hall CD	302
Loo	king through the Kaleidoscope: Discovering Your Path to Leadershi	ip			`
	Morning Session	TUE AM	8:30 AM	124B	151
	Afternoon Session	TUE PM	2:00 PM	124B	179
Mat	terials Innovation Keynote				
	Big Data and Machine Learning for Materials	TUE AM	8:30 AM	129B	152

TMS2018 147th Annual Meeting & Exhibition

TECHNICAL PROGRAM

TABLE OF CONTENTS

MONDAY	
TUESDAY	132
WEDNESDAY	
THURSDAY	
POSTERS	281
INDEX	308
NOTES	358

www.tms.org/TMS2018 · #TMSAnnualMeeting

2018 EPD Distinguished Lecture – Distinguished Lecture

Sponsored by: TMS Extraction and Processing Division *Program Organizer:* Cynthia Belt, Consultant

Monday AM March 12, 2018 Room: 228A Location: Phoenix Convention Center

Session Chair: Cynthia Belt, Consultant

8:00 AM Introductory Comments

8:05 AM Invited

2018 EPD Distinguished Lecturer Award: The Revolutions Ahead in Pyrometallurgy: *Geoffrey Brooks*¹; ¹Swinburne University of Technology

8:45 AM Question and Answer Period

2018 Light Metals Keynote Session – Sustainability in the Aluminum Industry: Climate Neutral Industry with Zero Emissions and Zero Waste?

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Arne Ratvik, SINTEF

Monday AMRoom: 222ABCMarch 12, 2018Location: Phoenix Convention Center

Session Chair: Arne Ratvik, SINTEF

8:30 AM Introductory Comments

8:35 AM Keynote

Climate and Energy Efficient Aluminium Production: Johannes Aalbu¹; ¹Hydro Aluminium

9:00 AM Keynote

Aluminum Recycling – Can We be Zero Emissions and Zero Waste?: Ray Peterson¹; ¹Real Alloy

9:25 AM Keynote

Towards Sustainable Solutions for Processing of Spent Potlining: *Stephan Broek*¹; ¹Hatch Ltd.

9:50 AM Break

10:10 AM Keynote

Challenges and Progress in Environment Protection in China's Aluminum Metallurgy: *Wanchao Liu*¹; ¹Chalco Zhengzhou Non-ferrous Metal Research Institute Co. Ltd

10:35 AM Keynote

Tackling the GHG Footprint of the Aluminium Industry – Status, Challenges and Technological Solutions: Pascal Lavoie¹; David Wong¹; ¹Light Metals Research Centre, The University of Auckland

11:00 AM Panel Discussion

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials – 3D Structures and Hybrid Materials

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Stephen McDonnell, University of Virginia; Chang-Yong Nam, Brookhaven National Laboratory; Lanxia Cheng, University of Texas Dallas; Dong Lin, Kansas State University; Wenda Tan, University of Utah

Monday AMRoom: 101BMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Wenda Tan, University of Utah; Jang-Sik Lee, Pohang University of Science and Technology

8:00 AM Introductory Comments

8:10 AM Invited

Adaptive Electrospinning: a Smart Electrospinning System for Lowcost and Scalable Flexible Electronics: *Jiyoung Chang*¹; Dongwoon Shin¹; Jonghyun Kim¹; ¹University of Utah

8:40 AM Invited

Large Scale Laser Crystallization of Solution-based Nanoinks for Highly Transparent Conductive Electrode: *Qiong Nian*¹; ¹Arizona State University

9:10 AM Invited

Additive Manufacturing of Nanomaterials-based Devices: *Yong Lin Kong*¹; ¹University of Utah

9:40 AM Break

10:00 AM Invited

Functional Hybrid Polymer-inorganic Materials by Vapor Phase Infiltration: *Mato Knez*¹; ¹CIC nanoGUNE

10:30 AM

Fully CMOS-Compatible Synthesis and Photodetector-integration of Ultrathin, Parallel-aligned ZnO Nanowire Arrays by Infiltration Synthesis: *Chang-Yong Nam*¹; Aaron Stein¹; ¹Brookhaven National Laboratory

10:50 AM

Hybrid Nanomaterials and their Applications in Energy and Water Areas: Yongjie Zhan¹; *Pei Dong*²; Hua Guo³; Lidia Kuo³; Jun Kim³; Emily Hacopian³; Qilin Li³; Jun Lou³; ¹Northwest University; ²Rice University; George Mason University; ³Rice University

11:10 AM

NIR to UV-Vis-NIR Upconverting Nanolights for Phototriggered Drug Delivery and Tracking In-vivo: *Ghulam Jalani*¹; ¹Dalhousie University

9th International Symposium on High Temperature Metallurgical Processing – Energy-efficient and Clean Metallurgical Technology

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Monday AMRoom: 227BMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Jiann-Yang Hwang, Michigan Technological University; Zhiwei Peng, Central South University

8:00 AM Introductory Comments

8:05 AM

Solid Oxide Membrane-based Green Processing and Modeling of Silicon Production: Thomas Villalon¹; *Jicheng Guo*¹; Uday Pal¹; Soumendra Basu¹; ¹Boston University

8:25 AM

Exergy and its Efficiency Estimations for Sponge Iron Production in a Rotary Hearth Furnace: *Binay Kumar*¹; Gour Roy¹; Prodip Sen¹; ¹IIT Kharagpur

8:45 AM

Simplified Process for Making Anode Copper: Zhi Wang¹; Haibin Wang¹; Xueyi Guo²; Zhixiang Cui¹; *Baojun Zhao*³; ¹Dongying Fangyuan Nonferrous Metals; ²Central South University; ³The University of Queensland

9:05 AM

Preparation of Manganese Ferrite by Low-temperature Solid-state Synthesis under CO-CO2 Atmosphere: Bingbing Liu¹; *Yuanbo Zhang*¹; Juan Wang¹; Manman Lu¹; Zijian Su¹; Guanghui Li¹; Tao Jiang¹; ¹Central South University

9:25 AM Break

9:45 AM

Techno-economic Analysis of Energy Recovery from Plastic Waste: Maryam Ghodrat¹; Bijan Samali¹; ¹Western Sydney University

10:05 AM

Development of Continuous Blast Furnace Slag Solidification Process for Coarse Aggregates: Yasutaka Ta¹; Hiroyuki Tobo¹; Hisahiro Matsunaga¹; Keiji Watanabe¹; ¹JFE Steel Corporation

10:25 AM

An Innovative Oxygen-enriched Flash Smelting Technology for Lead Smelting and its Industrial Application: Baozhong Ma¹; *Chengyan Wang*¹; Yongqiang Chen¹; Peng Xing¹; ¹School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing

10:45 AM

Characteristics and Control Technology of Fine Particulate Matter (PM) in Iron Ore Sintering: *Tiejun Chun*¹; ¹Anhui University of Technology

11:05 AM

Sintering Surface Spraying Steam to Reduce NOx and Dioxin Emissions in Shougang: *Pei Dong*¹; ¹Shougang China

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling – Ion Irradiation and In-situ TEM

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California, Berkeley; Julie Tucker, Oregon State University; Elaine West, Knolls Atomic Power Laboratory

Monday AM	Room: 102A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: James Cole, Idaho National Laboratory; Lindsay O'Brien, Naval Nuclear Laboratory

8:00 AM

Structural Damage and Phase Stability of Al0.3CoCrFeNi High Entropy Alloy under High Temperature Ion Irradiation: *Tengfei Yang*¹; Wei Guo²; Jonathan Poplawsky²; Dongyue Li³; Ling Wang⁴; Yuan Fang⁵; Zhanfeng Yan⁵; Yong Zhang³; Yugang Wang⁵; Steven Zinkle⁴; ¹University of Tennessee; Peking University; ²Oak Ridge National Laboratory; ³University of Science and Technology Beijing; ⁴University of Tennessee; ⁵Peking University

8:25 AM

Effect of Irradiation Dose Rate on Precipitation in Fe-Cu and Fe-Cu-Mn Model Alloys: *Shipeng Shu*¹; Nathan Almirall²; Dane Morgan¹; Scott Tumey³; Brian Wirth⁴; G. Odette²; ¹University of Wisconsin-Madison; ²University of California, Santa Barbara; ³Lawrence Livermore National Laboratory; ⁴The University of Tennessee, Knoxville

8:50 AM

Impact of Temperature on Microstructural Features using Dual Ionirradiation in T91 Steel: *Stephen Taller*¹; Zhijie Jiao¹; Kevin Field²; Gary Was¹; ¹University of Michigan; ²Oak Ridge National Laboratory

9:15 AM

The Influence of Bimodal Cavity Distributions on Swelling Evolution in Helium Pre-implanted T91: Anthony Monterrosa¹; Gerrit VanCoevering¹; Zhijie Jiao¹; Gary Was¹; ¹University of Michigan

9:40 AM Break

10:00 AM Invited

Effect of Friction Stir Welding on Microstructure Evolution on In Situ and Ex Situ Self-ion Irradiated MA956: *Elizabeth Getto*¹; Brian Tobie¹; Khalid Hattar²; Brad Baker¹; Samuel Briggs²; ¹United States Naval Academy; ²Sandia National Laboratory

10:30 AM

Void Swelling Evolution and Radiation-induced Segregation & Precipitation in Self-ion Irradiated Ferritic/Martensitic HT9 Steel: Ce Zheng¹; Djamel Kaoumi¹; ¹North Carolina State University

10:55 AM

Effect of Temperature and Helium on Microstructure Evolution in Dual Ion Irradiated HT9 Steel: *David Woodley*¹; Zhijie Jiao¹; Kai Sun¹; Gary Was¹; ¹University of Michigan

Accident Tolerant Fuels for Light Water Reactor – ATF Program Overview

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Lingfeng He, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory; Kumar Sridharan, University of Wisconsin; Peng Xu, Westinghouse Electric Company

Monday AMRoom: 104AMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Peng Xu, Westinghouse Electric Company; Jon Carmack, Idaho National Laboratory

8:00 AM Invited

The Department of Energy Advanced Nuclear Fuels Campaign: Jon Carmack¹; ¹Idaho National Laboratory

8:30 AM Invited

Status Update on Westinghouse EnCoreTM ATF: *Robert Oelrich*¹; Peng Xu¹; ¹Westinghouse Electric Company

9:00 AM Invited

AREVA NP's Evolutionary Solution for Enhanced Accident Tolerant Fuel: Jeremy Bischoff¹; Christine Delafoy¹; Elmar Schweitzer²; Kiran Nimishakavi³; ¹AREVA NP; ²AREVA GmbH; ³AREVA Inc.

9:30 AM Break

9:50 AM Invited

Postirradiation of Accident Tolerant Fuel Concepts: Techniques, Highlights and Future Plans: *Jason Harp*¹; ¹Idaho National Laboratory

10:20 AM Invited

Status of Accident Tolerant Fuel Cladding Development for LWRs: Kurt Terrani¹; ¹Oak Ridge National Laboratory

10:50 AM Invited

Linking Advanced Multi-scale Modeling with Engineering Scale Fuel Performance Assessments of Accident Tolerant Fuels: Brian Wirth¹; Dwaipayan Dasgupta¹; Gyan Singh¹; R. Sweet¹; ¹University of Tennessee -Knoxville

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – Additive Manufacturing: A Revolution in Materials Processing

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Monday AM	Room: 231AB
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Eric Lass, National Institute of Standards and Technology; Allison Beese, Penn State University

8:00 AM Introductory Comments

8:05 AM Invited

GE Additive - Materials Evolution for the Revolution: *Deborah Whitis*¹; Behrang Poorganji¹; ¹General Electric Company

8:35 AM Invited

Assessing Additive Manufacturing Process Heterogeneity: Edwin Schwalbach¹; Michael Groeber¹; Sean Donegan¹; ¹Air Force Research Laboratory

9:05 AM

Effect of Processing Parameters on Microstructure of PH 13-8 Stainless Steel Fabricated by Hybrid DED/CNC Manufacturing: *Michael Juhasz*¹; Jason Walker¹; Brett Conner¹; ¹Youngstown State University

9:25 AM Break

9:45 AM Invited

 Quantitative
 Microstructure-property
 Relationships
 in
 Additive

 Manufacturing of Metals:
 Allison Beese¹;
 'Pennsylvania State University

10:15 AM

Microstructure-property Relationships in Advanced High Deposition Rate Cold Metal Transfer (CMT) Additive Manufactured IN718: *Benjamin Adam*¹; Thomas Langston¹; Ahmet Tanrikulu¹; Graham Tewksbury¹; Tae-Kyu Lee¹; ¹Portland State University

10:35 AM

Using Additive/Subtractive Processing in the Freeform Fabrication of Bi-metallic Components: *Judith Schneider*¹; Sean Sporie²; Robin Osborne³; ¹University of Alabama - Huntsville; ²DMG MORI; ³NASA

10:55 AM

Bimetallic Structure of Inconel 718 and GRCop-84 Processed Using LENS TM: Bonny Onuike¹; Bryan Heer¹; Amit Bandyopadhyay¹; ¹School of Mechanical and Material Engineering

Additive Manufacturing of Metals: Fatigue and Fracture– Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International; John Lewandowski, Case Western Reserve University

Monday AM	Room: 232A
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Nikolas Hrabe, National Institute of Standards and Technology

8:00 AM Invited

Evaluation of Tensile and Low Cycle Fatigue Properties of 316 Stainless Using Binder Jetting Additive Manufacturing Technology: *Donald Godfrey*¹; Brian Baughman¹; ¹Honeywell

8:30 AM

Fatigue of Solid State Additive Manufactured Inconel 625: Dustin Avery¹; *JB Jordon*¹; Paul Allison¹; Nanci Hardwick²; ¹The University of Alabama; ²Aeroprobe

8:50 AM

Relating Defects at the Fracture Surface to Physical Properties of AM Materials: *Stephanie DeJong*¹; Andrea Exil¹; Lisa Deibler¹; Jay Carroll¹; ¹Sandia National Laboratories

9:10 AM

Effect of Hot Isostatic Pressing on Fatigue Properties of Additively Manufactured Ti-6Al-4V-ELI: *Julius Bonini*¹; Dayna Kinsey¹; Krista Biggs¹; Kevin Knight²; Ernesto Rios³; ¹Lucideon M + P; ²Knight Mechanical Testing; ³Renovis Surgical Technologies, Inc.

9:30 AM Break

9:50 AM Invited

Fatigue Characteristics of Additively Manufactured Aerospace Materials: *Brad Lerch*¹; David Ellis¹; Susan Draper¹; Chantal Sudbrack¹; ¹NASA-GRC

10:20 AM

Fracture Characterization of Additive Manufactured Ti-6Al-4V: *Emily Huskins-Retzlaff*¹; M. Patrick Serbent¹; Stephen Graham¹; ¹United States Naval Academy

TECHNICAL PROGRAM

10:40 AM

Anisotropic Fatigue Properties of IN718 Produced by Powder Bed Fusion: Amin S. Azar¹; Martin Fleissner Sunding¹; Erik Andreassen¹; ¹SINTEF

11:00 AM Invited

MIDAS: Material Informed Digital Design Demonstration for Additive Structures: Michael Groeber¹; *Edwin Schwalbach*¹; Michael Uchic¹; Paul Shade¹; William Musinski¹; Sean Donegan¹; Daniel Sparkman¹; Jonathan Miller¹; ¹Air Force Research Laboratory

Additive Manufacturing: Building the Pathway towards Process and Material Qualification – High Speed Imaging in Additive Manufacturing

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Additive Manufacturing Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas - Austin; Christian Leinenbach, Empa-Swiss Federal Laboratories for Materials Science and Technology; James Sears, Carpenter Technology Coporporation; Christopher Tuck, University of Nottingham

Monday AM	Room: 230
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Manyalibo Matthews, LLNL; Johanna Weker, SLAC

8:00 AM

Correlating Pore Defect Formation in Laser Powder Bed Fusion Processing with In Situ Thermal and Interferometric Optical Measurement: *Manyalibo Matthews*¹; Philip Depond¹; Jean Baptiste Forien¹; Sonny Ly¹; Gabe Guss¹; Bradley Jared²; Jonathan Madison²; Elena Garlea³; Hahn Choo⁴; Christopher Spadaccini¹; ¹Lawrence Livermore National Laboratory; ²Sandia National Laboratories; ³Y12 National Security Complex; ⁴University of Tennessee

8:20 AM

A Low Cost, High-speed Optical Monitoring System for Tracking Spatter during Laser Powder Bed Fusion: Christopher Barrett¹; Jason Walker¹; Rodrigo Enriquez Gutierrez¹; Eric MacDonald¹; Brett Conner¹; ¹Youngstown State University

8:40 AM

Three Dimensional Characterization of AM 316L Stainless Steel: David Rowenhorst¹; Lily Nguyen¹; Richard Fonda¹; ¹U.S. Naval Research Laboratory

9:00 AM

Defect Detection in LENS AM Using In Situ Thermal Camera Process Monitoring: *Tom Stockman*¹; Judith Schneider¹; Cameron Knapp²; John Carpenter²; ¹University of Alabama Huntsville; ²Los Alamos National Laboratory

9:20 AM

High Speed Imaging of Particle-melt Interactions in Laser Directed Energy Deposition (L-DED): James Haley¹; Joshua Yee²; Nancy Yang²; Julie Schoenung¹; Enrique Lavernia¹; ¹University of California, Irvine; ²Sandia National Laboratories

9:40 AM Break

10:00 AM Invited

Visualizing the Melt Pool and Void Formation in Ti Alloys Using Synchrotron-based X-ray Microscopy: Johanna Weker¹; Andrew Kiss¹; Anthony Fong¹; Vivek Thampy¹; Nicholas Calta²; Aiden Martin²; Jenny Wang²; Philip Depond²; Gabe Guss²; Kevin Stone¹; Christopher Tassone¹; Ryan Ott³; Matthew Kramer³; Tony Van Buuren²; Manyalibo Matthews²; Michael Toney¹; ¹SLAC National Accelerator Laboratory; ²Lawrence Livermore National Laboratory; ³Ames Laboratory

10:30 AM

3D Imaging of Metal Powders Used for Additive Manufacturing: *Dileep Singh*¹; Chih-pin Chuang¹; Francisco Medina²; Rutuja Samant²; ¹Argonne National Laboratory; ²Edison Welding Institute

10:50 AM

Defect Signatures for Metal Laser Powder Bed Fusion: *Bradley Jared*¹; Jon Madison¹; Laura Swiler¹; David Saiz¹; Kevin Webb²; Erich Schwaller¹; Josh Koepke¹; Burke Kernan¹; Brad Boyce¹; Jeff Rodelas¹; Manyalibo Matthews³; ¹Sandia National Laboratories; ²Georgia Tech University; ³Lawerence Livermore National Laboratory

11:10 AM

Correlation of In-situ Process Monitoring Data to Material Properties and the Technologies Potential Impacts on AM Process Qualification: *Alexander Janzen*¹; Ankit Saharan¹; ¹EOS North America

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Local Strain & Misorientation I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Monday AM	Room: 122B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Wolfgang Pantleon, Technical University of Denmark; Robert Suter, Carnegie Mellon University

8:00 AM Invited

Advances in Information Extraction from Near-field High Energy Diffraction Microscopy Data Sets: *Robert Suter*¹; Yu-Feng Shen¹; David Menasche²; ¹Carnegie Mellon University; ²Hamilton LLC

8:30 AM

In-situ Monitoring of Cyclic Deformation by High Resolution Reciprocal Space Mapping: Annika Diederichs¹; Ulrich Lienert²; Henning Friis Poulsen³; Wolfgang Pantleon¹; ¹Department of Mechanical Engineering, Section of Materials and Surface Engineering, Technical University of Denmark; ²DESY Photon Science, Deutsches Elektronen Synchrotron; ³Department of Physics, Neutrons and X-Rays for Materials Physics (NEXMAP), Technical University of Denmark

8:50 AM

High Resolution Strain Measurements in a Polycrystalline Superalloy during Plastic Deformation: Slip Band Discontinuity Analysis: *J.C. Stinville*¹; F. Bourdin²; M.P. Echlin¹; W.C. Lenthe¹; F. Bridier³; D. Texier⁴; J. Cormier²; P. Villechaise²; V. Valle⁵; T.M. Pollock¹; ¹University of California Santa Barbara; ²Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346; ³DCNS Research, DCNS; ⁴Ecole de Technologie Superieure de Montreal; ⁵Institut Pprime, CNRS – Université de Poitiers, UPR CNRS 3346

9:10 AM

Strain Localisation Behaviour in Ti834 Subjected to Cold Creep Testing: *Claudius Dichtl*¹; Michael Preuss¹; João Quinta da Fonseca¹; ¹University of Manchester

9:30 AM Break

9:50 AM

Dominant Axes of Orientation Distributions and the Peculiar Case of [111] Grains in Tension: *Wolfgang Pantleon*¹; ¹Technical University of Denmark

10:10 AM

Microstructure and Deformation Mechanisms in Ti-7Al: Patrick Callahan¹; Jean-Charles Stinville¹; Tresa Pollock¹; ¹University of California, Santa Barbara

10:30 AM

Measuring Intra-grain Orientation Gradient and Elastic Strain Field by Near-field High Energy X-ray Diffraction Microscopy: Yu-Feng Shen¹; R. Suter¹; ¹Carnegie Mellon University

89

MONDAY AM

10:50 AM

An Application of X-Ray Micro Computer Tomography to Understand Material Flow during Friction Stir Channelling Process: Sheetal Pandya¹; *Amit Arora*¹; ¹Indian Institute of Technology Gandhinagar

11:10 AM

Modern Diffraction Methods for the Investigation of Thermo-mechanical Processes: *Klaus-Dieter Liss*¹; ¹Australian Nuclear Science and Technology Organisation

Advanced High-strength Steels – High Mn Steels

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Monday AMRoom: 121CMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Mingxin Huang, The University of Hong Kong; Xuejun Jin, Shanghai Jiao Tong University

8:00 AM Introductory Comments

8:05 AM Invited

Nanoprecipitate-hardened Fine-grained Twinning-induced Plasticity Steels with Excellent Cryogenic Strength-ductility Combinations: *Xuejun Jin*¹; Yu Li¹; Wei Li¹; ¹Shanghai Jiao Tong University

8:30 AM

Deformation Twins Are Not Important for TWIP Steels: *M.X. Huang*¹; ¹The University of Hong Kong

8:50 AM

Digital Image Correlation (DIC) Analysis of Temperature and Strain Rate Influence on the Serrated Flow Behaviour of High-Mn Steels: Sebastian Wesselmecking¹; Liudmila Tataurova¹; Wolfgang Bleck¹; ¹RWTH Aachen

9:10 AM

Investigation of Processing and Deformation Behavior of Strip Cast Aluminum-alloyed High Manganese Steels: *Marco Haupt*¹; Sebastian Wesselmecking²; Gerhard Hirt¹; ¹Institute of Metal Forming (IBF), RWTH Aachen University; ²Department of Ferrous Metallurgy (IEHK), RWTH Aachen University

9:30 AM Break

9:45 AM

Mechanical Behavior of a TWIP Steel (Fe-Mn-C-Al-Si) under Tension and Compression Loads.: *Xiaoxue Chen*¹; Jianguo Li²; Laszlo Kecskes³; Qiuming Wei¹; ¹UNC-Charlotte; ²University of Northwestern Poly-technical University; ³US Army Research Laboratory

10:05 AM

Impact of Short-range Ordering on the Yield Strength in High Mn Steels: Simon Sevsek¹; Wolfgang Bleck¹; ¹Steel Institute, RWTH Aachen University

10:25 AM

Cavitation Behavior of an Advanced High-Mn Austenitic TWIP Steel Microalloyed with V and Nb Under Hot-tensile Condition: *Enrique Salas*¹; Ignacio Mejía²; José María Cabrera³; ¹National Autonomus University of Mexico; ²Universidad Michoacana de San Nicolás de Hidalgo; ³Universitat Politècnica de Catalunya

10:45 AM

On the Fracture Behavior of Twinning-induced Plasticity Steel: *Luo Zhichao*¹; Huang Mingxin¹; ¹The University of Hong Kong

11:05 AM

Thermomechanical Processing of High-Mn, High-Al Steels for Thick Plate Applications: *Katherine Sebeck*¹; Ryan Howell²; Demetrios Tzelepis¹; Michael Foley¹; ¹US Army TARDEC; ²US Army PEO GCS

11:25 AM

Crystal-plasticity Modeling of the Dislocation-dominated Strain Hardening in a TWIP Steel: *Yizhuang Li*¹; Mingxin Huang¹; ¹The University of Hong Kong

Advanced Magnetic Materials for Energy and Power Conversion Applications – Application of Advanced Soft Magnetic Materials in Power Electronics and Motors

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Monday AMRoom: 229AMarch 12, 2018Location: Phoenix Convention Center

Session Chair: Paul Ohodnicki, NREL

8:00 AM Introductory Comments

8:05 AM Invited

Amorphous and Nanocomposite Magnets for High Efficiency, High Speed Motor Designs: *Michael McHenry*¹; ¹Carnegie Mellon University

8:35 AM Invited

Building 3D Structures from Amorphous and Nanocrystalline Ribbon for Applications in High Efficiency Motors: *Eric Theisen*¹; ¹Metglas Inc.

9:05 AM Invited

Engineering of Magnetic Properties of Co- and Fe-rich Microwires by Stress Annealing: *Arcady Zhukov*¹; Mihail Ipatov²; Juan Blanco²; Valentina Zhukova²; ¹Basque Country University and Ikerbasque; ²University of Basque Country

9:35 AM Break

9:50 AM Invited

Core Loss Reduction of Electrical Motor Being Applied to by Low Iron Loss: *Keisuke Fujisaki*¹; ¹Toyota Technological Institute

10:20 AM

Multiport Converter and High Frequency Transformer Technology for Grid Integration of Distributed Generation Resources: *Paul Ohodnicki*¹; Michael McHenry²; Subhashish Bhattacharya³; Mark Juds⁴; Randy Bowman⁵; Alex Leary⁵; Richard Beddingfield³; Ronald Noebe⁵; ¹National Energy Technology Laboratory; ²Carnegie Mellon University; ³North Carolina State University; ⁴Eaton Corporation; ⁵NASA Glenn Research Center

10:50 AM

Leakage Flux Induced Losses and Shielding in Magnetic Ribbon Cores: Richard Beddingfield¹; Kevin Byerly²; Mark Juds³; Subhashish Bhattacharya¹; Paul Ohodnicki²; ¹North Carolina State University; ²National Energy Technology Labs; ³Eaton

11:10 AM

Core Loss Measurements and Benchmarking of Commercial Soft Magnetic Core Materials for High Frequency Power Conversion: Kevin Byerly¹; Paul Ohodnicki¹; Alex Leary; Seung-Ryul Moon¹; Richard Beddingfield²; Subhashish Bhattacharya²; ¹National Energy Technology Laboratory; ²North Carolina State University

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder – 3D Microelectronic Packaging

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee *Program Organizers:* Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Monday AMRoom: 226CMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: John Elmer, Lawrence Livermore National Laboratory; Tae-Kyu Lee, Portland State University

8:00 AM Invited

Failure and Material Analysis Challenges in 3D Microelectronic Packages: Pilin Liu¹; Kaushik Muthur Srinath¹; Yan Li¹; *Deepak Goyal*¹; ¹Intel Corporation

8:30 AM

Damage Mechanisms in TSVs and Back-end Structures due to Thermal Cycling and Electromigration: *Indranath Dutta*¹; Tae-Kyu Lee²; Sukeshwar Kannan³; Bibekananda Dutta¹; ¹Washington State University; ²Portland State University; ³Global Foundries

8:50 AM

Effect of Twin Grains on the Void Formation in Copper Filled through Silicon via under Thermal Process: Limin Ma¹; Xuewei Zhao¹; Yishu Wang¹; Fu Guo¹; ¹Beijing University of Technology

9:10 AM

Effect of Tin Orientation on Electromigration Failure of 20-um Microbumps: Kai-Cheng Shie¹; Chih Chen¹; ¹National Chiao Tung University

9:30 AM Break

9:50 AM

Effect of Sn Grain Orientation on Thermomigration in Sn2.3Ag Microbumps: Yu-An Shen¹; *Kai-Cheng Shie*¹; Fan-Yi Ouyang²; Chih Chen¹; ¹National Chiao Tung University; ²National Tsing Hua University

10:10 AM

Effects of Zn Addition on Cu-Sn Microjoints for Chip-stacking Applications: Yi-Wun Wang¹; Ting-Li Yang¹; C.R. Kao¹; ¹National Taiwan University

10:30 AM

Edge Effect and Phase Formation in Cu-Sn-Ni Micro Joints during Solidstate Aging: *Haiyang Yu*¹; C.R. Kao¹; ¹National Taiwan University

10:50 AM

Micromechanical Properties of Single Crystalline (Cu,Ni)₆Sn₅ by Micropillar Compression and Nanoindentation: *Jui-Yang Wu*¹; C. Robert Kao¹; ¹Department of Materials Science and Engineering, National Taiwan University

11:10 AM

Effective Control of the Statistical Spread in Cu TSV Extrusion by a Cap Layer: *Golareh Jalilvand*¹; Omar Ahmed¹; Cullen Fitzgerald¹; Keenan Bosworth¹; Zhenlin Pei¹; Tengfei Jiang¹; ¹University of Central Florida

Advances in Additive Manufacturing of Titanium and Titanium Based Alloys – Overview of Additive Manufacturing for Titanium Alloys

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Peter Collins, Iowa State University; Leon Prentice, CSIRO; Andrew Baker, The Boeing Company; Craig Brice, Lockheed Martin Space Systems Company

Monday AM March 12, 2018 Room: 231C Location: Phoenix Convention Center

Session Chair: Peter Collins, Iowa State University

8:00 AM Introductory Comments

8:10 AM Invited

A History of Titanium Additive Manufacturing for Air Vehicle Structures: Brian Rosenberger¹; ¹Lockheed Martin

8:40 AM Invited

Understanding Light-matter Interaction, Melt Pool Dynamics and Spatter Formation in Laser Powder Bed Fusion Processing: *Manyalibo Matthews*¹; Andrew Anderson¹; Nicholas Calta¹; Philip Depond¹; Gabe Guss¹; Saad Khairallah¹; Wayne King¹; Tien Roehling¹; Alexander Rubenchik¹; Johannes Trapp¹; Sheldon Wu¹; ¹Lawrence Livermore National Laboratory

9:15 AM Invited

Processing Modalities of Ti-6Al-4V Fabricated via Additive Manufacturing: *Ryan Dehoff*¹; Peeyush Nandwana¹; Sean Yoder¹; Frederick List¹; Chasen Ranger²; Ross Cunningham²; Anthony Rollett²; Suresh Babu³; ¹Oak Ridge National Laboratory; ²Carnegie Mellon University; ³The University of Tennessee

9:45 AM Break

10:00 AM

Additive Manufacturing in a High Temperature Environment with Sensor Monitoring to a Closed-loop In-situ Feedback Control: James Withers¹; Anil Chaudhary²; Grady Phillips³; Glen Perram³; ¹ATS-MER, LLC; ²Applied Optimization; ³Air Force Institute of Technology

10:20 AM

In-situ Investigation of Microstructure Evolution during Annealing in Ti-6Al-4V Alloy Produced by Additive Manufacturing: *Sven Vogel*¹; Shigehiro Takajo²; El'ad Caspi³; Asaf Pesach³; Ori Yeheskel³; Eitan Tiferet³; ¹Los Alamos National Laboratory; ²LANL & JFE Steel Corporation, Kurashiki, Japan; ³Nuclear Research Center Negev

10:40 AM

Numerical and Experimental Study of As-built Powder Bed Fused Ti6Al4V Component: Jonas Zielinski¹; Jan Duechting¹; Hans-Wilfried Mindt²; *Mustafa Megahed*²; ¹Fraunhofer; ²ESI Group

Alloys and Compounds for Thermoelectric and Solar Cell Applications VI – Session I

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Ensicaen University of Caen; Soon-Jik Hong, Kongju National University and Institute for Rare Metals; Philippe Jund, Université Montpellier 2; Lan Li, Boise State University; Takao Mori, National Institute for Materials Science (NIMS) ; Hsin-jay Wu, National Sun Yat-sen University; Tiejun Zhu, Zhejiang University

Monday AM Room: 226B March 12, 2018 Location: Phoeni

Location: Phoenix Convention Center

Session Chairs: Sinn-wen Chen, National Tsing Hua University; Hsinjay Wu, National Sun Yat-Sen University

8:00 AM Introductory Comments

8:10 AM Invited

Approaching Efficient Thermoelectrics: From Materials to Modules: Lidong Chen¹; Shengqaing Bai¹; ¹Shanghai Institute of Ceramics, Chinese Academy of Sciences

8:30 AM Invited

Half Heuslers: Promising Mid-to-high Temperature Thermoelectric Alloys: Joseph Poon¹; ¹University of Virginia

8:50 AM Invited

High-performance Oxides-based Thermoelectric Ceramics for Energy Conversion: Yuanhua Lin¹; ¹Tsinghua University

9:10 AM Invited

Low Dimensional Insulator-conductor Nanocomposites and their Thermoelectric Properties: *Teruyuki Ikeda*¹; Babak Alinejad¹; ¹Ibaraki University

9:30 AM Break

9:50 AM Invited

High Thermoelectric Figure-of-merit in n-type Ga-incorporated PbTe: *Hsin-jay Wu*¹; Yi-huei Du¹; ¹National Sun Yat-sen University

10:10 AM Invited

Enhancement of the Thermoelectric Properties of FeGa3-type Structures with Group 6 Transition Metals: A Computational Exploration: *Regis Gautier*¹; Benoit Boucher¹; Rabih Al Rahal Al Orabi²; Bruno Fontaine¹; Yuri Grin³; Jean-Francois Halet¹; ¹ENSC Rennes; ²Central Michigan University; ³MPI Dresden

10:30 AM Invited

Enhanced Thermoelectric Properties in a Printed Material: *Koji Miyazaki*¹; ¹Kyushu Institute of Technology

10:50 AM Invited

Structure/Property Relationships of Thermoelectric Oxyselenides BilxAxOCuSe (A=Ba, Sr, Ca, and Pb): *Winnie Wong-Ng*¹; Yonggao Yan²; Matthew Lawson³; Lan Li³; James Kaduk⁴; ¹National Institute of Standards and Technology; ²Wuhan University of Technology; ³Boise State University; ⁴Illinois Institute of Technology

11:10 AM

Phonon Spectroscopy and Elasticity in Thermoelectric Mg2Si1-xSnx: *Raphael Hermann*¹; Benedikt Klobes²; Johannes de Boor³; Ahmet Atalasy⁴; Michael Yu⁴; Ronnie Simon⁵; ¹Oak Ridge National Laboratory; ²University of Applied Sciences Bremerhaven; ³Institute of Materials Research, German Aerospace Center; ⁴Advanced Photon Source, Argonne National Laboratory; ⁵Ju⁻lich Centre for Neutron Science JCNS and Peter Gru⁻nberg Institute PGI, JARA-FIT

11:30 AM

Microstructure and Thermoelectric Properties of Se/Te-doped CoSb₃ Skutterudites Synthesized by Self-propagating High-temperature Synthesis: *Miroslaw Kruszewski*¹; Lukasz Ciupinski¹; Radoslaw Zielinski¹; Rafal Zybala¹; Marcin Chmielewski²; ¹Warsaw University of Technology; ²Institute of Electronic Materials Technology

Application of Solidification Fundamentals to Challenges in Metal Additive Manufacturing – Process to Microstructure Relationships

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Alex Plotkowski, University of Tennessee -Knoxville; Kevin Chaput, Materials and Manufacturing Directorate; Lang Yuan, GE Global Research

Monday AM	Room: 232B
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Kevin Chaput, Air Force Research Laboratory

8:00 AM Invited

Application of Interface Response Function Theory to Describe Nonequilibrium Solidification during Welding and Additive Manufacturing: *Sudarsanam Babu*¹; ¹The University of Tennessee, Knoxville

8:30 AM

Enabling New Additive Alloys through Solidification Control: *Hunter Martin*¹; Brennan Yahata²; Robert Mone²; Ekaterina Stonkevitch²; Jacob Hundley²; Tobias Schaedler²; Tresa Pollock¹; ¹University of California, Santa Barbara; ²HRL Labs

8:50 AM

Crystal Growth in Face-centred-cubic Alloys Made by Additive Manufacturing: Epitaxial Growth, Branching and Splitting: Bogdan Dovgyy¹; Alessandro Piglione¹; Chen Liu¹; Paul Hooper¹; *Minh-Son Pham*¹; ¹Imperial College London

9:10 AM

Microstructure Formation in Rapid Solidification of Electron-beam Melted Ni-Sn Alloys: Rijie Zhao¹; *Jianrong Gao¹*; Jerry Guo²; Brant Wu²; ¹Northeastern University; ²Dynasty Metal Additive Manufacturing Systems Co., Ltd

9:30 AM Break

9:50 AM

Cellular Automata Modeling of Nucleation and Grain Growth in Alloybased Additive Manufacturing: *Matthew Rolchigo*¹; Michael Mendoza¹; Peter Collins¹; Richard LeSar¹; ¹Iowa State University

10:10 AM

Solid Solubility Extension and Microstructural Evolution during Single and Double Pass Laser Scans in Al-Co and Al-Ce Binary Alloys: *Cain Hung*¹; Yu Sun¹; Rainer Hebert¹; ¹University of Connecticut

10:30 AM

Building Microstructure-cooling Rate Relationships in Laser Welded Uranium-6 Wt. Pct. Niobium for Laser Powder Bed Fusion Processing: *Amanda Wu*¹; John Elmer¹; Tarasankar DebRoy²; ¹Lawrence Livermore National Laboratory; ²Pennsylvania State University

10:50 AM

The Effect of Grain Refiners on the Columnar to Equiaxed Transition in Metal Additive Manufacturing of Aluminium Alloys: *Mitesh Patel*¹; Dong Qiu¹; Gui Wang²; Mark Gibson¹; David StJohn²; Mark Easton¹; ¹RMIT University; ²The University of Queensland

11:10 AM

Microstructure Control in Laser Powder Bed Fusion: Correlating Directional Solidification Parameters with Selected Process Variables and Material's Properties: *Umberto Scipioni Bertoli*¹; Julie Schoenung¹; ¹University of California, Irvine

Bio-nano Interfaces and Engineering Applications Symposium – Bio-Nano Interfaces I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Terry Lowe, Colorado School of Mines; Kalpana Katti, North Dakota State University; Po-Yu Chen, National Tsing Hua University; John Nychka, University of Alberta

Monday AM	Room: 225A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota University

8:00 AM Introductory Comments

8:05 AM Invited

Discovery of Biomaterials by Simulation and Experiment: Catalysts, Composites, and Therapeutics: *Hendrik Heinz*¹; ¹University of Colorado-Boulder

8:35 AM Invited

Nanoclay Based Tissue Engineering Scaffolds for Mimicking Biointerfaces in Mesenchymal to Epithelial Transision of Prostate and Breast Cancer Metastasis to Bone: *Kalpana Katti*¹; Shahajahan Molla¹; Sumanta Kar¹; Dinesh Katti¹; 'North Dakota State University

9:05 AM Invited

Nanoscale Structure and Properties of Biomaterials: Federico Rosei¹; ¹INRS

9:35 AM Break

9:50 AM Invited

Biomolecular Design of Soft Interfaces for Technology and Medicine: *Mehmet Sarikaya*¹; ¹University of Washington

10:30 AM Invited

Investigating the Interaction of Amyloidogenic Proteins with Inorganic Surfaces, Nanoparticles and Biomolecules by Atomistic Simulations: Stefano Corni¹; ¹University of Padova & CNR Institute of Nanoscience

11:00 AM Invited

Modeling the Mechanics of Cancer Cells on Tissue Engineering Substrates: Dinesh Katti¹; Kalpana Katti¹; ¹North Dakota State University

Biological Materials Science – Structural Biological Materials

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Steven Naleway, University of Utah; Vinoy Thomas, University of Alabama at Birmingham; Holly Martin, Youngstown State University; Jing Du, Pennsylvania State University

Monday AM	Room: 225B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Steven Naleway, University of Utah; Holly Martin, Youngstown State University

8:00 AM Invited

Materials Inspired from Fossils and their Relatives: *David Kisailus*¹; ¹University of California, Riverside

8:30 AM

A Damper on the Head? Structural Role of the Skull Bone of Woodpeckers: Jae-Young Jung¹; Andrei Pissarenko¹; Adwait Trikanad²; David Restrepo²; Frances Su¹; Damian Gonzalez¹; Andrew Marquez¹; Steven Naleway³; Marc Meyers¹; Pablo Zavattieri²; Joanna McKittrick¹; ¹University of California, San Diego; ²Purdue University; ³The University of Utah

8:50 AM

Energy Absorbent Natural Keratin Materials and Bioinspired Designs: *Wei Huang*¹; Alireza Zaheri²; David Restrepo³; Wen Yang¹; Horacio Espinosa²; Robert Ritchie⁴; Pablo Zavattieri³; Joanna McKittrick¹; ¹University of California, San Diego; ²Northwestern University; ³Purdue University; ⁴Lawrence Berkeley National Laboratory

9:10 AM

Pangolin Armor: Overlapping, Structure, and Mechanical Properties of the Keratinous Scales: *Wen Yang*¹; Bin Wang¹; Marc Meyers¹; ¹University of California, San Diego

9:30 AM Break

9:50 AM Keynote

Institute of Metals/Robert Franklin Mehl Award Lecture: Biological Materials Science: Challenges and Opportunities: Marc Meyers¹; ¹University of California, San Diego

10:30 AM Invited

Structure and Mechanics of Natural Scales: Inspiration for Novel Flexible Protective Systems: Roberto Martini¹; Yanis Balit¹; *Francois Barthelat*¹; ¹McGill University

11:00 AM Invited

Material Architecture Inspired by Nature: Harnessing the Role of Interfaces and Other Clever Mechanisms: Pablo Zavattieri¹; ¹Purdue University

CFD Modeling and Simulation in Materials Processing– Casting and Solidification I

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee *Program Organizers:* Laurentiu Nastac, The University of Alabama; Koulis Pericleous, University of Greenwich; Adrian Sabau, Oak Ridge National Laboratory; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, Colorado School of Mines

Monda	ıy A	M	
March	12.	201	8

Room: 228B Location: Phoenix Convention Center

Session Chairs: Koulis Pericleous, University of Greenwich; Gregory Poole, The University of South Alabama

8:00 AM

A Comparison of the Volume-averaged and Continuum Mixture Approaches for Modeling Equiaxed Solidification: John Coleman¹; Matthew Krane¹; ¹Purdue University

8:20 AM

Massively Parallel GPU Lattice Boltzmann Method for 3D Alloy Solidification and Solute Transport: *Ivars Krastins*¹; Andrew Kao¹; Koulis Pericleous¹; ¹University of Greenwich

8:40 AM

Numerical Simulation on Solidification Structure of 30Cr2Ni4MoV Steel under Different Temperature Gradient Using Procast Software: Zheng Chen¹; Jieyu Zhang²; ¹Shanghai University; Tongling University; ²Shanghai University

9:00 AM

Influence of Coil Configuration on Flow Characteristics in Electromagnetic Solidification Systems: Gregory Poole¹; Laurentiu Nastac²; ¹University of South Alabama; ²University of Alabama

9:20 AM

Discussion on Pouring Process Parameters Based on Slow Solidification Experiment of Extra - Thick Plate Mold: *Bao Yang*¹; Chang-jun Xu¹; Lianwang Zhang¹; Jing Li¹; ¹School of Materials and Metallurgy, University of Science and Technology Liaoning

9:40 AM Break

10:00 AM

Validation of a Model for Predicting Air Entrainment during Pouring of Metal Castings: Seyyed Hojjat Majidi¹; Christoph Beckermann¹; ¹University of Iowa

10:20 AM

Modelling Directional Solidification in a Transverse Magnetic Field Validated via High Speed Synchrotron X-Ray Tomography: *Andrew Kao*¹; Biao Cai²; Peter Lee²; Koulis Pericleous¹; ¹University of Greenwich; ²The University of Manchester

10:40 AM

Simulation Analysis on the Solidification Quality of Heavy Compatible Split Type Ingot: *Lian-wang Zhang*¹; Yan Zhang¹; Chun-xiao Sun¹; Chang-jun Xu¹; Ye Cui²; ¹Technical Center of Metallurgical Engineering, University of Science and Technology Liaoning; ²Liaoning Fu-An Heavy Industry Co.,Ltd

11:00 AM

Effect of Hook Formation during Initial Solidification on Distribution of Subsurface Inclusions in Ultralow Carbon Steel Slabs: *Xiao Pengcheng*¹; Liguang Zhu¹; Caijun Zhang¹; Jingyi Zhou¹; ¹North China University of Science and Technology

Characterization of Minerals, Metals, and Materials – Characterization Methods

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, AI Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Monday AMRoom: 122CMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Jian Li, NRCan/RNCan; Andrew Brown, University of New South Wales

8:00 AM Introductory Comments

8:05 AM Invited

Improve Product Quality and On-line Process Control with Threedimensional Size and Shape Particle Characterization: Terry Stauffer¹; *Phil Plantz*¹; Paul Cannon¹; Alex Greenzweig¹; ¹Microtrac

8:25 AM

Case Studies Utilizing Advanced X-ray Computed Tomography Techniques: *Jennifer Sietins*¹; Clara Hofmeister²; ¹Army Research Laboratory; ²ORISE

8:45 AM

Integrated Imaging in Three Dimensions: The Sum is Greater than the Parts: Ashwin Shahani¹; Hrishikesh Bale²; Nicolas Gueninchault³; Arno Merkle²; Erik Lauridsen³; ¹University of Michigan; ²Carl Zeiss X-ray Microscopy Inc.; ³Xnovo Technology ApS

9:05 AM

On FIB Milling Parameters: Jian Li¹; ¹CanmetMATERIALS

9:25 AM Break

9:40 AM

The Full-field X-ray Nano-tomography System at the Advanced Photon Source: An Instrument Oriented toward In Situ Experiments: Vincent De Andrade¹; Alex Deriy¹; Michael Wojcik¹; Deming Shu¹; Sunil Bean¹; Doga Gürsoy¹; Tekin Bicer¹; Daniel Pelt²; Xiaogang Yang¹; Mark Wolfman³; Arthur Glowacki¹; Chris Jacobsen¹; Kamel Fezzaa¹; C Kaira⁴; Nikhilesh Chawla⁴; M Ley⁵; Narayanan Kasthuri¹; Francesco De Carlo¹; ¹Argonne National Laboratory; ²Lawrence Berkeley National Laboratory; ³University of Illinois Chicago; ⁴Arizona State University; ⁵Oklahoma State University

10:00 AM

Transmission Kikuchi Diffraction for Characterization of Thin Film Phenomena: *Mikhail Polyakov*¹; Rachel Schoeppner¹; Xavier Maeder¹; Johann Michler¹; ¹EMPA

10:20 AM

3D Microstructural Characterization of Polymer and Ceramic Matrix Composite Materials (PMC, CMC) Using Serial Sectioning: *Veeraraghavan Sundar*¹; Satya Ganti¹; Bryan Turner¹; ¹UES Inc.

10:40 AM

Correlative Multiscale Tomography for Additive Manufacturing: *Bartlomiej Winiarski*¹; Grzegorz Pyka¹; Austin Wade¹; Dirk Laeveren¹; Philip Withers²; ¹Thermo Fisher Scientific; ²The University of Manchester

11:00 AM

Fabrication of Monolithic Nanoporous Copper by Chemical Dealloying Cu-Y Metallic Glasses: *Ning Wang*¹; Ye Pan¹; ¹Southeast University

Characterization of Minerals, Metals, and Materials – Characterization of Non-ferrous Metals

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

nday AM	Room: 124B
rch 12, 2018	Location: Phoenix Convention Center

Session Chairs: Y. Eren Kalay, Middle East Technical University; Xuewei Lv, Chongqing University

8:00 AM Introductory Comments

8:05 AM Invited

Characterization of Chape Memory Ti-Ni-Hf Alloys: *Walman Castro*¹; Roniere Soares¹; ¹Universidade Federal de Campina Grande

8:25 AM

Mon

Mar

In-situ Diagnostics of Damage Accumulation in Nickel-based Superalloy: *Koji Kageyama*¹; Fauzan Adziman¹; Tan Sui¹; Alexander Korsunsky¹; Roger Reed¹; ¹University of Oxford

8:45 AM

Increasing Coercivity for Nd-Fe-B Melt Spun Ribbons by Adding 20 at.% Ce: *Munan Yang*¹; Hang Wang¹; Yongfeng Hu²; Bin Yang¹; ¹Jiangxi University of Science and Technology; ²Canadian Light Source

9:05 AM

Exploiting the Thixoformability of Ti-Co Alloys: Microstructure Evolution, Semisolid Deformation Behavior, and Mechanical Properties: *Kaio Campo*¹; Caio de Freitas¹; Mariana de Mello¹; Rubens Caram¹; ¹UNICAMP - University of Campinas

TECHNICAL PROGRAM

9:25 AM

The Influence of Liquid Structure on the Devitrification of Solid Amorphous Al-based Marginal Glass Forming Alloys: *Bengisu Yasar*¹; Ilkay Kalay²; Eren Kalay¹; ¹METU; ²Cankaya University

9:45 AM Break

10:00 AM

Digital Image Analysis for the Automated Measurement of Dendritic Microstructures in Vacuum Arc Remelted Nickel Alloy 718: Thomas Ivanoff¹; Trevor Watt²; *Eric Taleff*¹; ¹The University of Texas at Austin; ²Stratasys

10:20 AM

In Situ EBSD Study on the Development of Recrystallized Cube Texture in 3 Mass% Si Steel: *Shigehiro Takajo*¹; Sven Vogel¹; David Field²; Colin Merriman²; ¹Los Alamos National Laboratory; ²Washington State University

10:40 AM

Synthesis and Characterization on Nickel Orthosilicate Anode of Lithiumion Battery: Guihong Han¹; *Duo Zhang*¹; Yanfang Huang¹; ¹Zhengzhou University

11:00 AM

Eletrochemical Behavior and Corrosion Properties of Ti-6Al-4V Alloy Made by Selective Laser Melting for Immersion in Artificial Seawater at Different Temperature: *Yifei Zhang*¹; ¹Northeastern University

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Boundaries and Interfaces I

Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Monday AM	Room: 131A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Wei Liu, Nanjing University of Science and Technology; Jian Luo, UCSD

8:00 AM Invited

Developing Grain Boundary 'Phase' Diagrams: From Phenomenological Interfacial Thermodynamic Models to Atomistic Simulations: Shengfeng Yang¹; *Jian Luo*¹; ¹University of California, San Diego

8:30 AM

An Efficient Monte-Carlo Algorithm for Determining the Minimum Energy Structures of Metallic Grain Boundaries: *Srikanth Patala*¹; Mark Tschopp²; Arash Banadaki¹; ¹North Carolina State University; ²US Army Research Laboratory

8:50 AM

First-principles Study of Co₃W Antiphase Boundaries with Al Impurities: *Chiraag Nataraj*¹; Ruoshi Sun¹; Axel van de Walle¹; ¹Brown University

9:10 AM

First-principles Computation Design of CoPt and FePt Nanoparticles with Desired Magnetic Properties through Tailoring Surface Segregation: Zhenyu Liu¹; *Guofeng Wang*¹; ¹University of Pittsburgh

9:30 AM Break

9:50 AM

Understanding Defect Tolerance and Grain Boundary Effect on Mechanical Properties of Nano-twinned Yttria-stabilized Tetragonal Zirconia: *Ning Zhang*¹; Mohsen Asle Zaeem¹; ¹Missouri University of Science and Technology

10:10 AM Invited

Materials Design from Functional Molecule-metal Interface: *Wei Liu*¹; ¹Nanjing University of Science and Technology

10:40 AM

Modeling Segregation at Stacking Faults Using Cluster-assisted Statistical Mechanics: *Michael Titus*¹; Robert Rhein²; Anton Van der Ven²; Tresa Pollock²; ¹Purdue University; ²University of California, Santa Barbara

11:00 AM

Suppression of Martensitic Transitions in NiTi Shape Memory Alloys from Ab Initio Simulations: The Role of Compound Twins: Luis Sandoval¹; Justin Haskins¹; John Lawson²; ¹Analytical Mechanics Associates, Inc.; ²NASA Ames Research Center

11:20 AM

Simulation on the Effects of Glass-glass Interfaces on the Plastic Deformation of Nano-glasses: *G.P. Zheng*¹; ¹Hong Kong Polytechnic University

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Phase Field Simulations I: Functional Materials and Alloys

Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Monday AM March 12, 2018 Room: 131B Location: Phoenix Convention Center

Session Chairs: Brandon Runnels, University of Colorado, Colorado Springs; Katsuyo Thornton, University of Michigan, Ann Arbor

8:00 AM Invited

Phase-field Simulation Environment for Functional Materials: Xiaoxing Cheng¹; Tiannan Yang¹; Bo Wang¹; *Long Qing Chen*¹; ¹Penn State University

8:30 AM

Computational Design and Simulation of Magnetoelectric Composites for Electric Field-controlled Magnetic Properties: *Liwei Geng*¹; Yu Wang¹; ¹Michigan Technological University

8:50 AM

Predicting Self-organization of Nanostructured Morphologies in Physical Vapor Deposited Phase-separating Alloys: *Kumar Ankit*¹; Benjamin Derby²; Amit Misra²; Michael Demkowicz³; ¹Arizona State University; ²University of Michigan, Ann Arbor; ³Texas A&M University, College Station

9:10 AM

A Chemo-mechanical Phase-field Model for Phase Separation of a Li-ion Battery Electrode Particle to Study Influence of Surface Irregularities during Intercalation: *Jaykumar Santoki*¹; Daniel Schneider¹; Marc Kamlah¹; Britta Nestler¹; ¹Karlsruhe Institute of Technology (KIT)

9:30 AM Break

9:50 AM

Phase-field Modelling of Multiply-twinned Structures of FCC Metallic Nanomaterials: Jong-Hyuk Lee¹; Dong-Uk Kim²; Kunok Chang³; *Yongwoo Kwon*¹; ¹Hongik University; ²University of Michigan; ³Korea Atomic Energy Research Institute

10:10 AM

Monoclinic Distortion in Nanotwinned Ferroelectrics: *Liwei Geng*¹; Yongmei Jin¹; Yu Wang¹; ¹Michigan Technological University

10:30 AM

Phase Field Simulation of Microstructure Evolution Driven by Strong Grain Boundary Anisotropy Computed Using Realistic Models for Grain Boundary Energy: *Brandon Runnels*¹; Josep Gras¹; ¹University of Colorado Colorado Springs

95

10:50 AM

11:10 AM

MONDAY AM

Influence of Fluid Flow on Morphological Evolution of Seaweed Structures Using Phase Field Modeling: Pavan Laxmipathy Veluvali¹; Fei Wang²; Michael Selzer¹; Kumar Ankit³; Britta Nestler¹; ¹Karlsruhe Institute of Technology (KIT); ²Karlsruhe University of Applied Sciences; ³Texas A&M University

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Phase Field Simulations I: Functional Materials and Microstructure Evolution

Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Monday AM	Room: 131B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Brandon Runnels, University of Colorado, Colorado Springs; Katsuyo Thornton, University of Michigan, Ann Arbor

8:00 AM Invited

Phase-field Simulation Environment for Functional Materials: Xiaoxing Cheng¹; Tiannan Yang¹; Bo Wang¹; *Long Qing Chen*¹; ¹Penn State University

8:30 AM

Computational Design and Simulation of Magnetoelectric Composites for Electric Field-controlled Magnetic Properties: *Liwei Geng*¹; Yu Wang¹; ¹Michigan Technological University

8:50 AM

Predicting Self-organization of Nanostructured Morphologies in Physical Vapor Deposited Phase-separating Alloys: *Kumar Ankit*¹; Benjamin Derby²; Amit Misra²; Michael Demkowicz³; ¹Arizona State University; ²University of Michigan, Ann Arbor; ³Texas A&M University, College Station

9:10 AM

A Chemo-mechanical Phase-field Model for Phase Separation of a Li-ion Battery Electrode Particle to Study Influence of Surface Irregularities during Intercalation: *Jaykumar Santoki*¹; Daniel Schneider¹; Marc Kamlah¹; Britta Nestler¹; ¹Karlsruhe Institute of Technology (KIT)

9:30 AM Break

9:50 AM

Phase-field Modelling of Multiply-twinned Structures of FCC Metallic Nanomaterials: Jong-Hyuk Lee¹; Dong-Uk Kim²; Kunok Chang³; *Yongwoo Kwon*¹; ¹Hongik University; ²University of Michigan; ³Korea Atomic Energy Research Institute

10:10 AM

Monoclinic Distortion in Nanotwinned Ferroelectrics: *Liwei Geng*¹; Yongmei Jin¹; Yu Wang¹; ¹Michigan Technological University

10:30 AM

Phase Field Simulation of Microstructure Evolution Driven by Strong Grain Boundary Anisotropy Computed Using Realistic Models for Grain Boundary Energy: *Brandon Runnels*¹; Josep Gras¹; ¹University of Colorado Colorado Springs

10:50 AM

Phase-field Simulation of Nodule Microstructure near Grain Boundaries in Nickel-based Alloys: Yuhki Tsukada¹; Ryota Oshima²; Toshiyuki Koyama¹; Mitsuharu Yonemura³; ¹Nagoya University; ²Nagoya Institute of Technology; ³Nippon Steel & Sumitomo Metal

11:10 AM

Influence of Fluid Flow on Morphological Evolution of Seaweed Structures Using Phase Field Modeling: *Pavan Laxmipathy Veluvali*¹; Fei Wang²; Michael Selzer¹; Kumar Ankit³; Britta Nestler¹; ¹Karlsruhe Institute of Technology (KIT); ²Karlsruhe University of Applied Sciences; ³Texas A&M University

Computational Design and Simulation of Materials (CDSM 2018): Computational Design of Materials – Computational Design of Materials: CALPHAD Sponsored by: Chinese Society for Metals

Program Organizers: Alan Luo, The Ohio State University; Suveen Mathaudhu, University of California, Riverside; Yong Du, Central South University; Raymundo Arroyave, Texas A & M University; Dianzhong Li, Institute of Metal Research, Chinese Academy of Sciences; Zi-Kui Liu, The Pennsylvania State University

Monday AM	Room: 131C
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Carelyn Campbell, NIST; Fan Zhang, CompuTherm, LLC

8:00 AM Invited

Use the Full Potential of the CALPHAD Modeling Tools: Fan Zhang¹; Shuanglin Chen¹; Weisheng Cao¹; Chuan Zhang¹; Jun Zhu¹; Duchao Lv¹; ¹CompuTherm, LLC

8:30 AM Invited

Application of Computational Thermodynamics in Yittria Stablized Zirconia System: Yu Zhong¹; ¹Florida International University

9:00 AM

Thermodynamic Properties of Cu–Pb–F Ternary System: Satoshi likubo¹; Shoya Kawano¹; Kumiko Yamamoto¹; Yuya Suzuki¹; Kenji Hirata¹; Hideyuki Harada¹; ¹Kyushu Institute of Technology

9:20 AM Invited

Building a Co Diffusion Mobility Database for γ/γ' **Co-Superalloys**: Greta Lindwall¹; Kil-won Moon¹; *Carelyn Campbell*¹; Peisheng Wang¹; Ursula Kattner¹; 'National Institute of Standards and Technology

9:50 AM Break

10:10 AM

Computational Thermodynamics Aided Design of Co-based γ **-strengthened Superalloys**: *Eric Lass*¹; ¹National Institute of Standards and Technology

10:30 AM

Calphad-type Assessment of the Ni-Ti-Hf System Combined with the DFT Calculations: *Chang-Seok Oh*¹; Eun Ae Choi¹; Hak Sung Lee¹; ¹Korea Institute of Materials Science

10:50 AM

Thermodynamic Database for Co-Al-W-Ni-Ti-Ta-Cr Based Superalloys: Peisheng Wang¹; Ursula Kattner²; Carelyn Campbell²; Eric Lass²; Greg Olson³; ¹Northwestern University/NIST; ²NIST; ³Northwestern University

Computational Materials Discovery and Optimization – Materials Informatics

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers:* Richard Hennig, University of Florida; Houlong Zhuang, Arizona State University; Arunima Singh, Lawrence Berkeley National Laboratory; Eric Homer, Brigham Young University; Francesca Tavazza, National Institute of Standards and Technology

Monday AM	Room: 132B
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Richard Hennig, University of Florida

8:00 AM Invited

Machine Learning for Materials: *Matthias Rupp*¹; ¹Fritz Haber Institute of the Max Planck Society

8:30 AM

Learning Grain Boundary Properties from Macroscopic and Microscopic Structural Descriptors: *Ankita Mangal*¹; Ian Chesser¹; Elizabeth Holm¹; ¹Carnegie Mellon University

8:50 AM

Minimal Addition of Cerium for Stability of Critical Phases in Hard Magnetic AlNiCo Alloys: Combined Machine Learning and CALPHAD: George Dulikravich¹; *Rajesh Jha*¹; ¹Florida International University

9:10 AM Invited

Quantum-accurate Force Fields from Machine Learning of Large Materials Data: *Shyue Ping Ong*¹; Chi Chen¹; Zhi Deng¹; Richard Tran¹; ¹University of California, San Diego

9:40 AM Break

10:00 AM

Predicting Ferroelectric Properties from Microstructures with Deep Learning: *Isaac Curtis*¹; Vishnu Boddeti²; Samrat Choudhury¹; ¹University of Idaho; ²Michigan State University

10:20 AM

Tailoring Properties in Multi-component Alloys through Heuristic Optimization: *Aayush Sharma*¹; Rahul Singh¹; Ganesh Balasubramanian¹; ¹Iowa State University

Computational Materials Science and Engineering for Nuclear Energy – Nuclear Fuels and Cladding I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Haixuan Xu, University of Tennessee; Michael Tonks, Pennsylvania State University; Blas Uberuaga, Los Alamos National Laboratory; James Morris, Oak Ridge National Laboratory

Monday AM	Room: 102B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Adrien Couet, University of Wisconsin - Madison; Blas Uberuaga, Los Alamos National Laboratory

8:00 AM Invited

Vacancy Clusters and Xenon Diffusion in UO₂: *David Andersson*¹; Christopher Matthews¹; Romain Perriot¹; Michael Cooper¹; Christopher Stanek¹; ¹Los Alamos National Laboratory

8:30 AM

Thermophysical Properties of (U,Zr)O₂ Pellet-cladding Interface though MD Simulations: *Dillon Frost*¹; Michael Cooper²; Patrick Burr¹; ¹UNSW Sydney; ²Los Alamos National Lab

8:50 AM

Computational Modelling of Thermal Transport in Uranium Dioxide: *Ahmed Hamed*¹; Anter El-Azab¹; ¹Purdue University

9:10 AM

Atomistic Study of Thermal Spike Response of Xe Bubbles in UO₂: *Wahyu Setyawan*¹; Michael Cooper²; Kenneth Roche¹; Brian Wirth³; Blas Uberuaga²; David Andersson²; Richard Kurtz¹; ¹Pacific Northwest National Laboratory; ²Los Alamos National Laboratory; ³University of Tennessee, Knoxville

9:30 AM Break

9:50 AM

Effect of Post Fabrication Voids on Irradiation Performance of U-10Mo Monolithic Mini-plate: *Walid Mohamed*¹; Hee Seok Roh¹; Hakan Ozaltun²; James Smith²; Joseph Nielsen²; Irina Glagolenko²; Gerard Hofman¹; Bertrand Stepnik³; Harald Breitkreutz⁴; Abdellatif Yacout¹; ¹Argonne National Laboratory; ²Idaho National Laboratory; ³AREVA NP, CERCA; ⁴Research Neutron Source Heinz Maier-Leibnitz (FRM II), TUM

10:10 AM

Phase-field Modeling of Fission Rate Effect on the Gas Bubble Swelling in U-Mo Fuel: Linyun Liang¹; *Zhi-Gang Mei*¹; Abdellatif Yacout¹; ¹Argonne National Laboratory

10:30 AM

Effect of Dopants on Uranium-based Metallic Fuels to Mitigate Fuelcladding Chemical Interactions: *Rabi Khanal*¹; Nathan Jerred¹; Michael Benson²; Robert Mariani²; Indrajit Charit¹; Samrat Choudhury¹; ¹University of Idaho; ²Idaho National Laboratory

10:50 AM Invited

Modeling Inclusions with Surface Stresses in the Phase Field Framework: *Daniel Schwen*¹; Larry Aagesen¹; ¹Idaho National Laboratory

Computational Thermodynamics and Kinetics – Structure and Property

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Elif Ertekin, University of Illinois; Shawn Coleman, U.S. Army Research Laboratory; Brent Fultz, California Institute of Technology; Richard Hennig, University of Florida; Suveen Mathaudhu, University of California, Riverside

Monday AM March 12, 2018 Room: 128A Location: Phoenix Convention Center

Session Chairs: Kristin Persson, University of California, Berkeley; Pascal Bellon, University of Illinois

8:00 AM Invited

A Novel Mechanism for Order Patterning in Alloys Driven by Irradiation: *Pascal Bellon*¹; Calvin Lear²; Robert Averback¹; ¹University of Illinois; ²University of Michigan

8:30 AM

ThermoelectricEnhancementinHybridOrdered/DisorderedMetamaterials viaPhonon Localization and Band Anticrossing:TaishanZhul;Elif Ertekin1;¹University of Illinois at Urbana Champaign

8:50 AM

Thermodynamic Analysis of Substitutional and Interstitial Ti Alloys: Naga Sri Harsha Gunda¹; Anton Van der Ven¹; ¹University of California, Santa Barbara

9:10 AM

Point Defects in Concentrated Alloys: Distributions of Properties: Celine Varvenne¹; Ghani Berkoun¹; Aitor Luque²; William Curtin²; Emmanuel Clouet³; ¹Aix-Marseille Univ.-CNRS; ²EPFL; ³CEA Saclay

9:30 AM Break

9:50 AM Invited

Design of Novel Functional Materials Using the Capabilities of the Materials Project: *Kristin Persson*¹; ¹University of California, Berkeley

10:20 AM

Point Vacancy Affects on Ni/Al Nanolaminate Interface Diffusion and Combustion: Brandon Witbeck¹; Douglas Spearot¹; ¹University of Florida

10:40 AM

MONDAY AM

Interface Co-segregation of Additive Elements for MoSi2-MoSSi3 Pseudobinary Alloys: A First-principles Study: Koretaka Yuge¹; ¹Department of Materials Science and Engineering, Kyoto University

11:00 AM

Void Superlattice Formation: Symmetry and Lattice Parameter Selection: *Yongfeng Zhang*¹; Yipeng Gao¹; Chao Jiang¹; Daniel Schwen¹; ¹Idaho National Laboratory

Coupling Experiments and Modeling to Understand Plasticity and Failure – Plasticity

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Sangid, Purdue University; Philip Eisenlohr, Michigan State University; Matthew Miller, Cornell University; Paul Shade, Air Force Research Laboratory

Monday AM	Room: 126B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Michael Sangid, Purdue University; Paul Shade, Air Force Research Lab

8:00 AM Invited

A Survey of Several High-energy X-ray Diffraction Studies and Implications for Models of Polycrystal Plasticity: Armand Beaudoin¹; Kamalika Chatterjee²; Darren Pagan²; Paul Shade³; Joel Bernier⁴; ¹Cornell High Energy Synchrotron Source; ²University of Illinois at Urbana-Champaign; ³Air Force Research Laboratory; ⁴Lawrence Livermore National Laboratory

8:25 AM Invited

The Importance of Introducing Probabilistic Information When Modeling the Constitutive Response of Aggregates (Part I): Carlos Tome¹; Irene Beyerlein²; ¹Los Alamos National Laboratory; ²University of California, Santa Barbara

8:50 AM Invited

The Importance of Introducing Probabilistic Information When Modeling the Constitutive Response of Aggregates (Part II): *Irene Beyerlein*¹; Carlos Tome²; ¹University of California, Santa Barbara; ²Los Alamos National Laboratory

9:15 AM

Microstructure Evolution during Biaxial Load Path Changes: In-situ Experiments and Multi-scale FE-FFT Modeling: *Manas Upadhyay*¹; Anirban Patra²; Wei Wen²; Ricardo Lebensohn²; Carlos Tome²; Helena Van Swygenhoven³; ¹Paul Scherrer Institut; ²Los Alamos National Laboratory; ³Paul Scherrer Institute/Ecole Polytechnique Federale de Lausanne

9:35 AM Break

9:50 AM Invited

Understanding Shear Band Formation Using High-resolution X-ray Diffraction and Numerical Modeling: *Darren Pagan*¹; Armand Beaudoin²; Matthew Miller³; ¹Cornell High Energy Synchrotron Source; ²University of Illinois at Urbana-Champaign; ³Cornell University

10:15 AM Invited

Measurements and Crystal Plasticity Simulations of Microstructurescale Deformation in Tantalum: Corbett Battaile¹; Hojun Lim¹; Jay Carroll¹; ¹Sandia National Laboratories

10:40 AM

Microstructure and Texture Evolution during Thermo-mechanical Processing of Low-symmetry Metals: *Rodney McCabe*¹; Miroslav Zecevic²; Cody Miller¹; Timothy Barrett²; Daniel Coughlin¹; Marko Knezevic²; David Alexander¹; ¹Los Alamos National Laboratory; ²University of New Hampshire

11:00 AM

Facile Measurements of Elastic Constants for Coupling Experiments and Modeling to Understand Plasticity and Failure: *Xinpeng Du*¹; Ji-Cheng Zhao¹; ¹Ohio State University

11:20 AM

Understanding Plastic Deformation in Polycrystals 301L Stainless Steel(301L SS) Using Far Field High Energy Diffraction Microscopy (HEDM) Experiments: *Jinesh Dahal*¹; Harshad Paranjapee¹; Aaron Stebner¹; Darren Dale²; Don Brown³; ¹Colorado School Of Mines; ²Cornell High Energy Synchrotron Source; ³Los Alamos National Laboratory

Deformation and Damage Mechanisms in High Temperature Ni, Co and Fe-based Superalloys – 1A: Grain Size Development During Forging & Heat Treatment in Ni-based Superalloys. 1B: Recrystallization & Grain Growth Ni-based Superalloys

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials; Chantal Sudbrack, QuesTek Innovations, LLC Michael Titus, Purdue University; Kinga Unocic, Oak Ridge National Laboratory; Yukinori Yamamoto, Oak Ridge National Laboratory

Monday AMRoom: 126AMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials

8:00 AM Invited

Strain Induced Excessive Grain Growth in Nickel Base Superalloys: *Nathalie Bozzolo*¹; Marie-Agathe Charpagne²; Jean-Michel Franchet³; Andrea Agnoli³; Marc Bernacki¹; ¹MINES ParisTech; ²University of California, Santa Barbara; ³Safran

8:30 AM Invited

Abnormal Grain Growth upon Annealing of a Hot-worked Ni-base Alloy: *Michael Fahrmann*¹; David Metzler¹; ¹Haynes International Inc.

9:00 AM

Influence of Thermomechanical Processing and Hot Deformation on Microstructural Evolution towards Building a Comprehensive Model for Dynamic Recrystallization Kinetics in Alloy IN625: *Benjamin Adam*¹; Graham Tewksbury¹; William Wood¹; Brandon Templin²; Jon Tirpak³; ¹Portland State University; ²Scientific Forming Technology Corporation; ³Advanced Technology International (ATI)

9:20 AM

A Systematic Data-analytics Approach to the Design of Processing Routes for Forged Nickel-based Superalloy Inconel 706: Nishan Senanayake¹; *Jennifer Carter*¹; ¹Case Western Reserve University

9:40 AM Break

10:00 AM Invited

Influence of Forging Parameters on the Microstructure of Supersolvus Heat Treated Nickel-based Superalloy RR1000: Kevin Severs¹; Vikas Saraf¹; Iain Parr²; Thomas Jackson²; Mark Hardy²; ¹ATI Forged Products; ²Rolls-Royce plc

10:30 AM

Heteroepitaxial Recrystallization in Polycrystalline Nickel-based Superalloys: Nucleation Mechanism: Marie-Agathe Charpagne¹; Jonathan Cormier²; Timothy Clark³; Tresa Pollock¹; ¹University of California, Santa Barbara; ²Institut Pprime, UPR CNRS 3346, ISAE-ENSMA; ³Carlton Forge Works, PCC

10:50 AM

Deformation Processing and Recrystallization of Single Crystal Ni-base Superalloys: *Kyle Ventura*¹; Sarah Frith¹; Yujie Wang¹; Arianne Lazaro¹; Gerhard Fuchs¹; ¹University of Florida

TECHNICAL PROGRAM

11:10 AM

The Effect of Forging Parameters on Large Unrecrystallized Powder Features in RR1000 Nickel Base Superalloy: Soran Birosca1; Mark Hardy2; ¹Swansea University; ²Rolls-Royce

Design for Mechanical Behavior of Architectured Materials via Topology Optimization – Optimal **Design of Microlattices and Architected Materials**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Natasha Vermaak, Lehigh University; Andrew Gaynor, U.S. Army Research Laboratory

Monday AM	Room: 132C
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Andrew Gaynor, ARL; Natasha Vermaak, Lehigh University

8:00 AM Invited

Optimal Design of Architected Materials with Extreme Energy Dissipation: Lorenzo Valdevit1; Alireza Asadpoure2; Babak Haghpanah1; 1University of

California, Irvine; ²University of Massachusetts Dartmouth

8:40 AM

Optimized Microlattices for High Strength and Impact Attenuation: Eric Clough¹; Christopher Roper¹; Zak Eckel¹; Jacob Hundley¹; Morgan Stilke¹; Tobias Schaedler¹; ¹HRL Laboratories

9:10 AM

Dense Architectured Materials in Engineering and in Nature: Mohammad Mirkhalaf¹; Zhen Yin¹; Francois Barthelat¹; ¹McGill University

9:40 AM Break

10:00 AM

Inverse Homogenization Design of Micro-truss Architected Materials Using Geometric Primitives: Seth Watts1; Wen Chen1; Julie Jackson1; William Smith1; Christopher Spadaccini1; Daniel Tortorelli1; 1Lawrence Livermore National Laboratory

10:30 AM

Multiscale Design with Architected Material Connectivity for Multiphysics **Problems**: Zongliang Du¹; Hayoung Chung¹; Sandilya Kambampati¹; Alicia Kim1; 1University of California San Diego

11:00 AM

Deformation and Failure of Bioinspired Segmented Architectured Beams and Plates: Ahmed Dalaq1; Francois Barthelat1; 1McGill University

Dynamic Behavior of Materials VIII – Effect of Microstructure of Dynamic Response I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Saryu Fensin, Los Alamos National Laboratory; George Gray, Los Alamos National Laboratory; Naresh Thadhani, Georgia Institute of Technology; Kenneth Vecchio, University of California, San Diego; Marc Meyers, University of California, San Diego

Monday AM	Room: 127B
March 12, 2018	Location: Phoenix Convention Center

Session Chair: To Be Announced

8:00 AM Invited

Modeling the Spall Behavior of Metallic Materials at the Atomic Scales and the Mesoscales: Avinash Dongare¹; Garvit Agarwal¹; Sergey Galitskiy¹; Jie Chen1; 1University of Connecticut

8:40 AM

Dynamic Tension-compression Anisotropy in a Stable Nanocrystalline Cu Alloy: Scott Turnage1; Kristopher Darling2; Chaitanya Kale1; Kiran Solanki1; ¹Arizona State University; ²Army Research Laboratory

9.00 AM

The Role of Interfaces in Nucleation of Dynamic Damage in BCC Materials: Saryu Fensin1; Eric Hahn1; Timothy Germann1; George Gray1; ¹Los Alamos National Laboratory

9.20 AM

Evaluation of High Strain Rate Plastic Flow Behaviour of Nanocrystalline Nickel Using Ultra Fast Nanoindentation Test System: Sundararajan Govindan1; Sudharshan Phani2; Suresh Babu2; Nitin Wasekar2; 1Indian Institute of Technology Madras; ²ARCI

9:40 AM Break

10:00 AM Invited

Effect of Deviatoric Material Response on Perturbed Shock Front Stability: Saul Opie¹; Elizabeth Fortin¹; Ashish Gopalakrishnan¹; Eric Loomis²; Pedro Peralta1; 1Arizona State University; 2Los Alamos National Laboratory

10:40 AM

Prediction of Fragmentation of an Aluminum Expanding Ring: Gianluca Iannitti1; Andrew Ruggiero1; Gabriel Testa1; Nicola Bonora1; Domenico Gentile1; 1University of Cassino

11:00 AM

Kinetics of Void Nucleation and Growth at Grain Boundaries on Shock Loaded Copper Bicrystals: Elizabeth Fortin¹; Matthew Catlett²; Pedro Peralta1; 1Arizona State University; 2Los Alamos National Laboratory

Energy Technologies and CO, Management Symposium – CO, Capture

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Ziqi Sun, Queensland University of Technology; Cong Wang, Northeastern University; Donna Guillen, Idaho National Laboratory; Tao Wang, Nucor Steel; Neale Neelameggham, Ind LLC; John Howarter, Purdue University

Monday AM Room: 224B March 12, 2018

Location: Phoenix Convention Center

Session Chairs: Ziqi Sun, Queensland University of Technology, Australia; Xia Lou, Curtin University

8:00 AM Kevnote

Charge Modulation for Manipulating Material-gas Interactions: CO, Capture and H, Storage: Sean Smith1; Xin Tan1; Hassan Tahini1; 1University of New South Wales

8:40 AM Invited

Gas Hydrate-based CO, Separation Process: Quantitative Assessment of the Effectiveness of Various Chemical Additives Involved in the Process: Hossein Dashti¹; Xia Lou¹; ¹Curtin University

9:00 AM

Interfacial Interactions of Self-healing Polymer-cement Composites Exposed to CO, Using Synchrotron Methods: Mohamed Elbakhshwan¹; Simerjeet Gill¹; Chonghang Zhao²; Yu-chen Karen Chen-Wiegart²; Lynne Ecker¹; M. Ian Childers³; Christina Lopano⁴; Barbara Kutchko⁴; Carlos Fernandez3; ¹Brookhaven National Laboratory; ²Stony Brook University; ³Pacific Northwestern National Laboratory; ⁴National Energy Technology Laboratory

9:20 AM

Tar Removal from Hot Coke Oven Gas for H, Amplification with in Situ CO, Capture: Huaqing Xie¹; Qin Qin¹; Qingbo Yu¹; ¹School of Metallurgy, Northeastern University

9:40 AM Break

10:00 AM

An Evaluation Method for Material and Energy Conversion Effect with Steel Manufacturing Process Data: Shipeng Huang¹; Zhong Zheng¹; Xiaoqiang Gao²; Shenglong Jiang¹; Zhaojun Xu¹; ¹College of Materials Science and Engineering, Chongqing University; ²College of Economics and Business Administration, Chongqing University

10:20 AM

Preparation and Characterization of Activated Carbon from Waste Ionexchange Resin for CO, Adsorption: Mengqi Wei1; Qingbo Yu1; Qiang Guo²; Zongliang Zuo¹; Qin Qin¹; ¹Northeastern University, China; ²Hebei Construction& Investment New Energy Co. Ltd

10·40 AM

Solid Solution CaxSr1-xO Catalysts in Transesterification for Biodiesel Production: Maria Lourdes Potestades¹; Shih-Kang Lin¹; Wen-Dung Hsu¹; Masahiro Yoshimura1; 1National Cheng Kung University

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention – Data-driven Investigations of Fatigue

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Ashley Spear, University of Utah; Jean-Briac le Graverend, Texas A&M University; Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky

Monday AM	Room: 125B
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Ashley Spear, University of Utah

8:00 AM Keynote

A Data Science Framework for Reduced-order Microstructure-sensitive Rank Ordering of Fatigue Performance: Noah Paulson¹: Matthew Priddy²: David McDowell³; Surya Kalidindi³; ¹Argonne National Laboratory; ²Mississippi State University; ³Georgia Institute of Technology

8:40 AM Invited

Data-driven Approaches for Steel Fatigue Strength Prediction: Ankit Agrawal¹; Alok Choudhary¹; ¹Northwestern University

9:00 AM

Predicting the Effect of Microstructure on the Likelihood of Early Fatigue Failures Using Data Analytics Algorithms: Sushant Jha¹; Robert Brockman¹; Rebecca Hoffman¹; Vikas Sinha²; William Porter¹; Dennis Buchanan¹; Adam Pilchak3; James Larsen3; Reji John3; 1University of Dayton Research Institute; ²UES, Inc.; ³US Air Force Research Laboratory

9:20 AM Break

9:40 AM

Microstructure, Strain Localization and Fatigue in a Polycrystalline Nickel Base Superalloy at High Temperature: J.C. Stinville¹; E. Martin²; M. Karadge²; S. Ismonov²; M. Soare²; T. Hanlon²; S. Sundaram²; M.P. Echlin¹; P. Callahan¹; W.C. Lenthe¹; V.M. Miller¹; J. Miao³; A.E. Wessman⁴; R. Finlay⁴; A. Loghin²; J. Marte²; T.M. Pollock¹; ¹University of California, Santa Barbara; ²General Electric Global Research; ³University of Michigan; ⁴General Electric Aviation

10:00 AM

Identification of Fatigue Weak Links in Aluminum Alloys Using a Datadriven Approach: Brian Wisner¹; Krzysztof Mazur¹; Antonios Kontsos¹; ¹Drexel University

10:20 AM

High-throughput Fatigue Experiments for Early Damage Evolution and Lifetime Prediction: Thomas Straub1; Michael Buck1; Ali Durmaz2; Chris Eberl¹; ¹University of Freiburg; ²Fraunhofer IWM

Fracture: 65 Years after the Weibull Distribution and the Williams Singularity – Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Brad Boyce, Sandia National Laboratories; Ellen Cerreta, Los Alamos National Laboratory; Jacob Hochhalter, NASA LaRC; Jonathan Zimmerman, Sandia National Laboratories

Monday AM March 12, 2018

Room: 128B Location: Phoenix Convention Center

Session Chairs: Ellen Cerreta, Los Alamos National Labs; Philip Noell, Sandia National Labs

8:00 AM Invited

Singularities of Dynamic Cracks: Michael Marder¹; ¹UT Austin

8:30 AM

The Effect of Loading Rate on Fracture Toughness of Low Ductility Materials: Carl Cady¹; Cheng Liu¹; ¹Los Alamos National Laboratory

8:50 AM Invited

Fracture Behavior of High Performance Sheet Steel: Kip Findley¹; Lindsay Golem1; Mykal Madrid1; Kester Clarke1; John Speer1; 1Colorado School of Mines

9:20 AM Break

9:40 AM Invited

Physical and Computational Aspects of Engineering Damage Mechanics: Curt Bronkhorst¹; Hashem Mourad¹; Darby Luscher¹; Daniele Versino¹; ¹Los Alamos National Laboratory

10:10 AM

On the Prediction of Failure in 6016 Aluminum Alloy Sheet by GISSMO Damage Model: Bin Liang1; Yan Zhao2; Dengfu Chen1; Xinming Wan2; Junping Zhang²; Jia Zhou²; Mujun Long¹; Huamei Duan¹; ¹Chongqing University; ²China Automotive Research Engineering Institute Co. Ltd

10:30 AM

Void Initiation during Ductile Rupture of Pure Metals: Philip Noell¹; Jay Carroll¹; Khalid Hattar¹; Blythe Clark¹; Brad Boyce¹; ¹Sandia National Labs

Frontiers in Advanced Functional Thin Films and Nanostructured Materials – Session I

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Army Research Office; Srinivasa Rao Singamaneni, The University of Texas at El Paso; Haiyan Wang, Purdue University; Nuggehalli Ravindra, New Jersey Institute of Technology; Raj Singh, Oklahoma State University; Amit Pandey, LG Fuel Cell Systems Inc.

Monday AM	Room: 103A
March 12, 2018	Location: Phoenix Convention Center

Funding support provided by: Quantum Design and Radiant Technologies

Session Chairs: Ritesh Sachan, Army Research Office; Nuggehalli M Ravindra, New Jersey Institute of Technology

8:00 AM Keynote

Discovery of Ferromagnetism and High-temperature Superconductivity in Q-carbon: Jagdish (Jay) Narayan1; Anagh Bhaumik1; Ritesh Sachan2; 1North Carolina State University; ²Materials Science Division, Army Research Office

8:40 AM Invited

Diamond Epitaxy for High Power and High Temperature Electronics: Robert Nemanich¹; Franz A. Koeck¹; Maitreya Dutta²; Raghuraj Hathwar¹; Mehdi Saremi1; Srabanti Chowdhury2; Stephen M. Goodnick1; 1Arizona State University; 2University of California - Davis

FECHNICAL PROGRAM

9:10 AM Invited

Nanostructure Synthesis by Pulsed Laser Melting: Ramki Kalyanaraman¹; ¹University of Tennessee

9:30 AM Break

9:45 AM Invited

A New Approach to Align CNTs in CNT Films: Yingying Yu¹; Qingwen Li²; *Yuntian Zhu*¹; ¹North Carolina State University; ²Suzhou Institute of Nanotechnology and Nanobionics

10:15 AM

Effect of Geometrical Defects on Thermal and Mechanical Properties of Metal-coated Multi-walled Carbon Nanotubes: *Iman Salehinia*¹; Ravindra Sunil Dhumal¹; Dinesh Bommidi¹; ¹Northern Illinois University

10:35 AM

Control of Nucleation of 3C-SiC Utilizing Screw Dislocations in 6H-SiC: Ryo Watanabe¹; Sakiko Kawanishi¹; Hiroyuki Shibata¹; ¹Tohoku University

10:55 AM

High-temperature Carbon-based Superconductors: B-doped Q-carbon: *Anagh Bhaumik*¹; Ritesh Sachan²; Siddharth Gupta¹; Jagdish Narayan¹; ¹North Carolina State University; ²Materials Science Division, Army Research Office

11:15 AM

Superhard Q-carbon Nanostructures Formed via Nanosecond Laser Melting and Ultrafast Quenching: *Siddharth Gupta*¹; Ritesh Sachan²; Anagh Bhaumik¹; Punam Pant¹; Roger Narayan¹; Jagdish Narayan¹; ¹North Carolina State University; ²Materials Science Division, Army Research Office

High Entropy Alloys VI – Alloy Development and Applications I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Monday AM	Room: 121B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Peter Liaw, The University of Tennesee; Jien-Wei Yeh, National Tsing Hua University

8:00 AM Keynote

Breakthrough Applications of High-entropy Materials: *Jien-Wei Yeh*¹; ¹National Tsing Hua University

8:30 AM Keynote

Mechanisms of Damage Tolerance of CrCoNi-based High-entropy Alloys: Robert Ritchie¹; *Bernd Gludovatz*²; Qian Yu³; Easo George⁴; ¹University of California, Berkeley; ²University of New South Wales; ³Zhejiang University; ⁴Oak Ridge National Laboratory

9:00 AM Invited

Microstructure and Properties of New Refractory High Entropy Superalloys: *Oleg Senkov*¹; Jacob Jensen²; Adam Pilchak¹; Hamish Fraser²; ¹Air Force Research Laboratory; ²The Ohio State University

9:20 AM Invited

Designing Ti-Zr-Ta-Mo-W Refractory High-entropy Alloy: *Aayush Sharma*¹; Prashant Singh²; Mouhamad Diallo¹; Pratik Ray²; Ganesh Balasubramanian¹; Matthew Kramer²; Duane Johnson²; ¹Iowa State University; ²Ames Laboratory

9:40 AM Break

10:00 AM Invited

Developing Light-weight High-entropy Alloys: Modeling and Experiments: *Michael Gao*¹; Feng Rui²; Chuan Zhang³; Fan Zhang³; Jeffrey Hawk¹; Paul Jablonski¹; Kyle Rozman¹; David Alman¹; Chan Ho Lee²; Peiyong Chen²; Peter Liaw²; ¹National Energy Technology Laboratory; ²University of Tennessee; ³CompuTherm LLC

10:20 AM Invited

A High-throughput Approach to Accelerate the Evaluation of Multicomponent Alloys: Mu Li¹; Rohan Mishra¹; Katharine Flores¹; ¹Washington University

10:40 AM Invited

Investigating Microstructures in the Al-Co-Cr-Fe-Ni Alloys Using Braggedge Neutron Imaging Techniques: *Louis Santodonato*¹; Hassina Bilheux¹; Rui Feng²; Gian Song¹; Jean Bilheux¹; Jiao Lin¹; Zhi Tang²; Ke An¹; Peter Liaw²; ¹Oak Ridge National Laboratory; ²The University of Tennessee

11:00 AM Invited

Assessing High-entropy Alloys for High Temperature Structural Application Possibilities: *Young-Won Kim*¹; ¹Gamteck LLC

11:20 AM Invited

A New Centimeter–diameter LaCePrCoAl High Entropy Bulk Metallic Glass: Yonghua Meng¹; Jie Pan¹; *Yi Li¹*; ¹Institute of Metal Research, Chinese Academy of Sciences

High Entropy Alloys VI – Thermal and Other Properties I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Monday AM	Room: 122A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Michael Gao, National Energy Technology Laboratory; Tirumalai Srivatsan, The University of Akron

8:00 AM Invited

High-throughput Screening of High Entropy Alloys Using a Computational Thermodynamic Approach: *Chuan Zhang*¹; Fan Zhang¹; Rui Feng²; Michael C Gao³; Peter K Liaw²; ¹Computherm; ²University of Tennessee; ³National Energy Technology Laboratory

8:20 AM Invited

Structures, Thermodynamics and Elasticity of High-entropy Alloys: Michael Gao¹; Mike Widom²; Jeffrey Hawk¹; ¹National Energy Technology Lab; ²Carnegie Mellon University

8:40 AM Invited

Phase-stability and Short-range Ordering Behavior of FeMnCoCrAlx High-entropy Alloy: Theory and Experiment: *Prashant Singh*¹; Marshal Amalraj²; Aayush Sharma³; Ganesh Balasubramanian³; K. G. Pradeep²; Duane Johnson¹; ¹Ames Laboratory; ²RWTH Aachen University; ³Iowa State University

9:00 AM Invited

Development of Refractory High Entropy Alloys Fabricated by Powder Metallurgy Process: Byungchul Kang¹; Junho Lee¹; Ho Jin Ryu¹; *Soon Hyung Hong*¹; ¹Korea Advanced Institute of Science and Technology (KAIST)

9:20 AM

Compositional Effects on Thermal and Electrical Transport Properties in Ni-containing Single-phase Concentrated Solid Solution Alloys: *Ke Jin*¹; Brian Sales¹; George Stocks¹; Ke An¹; Wallace Porter¹; Yanwen Zhang¹; William Weber²; Hongbin Bei¹; ¹Oak Ridge National Laboratory; ²University of Tennessee

9:40 AM Break

10:00 AM Invited

True Thermodynamic Equilibrium in High Entropy Alloys: Al0.3CoCrFeNi as a Case Study: Bharat Gwalani¹; Vishal Soni¹; Deep Choudhuri¹; Stephane Gorsse²; *Rajarshi Banerjee*¹; ¹University of North Texas; ²CNRS, ICMCB MONDAY AM

10:20 AM Invited

Thermal Stability and Coarsening of Coherent Particles in a Precipitationhardened (NiCoFeCr), Ti,Al, High-entropy Alloy: Y.Y. Zhao¹; T.G. Nieh¹; ¹University of Tennessee, Knoxville

10·40 AM

Phase Stability and Transformation in a Light-weight High-entropy Alloy: Rui Feng¹; Michael C. Gao²; Chuan Zhang³; Wei Guo⁴; Jonathan D. Poplawsky⁴; Fan Zhang³; Jeffrey A. Hawk²; Joerg C. Neuefeind⁴; Yang Ren⁵; Peter K. Liaw¹; ¹The University of Tennessee, Knoxville; ²National Energy Technology Laboratory; ³CompuTherm LLC; ⁴Oak Ridge National Laboratory; ⁵Argonne National Laboratory

11:20 AM

Stability Phase and Microstructural Optimization in Al0.5NbTa0.8Ti1.5V0.2Zr High Entropy Alloy: Vishal Soni1; Bharat Gwalani¹; Oleg Senkov²; Adam Pilchak³; Rajarshi Banerjee¹; ¹University of North Texas; ²UES Inc.; ³Air Force Research Laboratory

11:00 AM

Beneficial Effect of Non-equiatomic Compositions for Long-term Stability at 500°C of CoCrFeMnNi Family of HEA: Anna Fraczkiewicz1; Michal Mroz1; 1MINES St-Etienne

Hume-Rothery Award Symposium: Computational Thermodynamics and Its Implications to Kinetics, Properties, and Materials Design – Keynote Session

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Suveen Mathaudhu, University of California, Riverside; Michael Gao, National Energy Technology Lab; Chelsey Hargather, New Mexico Institute of Mining and Technology; Richard Hennig, University of Florida; James Saal, QuesTek Innovations; Dongwon Shin, Oak Ridge National Laboratory

Monday AM March 12, 2018 Room: 127C Location: Phoenix Convention Center

Session Chairs: James Saal, QuesTek Innovations, LLC; Dongwon Shin, Oak Ridge National Laboratory

8:00 AM Introductory Comments: Suveen Mathaudhu and Co-Organizers

8:05 AM Invited

Computational Thermodynamics of Materials and Its Applications: Zi-Kui Liu¹; ¹The Pennsylvania State University

8:40 AM Invited

Diffusion Kinetics in Complex Systems – the Materials-genome Approach: John Agren1; 1Royal Institute of Technology

9:10 AM Invited

Materials Genomics: From CALPHAD to Flight: Greg Olson¹; ¹Northwestern University

9:40 AM Break

9:55 AM Invited

Challenges to Predictive Kinetics in Complex Dislocation Energy Landscapes: David McDowell1; 1Georgia Institute of Technology

10:25 AM Invited

Thermodynamics of Metal Hydroxide Vapors: Leveraging Theory and Experiment: Nathan Jacobson¹; Dwight Myers²; Charles Bauschlicher³; Quynhgiao Nguyen1; Elizabeth Opila4; 1NASA Glenn Research Center; 2East Central University; 3NASA Ames Research Center; 4Unversity of Virginia

10:55 AM Invited

Automating First-principles Calculations of Point Defects: Danny Broberg1; Mark Asta1; 1University of California, Berkeley

Integrative Materials Design III: Performance and Sustainability – New Directions, Process **Optimization, and Computational Modeling in** Additive Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee Program Organizers: Diana A. Lados, Worcester Polytechnic Institute; Brad Boyce, Sandia National Laboratories; Corbett Battaile, Sandia National Laboratories; Anastasios Gavras, Riley Power

Monday AM	Room: 132A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Diana Lados, Worcester Polytechnic Institute; Robert Warren, Worcester Polytechnic Institute

8:00 AM Invited

Adoption of Additive Manufacturing for Growth and Sustainment: David Abbott1; 1GE Aviation

8:20 AM Invited

Material-aware Topology Optimization: Joshua Robbins1; 1Sandia National Laboratories

8:40 AM Invited

From Mechanical Metamaterials to Simple Systems Made from Programmable Materials: Matthew Berwind¹; Hamideh Jafarpoorchekap¹; Chris Eberl2; 1University of Freiburg; 2Fraunhofer IWM

9:00 AM Invited

Integrating Design and Manufacturing in the Topology Optimization of High Performance Architected Materials and Components: James Guest¹; ¹Johns Hopkins University

9:20 AM Break

9:35 AM Invited

Material Selection for Nuclear Engineering Designs a Challenge and **Opportunity to Develop Graded Materials via Additive Manufacturing:** Peter Hosemann¹; Ashley Recihardt¹; Andrew Shapiro-Sharlotta²; John Paul Borgonia²; Peter Dillon¹; Bryan McEnerney²; Massimiliano Fratoni¹; Michael Ashby³; David Frazer¹; Alan Bolind¹; ¹University of California, Berkeley; ²JPL; ³University of Cambridge

9:55 AM Invited

Data Science and Machine Learning Opportunities in Additive Manufacturing: Elizabeth Holm¹; Brian DeCost¹; Anna Smith¹; Andrew Kitahara¹; ¹Carnegie Mellon University

10:15 AM Invited

Integrated Materials Theory, Modeling, and Data Analytics for Metal Additive Manufacturing: Alex Plotkowski1; Michael Kirka1; Vincent Paquit1; Sean Yoder¹; Ryan Dehoff¹; Suresh Babu²; ¹Oak Ridge National Laboratory; ²University of Tennessee, Knoxville

10:35 AM Invited

Development of Advanced Beam Scan Strategies in Electron Beam Powder Bed Additive Manufacturing: Michael Kirka1; Vincent Paquit1; Alex Plotlowski¹; Peeyush Nandwanna¹; Sean Yoder¹; Ryan Dehoff¹; ¹Oak Ridge National Laboratory

10:55 AM Invited

In-situ Inspection of Laser-based Directed Energy Deposition Processes Using Laser Ultrasonics: Marissa Brennan¹; Todd Palmer¹; Maxwell Wiedmann²; Marvin Klein²; ¹Penn State University; ²Intelligent Optical Systems

11:15 AM Invited

Science-based Qualification for Repair of Stainless Steel Components through Additive Manufacturing: John Carpenter1; Donald Brown1; Bjorn Clausen1; Jason Cooley1; Cameron Knapp1; 1Los Alamos National Laboratory

TECHNICAL PROGRAM

Magnesium Technology 2018 – Keynote Session

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Monday AM	Room: 224A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory - PNNL

8:00 AM Introductory Comments

8:10 AM Keynote

Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives: *Karl Kainer*¹; ¹MagIC—Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht

8:55 AM Keynote

Solute/Stacking Fault Energies in Mg and Implications for Ductility: Binglun Yin¹; Zhaoxuan Wu¹; *William Curtin*¹; ¹École Polytechnique Fédérale de Lausanne

9:40 AM Break

10:00 AM Keynote

Recent Developments in Magnesium Alloy Corrosion Research: Nick Birbilis¹; ¹Monash University

10:45 AM Keynote

Towards Active Corrosion Protection of Mg Alloys Using Corrosion Inhibition Approaches: *Mikhail Zheludkevich*¹; S.V. Lamaka¹; D. Hoeche¹; C. Blawert¹; ¹MagIC—Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Fuels I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Monday AMRoom: 104BMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory

8:00 AM

The Elastic Constants of γ-phase U – 8 wt% Mo between 25-650°C via Resonant Ultrasound Spectroscopy: *Matthew Steiner*¹; Elena Garlea²; Sean Agnew³; ¹University of Cincinnati; ²Y-12 National Security Complex; ³University of Virginia

8:20 AM

Phase Transformation Kinetics in Rolled U-10 wt. % Mo Foil: Effect of Post-rolling Heat Treatment and Prior γ-UMo Grain Size: Saumyadeep Jana¹; Nicole Overman¹; Tamas Varga¹; Curt Lavender¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

8:40 AM

Effect of C and Si Impurities in U10Mo Alloy: Discovery of New Quaternary Si-rich Phase and its Influence on Transformation Kinetics: *Arun Devaraj*¹; Libor Kovarik¹; Saumyadeep Jana¹; Curt Lavender¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

9:00 AM

Microstructural Characterization of U-Mo Fuel Plates Irradiated in the Advanced Test Reactor: Recent Observations: *Dennis Keiser*¹; Jan-Fong Jue¹; Brandon Miller¹; Jian Gan¹; Adam Robinson¹; James Madden¹; ¹Idaho National Laboratory

9:20 AM

Isothermal Transformation Kinetics of γ phase from a+ γ' Phase Mixture in U-10wt.%Mo Alloys: *Ryan Newell*¹; Youngjoo Park¹; Dennis Keiser²; Yongho Sohn¹; ¹University of Central Florida; ²Idaho National Laboratory

9:40 AM Break

10:00 AM

3D Characterization of High Fluence Irradiated UZr and UMo Fuels: *Maria Okuniewski*¹; Jonova Thomas¹; Sri Tapaswi Nori¹; Alejandro Figueroa¹; Peter Kenesei²; Hemant Sharma²; Jon Almer²; ¹Purdue University, Materials Engineering; ²Argonne National Laboratory

10:20 AM

Investigation of Tin as a Fuel Additive to Control FCCI: *Michael Benson*¹; James King¹; Robert Mariani¹; ¹Idaho National Laboratory

10:40 AM

Characterization of U-Zr-RE Metallic Fuel Fabricated by Injection Casting: *Jeong-Yong Park*¹; Seoung-Woo Kuk¹; Ki-Hwan Kim¹; Young-Mo Ko¹; Sung-Chan Park¹; Jong-Hwan Kim¹; ¹Korea Atomic Energy Research Institute

11:00 AM

Development of an Alternative Manufacturing Process for U3Si2 Fuel by a Novel Additive Manufacturing Process: *Isabella van Rooyen*¹; Clemente Parga¹; Jhonathan Rosales¹; Ed Lahoda²; ¹Idaho National Laboratory; ²Westinghouse Electric Company

Materials for Energy Conversion and Storage – Energy Storage I

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Monday AM March 12, 2018 Room: 229B Location: Phoenix Convention Center

Session Chairs: Guihua Yu, University of Texas at Austin; Tianbiao Liu, Utah State University

8:00 AM Invited

Effect of Structural Water on Electrochemical Energy Storage of Protons and Magnesium Ions in Layered Tungsten Oxides: Veronica Augustyn¹; ¹North Carolina State University

8:25 AM Invited

High-frequency Supercapacitors: Design, Electrodes, and Applications: *Zhaoyang Fan*¹; ¹Texas Tech University

8:50 AM Invited

Materials Design for Energy Storage and Beyond: From Nanostructures to Functional Polymers: Zheng Chen¹; ¹University of California, San Diego

9:15 AM Invited

Nanostructured Garnet Electrolytes: Synthesis, Structure, and Electrochemical Properties: Ting Yang¹; Jon Weller¹; Candace Chan¹; ¹Arizona State University

9:40 AM Break

9:55 AM Invited

Reversible Aluminum Intercalation in Transition Metal Sulfides: Linxiao Geng¹; *Juchen Guo*¹; ¹University of California, Riverside

10:20 AM Invited

Winning at Electricity through Electrowinning: *Daniel Steingart*¹; ¹Princeton University

10:45 AM Invited

Redox Flow Batteries: From Inorganic to Organic Redox Active Materials: *Tianbiao Liu*¹; ¹Utah State University

11:10 AM Invited

MONDAY AM

Atomistic Modeling Based Study of Glassy Electrolytes for All Solid State Sodium Ion Batteries: Aniruddha Dive¹; Clarence King¹; Steve Martin²; *Soumik Banerjee*¹; Scott Beckman¹; ¹Washington State University; ²Iowa State University

Materials Processing Fundamentals – Steelmaking -Processing

Sponsored by: TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Guillaume Lambotte, Boston Electromet; Antoine Allanore, Massachusetts Institute of Technology; Jonghyun Lee, Iowa State University; Samuel Wagstaff, Novelis

Monday AMRoom: 228AMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Guillaume Lambotte, Boston Electromet; Antoine Allanore, Massachusetts Institute of Technology

9:00 AM

The Effect of a Sulfur Addition on the Formation and Behavior of CaS Inclusions in a Steel Melt during a Secondary Refining Process without a Ca-treatment: *Takanori Yoshioka*¹; Yuta Shimamura²; Andrey Karasev¹; Yasuhide Ohba²; Pär Jönsson¹; ¹KTH Royal Institute of Technology; ²Sanyo Special Steel Co., Ltd.

9:20 AM

The Use of the PDA Method to Obtain Process Feedback on Inclusion Characteristics Based on Production Samples: *Par Jonsson*¹; Andrey Karasev¹; Jesper Janis²; Fredrik Larsson²; Diana Janis³; ¹KTH Royal Institute of Technology; ²Outokumpu Stainless; ³Sandvik Materials Technology

9:40 AM Break

10:00 AM

Measurement of Thermodynamic Property of Mg in Molten Iron Using Transpiration Method: *Tomoyuki Maegawa*¹; Shun Ueda¹; Atsushi Okayama²; Kazuki Morita¹; ¹The University of Tokyo; ²Nippon Steel & Sumitomo Metal Corporation, Ltd.

10:20 AM

Effect of BO_{1.5} Addition on the Thermal Conductivity and the Structure of the CaO-BO_{1.5}-AlO_{1.5} Mold Flux System: Sakae Shirayama¹; Youngjae Kim²; Kazuki Morita¹; ¹The University of Tokyo; ²Korea Institute of Geoscience and Mineral Resources (KIGAM)

10:40 AM

Dephosphorization Kinetics between Bloated Metal Droplet and Slag Containing FeO: The Influence of CO Bubbles on the Mass Transfer of Phosphorus in the Metal: *Kezhuan Gu*¹; Kenneth Coley¹; Neslihan Dogan¹; ¹McMaster University

11:00 AM

Mapping and Evaluating All the Ways to Remove Copper from Steel: *Katie* Daehn¹; André Cabrera Serrenho¹; Julian Allwood¹; ¹University of Cambridge

11:20 AM

Desulfurization of Copper-iron Reduced from Copper Slag: *Baojing Zhang*¹; Zhang Ting'an¹; Liping Niu¹; Zhihe Dou¹; Zhiqiang Li¹; Dongliang Zhang¹; ¹Northeastern University

Mechanical Behavior at the Nanoscale IV – Nanoporous Materials and Thin Films

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

londay AM	Room: 101C
larch 12, 2018	Location: Phoenix Convention Center

Session Chairs: Garritt Tucker, Colorado School of Mines; Qian Yu, Zhejiang University

8:00 AM Invited

Small-scale Plasticity and Elasticity: Experimental Signatures of the Role of Capillarity: *Jörg Weissmüller*¹; ¹Hamburg University of Technology and Hemlholtz-Zentrum Geesthacht

8:30 AM

Μ

Μ

The Mechanical Response of Core-shell Metallic Nanofoams: Chang Kim¹; Hassan Zbib¹; Nia Hightower¹; Hang Ke²; Ioannis Mastorakos²; *David Bahr*¹; ¹Purdue University; ²Clarkson University

8:50 AM

Numerical Modeling and Experiments of the Mechanical Behavior of Porous Solids for Large Relative Densities: *Timothy Ibru*¹; Maximilian Busche²; Vadim Roytershteyn²; Garritt Tucker³; Antonia Antoniou¹; ¹Georgia Institute of Technology; ²Other; ³Colorado School of Mines

9:10 AM

Role of Nano-voids in Shock Wave Mitigation of Single Crystal Cu: Anupam Neogi¹; *Nilanjan Mitra*¹; ¹Indian Institute of Technology Kharagpur

9:30 AM Break

9:50 AM

Origins of Residual Stress during Thin Film Growth: Eric Chason¹; ¹Brown University

10:10 AM

Size Effects in Nanoscale Wear of Silicon Carbide and Silicon: *Chaiyapat Tangpatjaroen*¹; David Grierson¹; Steve Shannon²; Joseph Jakes³; Izabela Szlufarska¹; ¹University of Wisconsin - Madison; ²North Carolina State University; ³Forest Biopolymers Science and Engineering

10:30 AM

Thickness-dependent Tensile Behavior of Thermally-grown SiO₂: Na-Hyang Kim¹; Han-geul Kim¹; Ju-Young Kim¹; ¹UNIST

10:50 AM

Initiation of Fatigue Damage in Ultra-fine Grained Thin Films: Oleksandr Glushko¹; ¹Erich Schmid Institute

Mechanical Characteristics and Application Properties of Metals and Non-metals for Technology: An EPD Symposium in Honor of Donato Firrao – Compounds and Allovs

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, AI Isra University; Jiann-Yang Hwang, Michigan Technological University; Bowen Li, Michigan Technological University; Pasquale Russo Spena, Free University of Bozen-Bolzano

Monday AM	Room: 123
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Paolo Matteis, Politecnico di Torino (Turin Technical University); Shadia Ikhmayies, Al Isra University

8:00 AM Invited

Sensitization Effects on Environmentally-assisted Cracking in 5XXX Al Alloys: John Lewandowski¹; ¹Case Western Reserve University

8:40 AM

Welding Between Steels and Aluminum Alloys for Hybrid Car-body Applications: *Paolo Matteis*¹; Alessio Gullino¹; Giorgio Scavino¹; Francesco Rosalbino¹; Graziano Ubertalli¹; Cesare Puro²; Fabio D'Aiuto²; ¹Politecnico di Torino (Turin Technical University); ²Centro Ricerche FIAT (FIAT Research Center)

9:00 AM

Flow Behavior of High Strength Aluminum Alloy after Cold Rolling: G. Guven Yapici¹; K. Shojaei¹; A. Hosseinzadeh¹; ¹Ozyegin University

9:20 AM

Production of Cu₂O Powder Using Electrodeposition Method: *Shadia Ikhmayies*¹; ¹Al Isra University

Metal-Matrix Composites Innovations, Advances and Applications: An SMD Symposium in Honor of William C. Harrigan, Jr. – Aluminum and Lightweight Metal Matrix Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Srivatsan Tirumalai, The University of Akron; Yuzheng Zhang, Gamma Alloys, LLC; William Harrigan, Gamma Technology, LLC

Monday AMRoom: 121AMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Troy Topping, California State University, Sacramento; Xiaodong Li, University of Virginia

8:00 AM Keynote

Aluminum Matrix Composites 1970 to 2017: William Harrigan¹; ¹Gamma Technology, LLC

8:40 AM Invited

Nanostructured Aluminum Alloys and their Composites via Cryomilling: Troy Topping¹; ¹California State University, Sacramento

9:10 AM

Commercial-ready and Large-scale Manufacturing of Light-weight Aluminum Matrix Nanocomposites: *Yuzheng Zhang*¹; Bill Harrigan¹; Al Sommer¹; Marco Currelli¹; Andy Parker¹; Miguel Verduzco¹; Mark Sommer¹; ¹Gamma Alloys

9:30 AM Break

9:50 AM Invited

Bio-inspired,	Graphene/Metal-oxide	Reinforced	Metal-matrix
Composites: Yun	ya Zhang ¹ ; <i>Xiaodong Li</i> ¹ ;	¹ University of V	irginia

10:20 AM

Bioinspired Al Composites Reinforced by In Situ Formed Al3Ni and Al3Ti: Frederick Heim¹; Yunya Zhang¹; *Xiaodong Li*¹; ¹University of Virginia

10:40 AM Invited

Aluminium and Magnesium Based Metal Matrix Composites: Micro and Nano: Nagaraj Chelliah¹; *Mirle Surappa*²; ¹National Institute of Technology Warangal; ²Indian Institute of Science

11:10 AM

Development of an Electroless Plating Process for Multi-wall Carbon Nanotubes (MWCNTs) to Improve Their Dispersion and Wettability in Molten Aluminum: *Mohammed Elsharkawi*¹; Amal Esawi¹; ¹Department of Mechanical Engineering, The American University in Cairo, New Cairo, Egypt

Nanocomposites V: Structure-Property Relationships in Nanostructured Materials – Nanolaminates

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee Program Organizers: Meisha Shofner, Georgia Institute of Technology; Nikhilesh Chawla, Arizona State University

Monday AM	Room: 102C
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Meisha Shofner, Georgia Institute of Technology

8:00 AM Invited

Effects of Layer Thickness on the Mechanical Behavior of Oxidationstrengthened Zr/Nb Nanoscale Multilayers: Jon Molina-Aldareguia¹; *Miguel Monclús*¹; Mauro Callisti²; Tomas Polcar²; Lingwei Yang¹; Javier Llorca¹; ¹IMDEA Materials Institute; ²University of Southampton

8:40 AM

Deformation Behavior of Novel Co-sputtered Nanolaminate Metal/ Ceramic Composites: Somya Singh¹; C. Shashank Kaira¹; Hrishikesh Bale²; J. Kevin Baldwin³; Nathan Mara³; Nikhilesh Chawla¹; ¹Arizona State University; ²Carl Zeiss X-ray Microscopy; ³Los Alamos National laboratory

9:00 AM

Size Effect in Ti-Fe-(Sn) Ultrafine Lamellar Eutectic Composites during Micro/-nano-indentation: *Tapabrata Maity*¹; Jürgen Eckert¹; ¹Erich Schmid Institute of Materials Science, Montan University, Leoben

9:20 AM Break

9:40 AM

The Influence of Laminar Bulk Metallic Glass/Crystalline Metal Interfaces on the Mechanical Properties of Roll Bonded Composites: *Sina Shahrezaei*¹; Irene Beyerlein²; Douglas Hofmann³; Suveen Mathaudhu¹; ¹University of California, Riverside; ²University of California, Santa Barbara; ³California Institute of Technology

10:00 AM

Mechanical Behavior of FCC Cu/FCC Co and FCC Cu/HCP Co Nanocomposite Films: *Rohit Berlia*¹; Jagannathan Rajagopalan¹; ¹Arizona State University

10:20 AM

Anisotropy of a High Strength Nanolayered Steel Revealed by In-situ Micro Mechanical Testing: *Marlene Kapp*¹; Anton Hohenwarter²; Bo Yang¹; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science; ²University of Leoben

10:40 AM

Multilayered Metallic Glass-crystalline Nanocomposites with Improved Wear Resistance: Mohammad Abboud¹; Zafer Artvin¹; Amir Motallebzadeh²; *Sezer Özerinç*¹; ¹Middle East Technical University; ²Koç University

Non-equilibrium Features of Grain Boundaries - Thermal Stability of Non-equilibrium Grain Boundaries

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan, Ann Arbor; Josh Kacher, Georgia Tech; Elizabeth Holm, Carnegie Mellon University; Irene Beyerlein, University of California, Santa Barbara; Shigenobu Ogata, Osaka University

Monday AM March 12, 2018 Room: 125A Location: Phoenix Convention Center

Session Chair: To Be Announced

8:00 AM Invited

The Role of Non-equilibrium Grain Boundary Structure in Radiation Tolerance and Thermal Stability: Mitra Taheri1; Pete Baldo2; Christopher Barr¹; Jacob Gruber¹; Marquis Kirk²; Garritt Tucker¹; Yongqiang Wang³; Gregory Vetterick1; 1Drexel University; 2Argonne National Laboratory; 3Los Alamos National Laboratory

8:30 AM

Grain Boundary Spinodals: Faceting Instability and the Role of Junction Energetics: Fadi Abdeljawad¹; Douglas Medlin¹; Jonathan Zimmerman¹; Khalid Hattar¹; Stephen Foiles¹; ¹Sandia National Laboratories

8:50 AM

Unraveling Anti-thermal Behavior in a Variety of FCC Metals: Ian Chesser1; Yutong Bi1; Elizabeth Holm1; 1Carnegie Mellon University

9:10 AM

Topological Defects in 2D Orientation-field Models for Grain Growth: Bálint Korbuly¹; Mathis Plapp²; Hervé Henry²; James Warren³; László Gránásy¹; Tamás Pusztai¹; ¹Wigner Research Centre for Physics; ²École Polytechnique; 3National Institute of Standards and Technology

9:30 AM Break

9:50 AM Invited

Grain Boundaries Driven Far from Equilibrium by a Continuous Influx of Vacancies: Michael Demkowicz1; 1Texas A&M University

10:20 AM

The Effect of Segregation and Precipitation on Grain Growth in Eu-doped MgAl, O,-spinel: Amanda Krause¹; Animesh Kundu¹; Carlen Donahue¹; Richard Vinci¹; Martin Harmer¹; ¹Lehigh University

10:40 AM

Reconciling Grain Growth and Shear-coupled GB Migration: Spencer Thomas¹; Kongtao Chen¹; Jian Han¹; Prashant Purohit¹; David Srolovitz¹; ¹University of Pennsylvania

11:00 AM

Exploring the Interactions between Grain Boundaries and Precipitates in a Ni-Al Using Molecular Dynamics: Rachel Morrison¹; Saryu Fensin²; Jennifer Carter1; 1Case Western Reserve University; 2Los Alamos National Laboratory

Phase Transformation Across Multiscale Material Interfaces – Structural Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Computational Materials Science and Engineering Committee Program Organizers: Soumya Nag, GE Global Research;

Sudarsanam Babu, The University of Tennessee, Knoxville; Gregory Thompson, University of Alabama; Mohsen Asle Zaeem, Missouri University of Science and Technology; Niyanth Sridharan, Oak Ridge National Laboratory

Monday AM	Room: 126C
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Siddharth Pathak, University of Nevada; Monica Kapoor, NETL; Talukder Alam, UNT

8:00 AM Invited

Roles of Transformation Interface for Controlling Microstructure and Properties of High Strength Steels: Tadashi Furuhara¹; Yongjie Zhang¹; Goro Miyamoto¹; ¹Tohoku University

8:30 AM Invited

Atomic-scale Characterization of Solute Segregation in Interfaces in Light Alloys: Jian-Feng Nie1; 1Monash University

9:00 AM Invited

Structure and Properties of BCC Mg Synthesized Using Interface Strain Engineering: Siddhartha Pathak¹; Manish Jain¹; Marko Knezevic²; Nenad Velisavljevic³; Nathan Mara³; Irene Beyerlein⁴; ¹University of Nevada, Reno; ²University of New Hampshire; ³Los Alamos National Laboratory; ⁴University of California, Santa Barbara

9:30 AM Break

9:50 AM Invited

Exploiting Non-conventional Pathways for Transformations and Microstructural Evolution in Metastable Beta Ti Alloys: Yufeng Zheng¹; Rongpei Shi¹; Yunzhi Wang¹; Rajarshi Banerjee²; Hamish Fraser¹; ¹The Ohio State University; ²University of North Texas

10:20 AM

Microstructural Characterization of Linear Friction Welded Interfaces in Ti-based Alloys: Talukder Alam¹; Srinivas Aditya Mantri¹; Thomas Broderick²; Rajarshi Banerjee1; 1University of North Texas; 2GE Aviation

Phase Transformations and Microstructural Evolution – Phase Transformations in Steels I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Monday AM March 12, 2018

Room: 129A Location: Phoenix Convention Center

Session Chair: Paul Gibbs, LANL

8:00 AM

Precipitation of CFCC-TmC Carbides during Tempering at 450°C of a Medium Mn Steel: A Thermodynamic and Kinetic Study Followed by Atom Probe Tomography: Alisson Kwiatkowski da Silva¹; Gerhard Inden¹; Dirk Ponge1; Baptiste Gault1; Dierk Raabe1; 1Max-Planck-Institut für Eisenforschung GmbH

106

TECHNICAL PROGRAM

8:20 AM

Impact of Solute Segregation on Phase Transformations during Cooling and Austempering of Direct-strip-cast High Strength Bainitic Steels: *Jerome Cornu*¹; Thomas Dorin¹; Peter Hodgson¹; ¹Deakin University Australia

8:40 AM

In-situ Analysis of Redistribution of Carbon and Nitrogen during Tempering of Supermartensitic Stainless Steel: *Frank Niessen*¹; Matteo Villa¹; Frédéric Danoix²; John Hald¹; Marcel Somers¹; ¹Technical University of Denmark; ²Université de Rouen

9:00 AM

Analysis of Misorientation Relationship between Austenite Parent and Twins: *Alex Brust*¹; Stephen Niezgoda¹; Eric Payton²; ¹The Ohio State University; ²AFRL

9:20 AM

Modeling the Effect of Stress State on Martensitic Phase Transformation in Austenitic Steel: *Milovan Zecevic*¹; Manas Upadhyay²; Efthymios Polatidis²; Helena Van Swygenhoven²; Marko Knezecvic¹; ¹University of New Hampshire; ²Paul Scherrer Institute

9:40 AM Break

10:00 AM

Role of Interaction between Particles on Particle Stability: *Kunok Chang*¹; Junhyun Kwon¹; Gyeong-Geun Lee¹; ¹Korea Atomic Energy Research Institute

10:20 AM

Austenite Carbon Measurement in Q&P Steels: Atom Probe Tomography vs. High Energy XRay Diffraction: *Frederic Danoix*¹; Sébastien Allain²; Guillaume Geandier²; Jean Christophe Hell³; Michel Soler³; Samy Aoued⁴; Mohamed Goune⁴; ¹CNRS - Université de Rouen; ²IJL Nancy; ³Arcelormittal Maizières Research SA; ⁴ICMCB Bordeaux

10:40 AM

Study on the Effect of V Microalloying on Earthquake Resisting Highstrength Reinforcing Bar Steels: Junho Chung¹; Taehyung Kim¹; Jusang Lee¹; ¹Hyundai-steel / Steel Research Center

Rare Metal Extraction & Processing – Rare Earth Element I

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee *Program Organizers:* Hojong Kim, The Pennsylvania State University; Bradford Wesstrom, Freeport-McMoRan Copper & Gold; Shafiq Alam, University of Saskatchewan; Takanari Ouchi, The University of

Tokyo; Gisele Azimi, University of Toronto; Neale Neelameggham, Ind LLC; Shijie Wang, Rio Tinto Kennecott Utah Copper; Xiaofei Guan, ShanghaiTech University

Monday AMRoom: 227CMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Takanari Ouchi, The University of Tokyo; Gisele Azimi, University of Toronto

8:00 AM Keynote

The Demonstration Pilot Plant Results for the Search Minerals Direction Extraction Process for Rare Earth Recovery: David Dreisinger¹; Greg Andrews²; Niels Verbaan³; Mike Johnson³; Ernesto Bourricaudy³; ¹University of British Columbia; ²Search Minerals Inc.; ³SGS Minerals

8:35 AM

Selective Oxidation of Cerium in Rare Earth Solutions, a Comparison of Four Oxidants: James McNeice¹; Ahmad Ghahreman¹; ¹Queen's Universuty

9:00 AM

A Study on the Effect of Crystal Habit Modifiers on the Co-precipitation of REE with Gypsum: *Farzaneh Sadri*¹; Zhi Yang¹; Ahmad Ghahreman¹; ¹Queen's University

9:25 AM Break

9:45 AM

Beneficiation and Leaching Study of Norra Karr Eudialyte Mineral: Victoria Vaccarezza¹; Corby Anderson¹; ¹Colorado School of Mines

10:10 AM

Review on the Processes for the Recovery of Rare Earth Metals (REMs) from Secondary Resources: Archana Kumari¹; Manis Kumar Jha¹; D. D. Pathak²; ¹CSIR-National Metallurgical Laboratory; ²IIT-Indian School of Mines

10:35 AM

Selective Reduction and Separation of Europium from Mixed Rareearth Oxides Recovered from Waste Fluorescent Lamp Phosphors: Mark Strauss¹; Brajendra Mishra¹; Gerard Martins²; ¹WPI; ²Colorado School of Mines

11:00 AM

The Recovery of Cesium Salts from the Taron Deposit: *David Dreisinger*¹; Mohammad Mokmeli¹; Bill McWilliam²; ¹University of British Columbia; ²Cascadero Copper Corporation

Recent Developments in Biological, Structural and Functional Thin Films & Coatings – Biomedical & Polymeric Applications

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Adele Carradò, Université de Strasbourg IPCMS; Nancy Michael, University of Texas at Arlington; Ramana Chintalapalle, University of Texas - El Paso; Heinz Palkowski, Clausthal University of Technology; Nuggehalli Ravindra, New Jersey Institute of Technology; Vikas Tomar, Purdue University; Gerald Ferblantier, Strasbourg University - ICube Laboratory

Monday AM March 12, 2018 Room: 226A Location: Phoenix Convention Center

Session Chairs: Adele Carradò, Université de Strasbourg IPCMS; Vikas Tomar, Purdue University

8:00 AM Keynote

Nanoscale Heterogeneous Surfaces: How to Control Nanofriction in Biosensors?: Karine Mougin¹; ¹Institut de Science des Matériaux de Mulhouse

8:40 AM

Examining the Long-term Adhesion Strength of Chitosan Bonded to Titanium when Exposed to the Atmosphere or Simulated Body Fluid: *Holly Martin*¹; Lauren DeBow¹; Veronica Marcella¹; Patrick McWhorter¹; Snjezana Balaz¹; ¹Youngstown State University

9:00 AM

Hybrid PMMA-coating for Biomedical Applications: Sebastien Kriegel¹; Melania Reggente¹; Patrick Masson¹; Genevieve Pourroy¹; Daniele Passeri²; Marco Rossi²; Heinz Palkowski³; *Adele Carradò*¹; ¹Université de Strasbourg IPCMS CNRS; ²Sapienza University of Rome; ³TU Clausthal, IMET

9:20 AM

Shaping of Ti/PMMA Sandwich Sheets for Biomedical Applications: Melania Reggente¹; Mohamed Harhash¹; Patrick Masson²; Genevieve Pourroy²; Adele Carradò²; *Heinz Palkowski*¹; ¹TU Clausthal; ²Université de Strasbourg IPCMS

9:40 AM Break

10:00 AM Invited

Coupling Electronic Structure to Atomistic Simulations for a Multi-scale Modelling of Realistic Materials: *Christine Goyhenex*¹; ¹IPCMS

10:30 AM Invited

Functionalization of Thermoset Composite Surfaces for Welding Technologies: Gerhard Ziegmann¹; Widyanto Surjoseputro¹; ¹Clausthal University of Technology

11:00 AM

11:20 AM

3-D Printed Magnetic Polymers: Asahel Banobre¹; Sita Rajyalaxmi Marthi¹; Nuggehalli Ravindra1; 1New Jersey Institute of Technology

Refractory Metals 2018 – Refractory Metal Silicides and Composites

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals Committee

Program Organizers: Eric Taleff, The University of Texas at Austin; Martin Heilmaier, Karlsruhe Institute of Technology (KIT); Kevin Jaansalu, Royal Military College of Canada

Monday AM Room: 124A March 12, 2018 Location: Phoenix Convention Center

Session Chairs: Eric Taleff, The University of Texas at Austin; Kevin Jaansalu, Royal Military College of Canada

8:00 AM

Oxidation and Creep Behavior of Mo-Si-Ti Alloys: Martin Heilmaier1; Daniel Schliephake¹; Alexander Kauffmann¹; Camelia Gombola¹; Xiangna Cong¹; ¹Karlsruhe Institute of Technology (KIT)

8:20 AM

Oxidation Resistance of W Substituted Mo-Si-B: Gaoyuan Ouyang¹; Pratik Ray²; Tuba Karahan³; Matthew Kramer²; Mufit Akinc¹; ¹Iowa State University; ²Ames Laboratory; ³Gedik University

8:40 AM

Tensile Response of Binary Mo-Si Solid Solution Alloys: Xiang Yu1; Sharvan Kumar¹; ¹Brown University

9:00 AM

Mechanical Behavior of a Three-phase Mo-Si-B Alloy Produced by Reaction Synthesis: Xiang Yu¹; Sharvan Kumar¹; ¹Brown University

9:20 AM

Microstructure and Mechanical Properties of Cr-Si High-temperature Alloys: Yuki Aono¹; Toshihiro Omori¹; Ryosuke Kainuma¹; ¹Tohoku University

9:40 AM Break

10:00 AM Invited

Assessments of the Mo-Si-X-(B) System for High Temperature Structural Application Potentials: Young-Won Kim1; Sang-Lan Kim1; 1Gamteck LLC

10:30 AM

On the Design and Selection of Nb In Situ Composites: Panayiotis Tsakiropoulos1; 1University of Sheffield

10:50 AM

Alloying Behaviour and Properties of Tetragonal Nb5Si3: Panayiotis Tsakiropoulos1; 1University of Sheffield

11:10 AM

Synthesis of MoC-graphite Composite by High-energy Ball Milling: Madelyn Madrigal Camacho1; Guillermo Aguilar1; Suveen Mathaudhu1; ¹University of California, Riverside

Surface Interactions in Materials - Chemical and **Physical Interactions**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee Program Organizers: Carlos Schvezov, Institute of Materials of Misiones; Sandip Harimkar, Oklahoma State University; Rajeev Gupta,

Monday AM March 12, 2018

The University of Akron

Room: 101A Location: Phoenix Convention Center

Session Chair: To Be Announced

8:00 AM Introductory Comments

8:05 AM

Role of Amorphous Alumina Interlayer over Deposition of ZrN Thin Film on U-Mo Fuel for Nuclear Application: Zhi-Gang Mei¹; Sumit Bhattacharya²; Abdellatif Yacout¹; ¹Argonne National Laboratory; ²Northwestern University

8:25 AM

Ultra-fast Boronizing of Low Carbon Steel Compared with Aluminum, and Zinc Coating: Bakr Rabeeh1; 1German University in Cairo, GUC

8:45 AM

Silane Compound Modification on SiO, for the Efficient Copper Diffusion Barrier Laver and Adhesion Enhancer of Electroless Copper Plating: Wei-Yen Wang¹; Tzu-Chien Wei¹; ¹National Tsing-Hua University

9:05 AM

Analysis of the Interaction of Serum Albumin with Titanium Dioxide Films Using the Extended Derjaguin-Landau-Verwey-Overbeek (X-DLVO) Theory: Jonathan M. Schuster¹; Carlos Schvezov¹; Mario Rosenberger¹; ¹IMAM (UNaM-Conicet)

9:25 AM Break

9:40 AM

Pt Decorating Effect on CNT Surface towards Adsorption of SF6 Decomposed Components: Hao Cui¹; Xiaoxing Zhang²; Dachang Chen²; Jiani Fang²; Ju Tang²; ¹Chongqing University; ²Wuhan University

10:00 AM

Surface Energies, Work Functions and Wulff Shapes of Elemental Crystals from High-throughput Density Functional Theory: Richard Tran¹; Zihan Xu¹; Balachandran Radhakrishnan¹; Wenhao Sun²; Donald Winston³; Joseph Montoya3; Kristin Persson3; Shyue Ong1; 1Department of Nanoengineering, University of California, San Diego; ²Department of Materials Science and Engineering, Massachusetts Institute of Technology; 3Energy Technologies Area, Lawrence Berkeley National Laboratory

10:20 AM

Formation Behavior of Fe2Al5 Phase in Fe/Molten Al Diffusion Couples: Takumi Yamada¹; Kwangsik Han¹; Kaneharu Okuda²; Ryosuke Kainuma¹; ¹Tohoku university; ²JFE Steel Corporation

10:40 AM

Influence of the Electrolyte on the Surface Free Energy of Anodic TiO, Coatings: Maria Vera1; Jonathan Schuster1; Mario Rosenberger1; Carlos Schvezov¹; ¹IMAM (CONICET-UNaM)

Ultrafine-grained Materials X – Pioneers of ECAE/ ECAP and HPT

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Monday AM Room: 103B March 12, 2018 Location: Phoenix Convention Center

Session Chairs: Suveen Mathaudhu, University of California, Riverside; S. Lee Semiatin, U.S. Air Force Research Laboratory

8:00 AM Introductory Comments: Lee Semiatin and Suveen Mathaudhu

8:05 AM

The Early Days of Pioneering Ultrafine Grained Metals and Alloys: *Terry Lowe*¹; ¹Colorado School of Mines

8:35 AM Keynote

Severe Plastic Deformation Technologies: Vladimir Segal¹; ¹EPM

9:05 AM Keynote

Recent Developments in the Processing of Ultrafine-grained Materials Using ECAP and HPT: Terence Langdon¹; ¹University of Southern California

9:35 AM Break

9:55 AM Keynote

Historical Aspects and Future Prospects of NanoSPD Materials Research for Superior Properties: *Ruslan Valiev*¹; ¹Ufa State Aviation Technical University

10:25 AM Keynote

Struggles in the Land of Opportunity: 25 Years of ECAE Adventures with Tools, Teams, Tough Times, and Triumphs: *Karl Hartwig*¹; Robert Barber²; ¹Texas A&M University; ²Shear Form, Inc.

10:55 AM Keynote

Incremental Feeding for Upsizing Severely Deformed Areas under High Pressure: Kosei Sumikawa¹; Yoichi Takizawa²; Manabu Yumoto²; Yoshiharu Otagiri²; *Zenji Horita*¹; ¹Kyushu University; ²Nagano Forging Co., Ltd

All-Conference Plenary – Defining the Future of Materials and Manufacturing Innovation Program Organizer: David DeYoung, Alcoa

Monday PM Room: 301 March 12, 2018 Location: Phoenix Convention C

March 12, 2018	Location:	Phoenix Convention Center

Session Chair: David DeYoung, Alcoa

12:00 PM Introductory Comments

12:05 PM Plenary

Materials and ICME as an Enabler for Sustainable Energy and Interplanetary Travel: Charles Kuehmann¹; ¹SpaceX/Tesla

12:45 PM Concluding Comments

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials – 2D Nanoelectronics

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Stephen McDonnell, University of Virginia; Chang-Yong Nam, Brookhaven National Laboratory; Lanxia Cheng, University of Texas Dallas; Dong Lin, Kansas State University; Wenda Tan, University of Utah

Monday PM March 12, 2018 Room: 101B Location: Phoenix Convention Center

Session Chairs: Dong Lin, Kansas State University; Lanxia Cheng, University of Texas at Dallas

2:30 PM Invited

Van der Waals (vdW) Heterojunctions for Low Power Electronics: *Tania Roy*¹; ¹University of Central Florida

3:00 PM

High Performance Graphene Field Effect Transistor Fabrication Using Alternative Metal Etching Route: Arul Vigneswar Ravichandran¹; Lanxia Cheng¹; Antonio Lucero¹; Jaebeom Lee¹; Joy Lee¹; Jiyoung Kim¹; Archana Venugopal²; Arup Polley²; Luigi Colombo²; ¹The University of Texas at Dallas; ²Texas Instruments

3:20 PM Invited

Making Electronic Structure Theory Predictive and Practical: Computational Modeling of Defects and Interfaces in Nano-materials: *Avik Ghosh*¹; Yaohua Tan¹; ¹University of Virginia

3:50 PM Break

4:10 PM Invited

In-plane and Cross-plane Thermoelectric Transport in 2D Materials: Mona Zebarjadi¹; ¹University of Virginia

4:40 PM Invited

Low-temperature Growth of Two-dimensional Layered Materials Toward Phase-engineered Hybrid Films: Yu-Lun Chueh¹; ¹National Tsing Hua University

5:00 PM Invited

Novel In-situ Electrical Characterization of the Dielectric Deposition Process on 2D Transition Metal Dichalcogenides: *Antonio Lucero*¹; Jaebeom Lee¹; Lanxia Cheng¹; Jiyoung Kim¹; ¹University of Texas at Dallas

9th International Symposium on High Temperature Metallurgical Processing – Simulation and Modeling of High Temperature Metallurgical Process Sponsored by: TMS Extraction and Processing Division, TMS:

Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Monday PMRoom: 227BMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Mark Kennedy, Proval Partners SA; Baogiang Xu,

Kunming University of Science and Technology

2:30 PM Introductory Comments

2:35 PM

Modeling of Reactive Melt Infiltration Used in the Fabrication of Si-Co/C Composites: *Khurram Iqbal*¹; ¹University of Karachi

2:55 PM

Neural Prediction Model for Extraction of Germanium from Zinc Oxide Dust by Microwave Alkaline Roasting-water Leaching: *Wankun Wang*¹; Fuchun Wang¹; ¹Guizhou Institute of Technology

3:15 PM

MONDAY PM

Numerical and Experimental Study of Carbothermal Reduction of Silica in a Laboratory Thermal Plasma Reactor: Yudong Li¹; Ramana Reddy¹; ¹University of Alabama

3:35 PM

Simulation of Velocity Field of Molten Steel in Electric Arc Furnace Steelmaking: Zeshi Yang¹; Lingzhi Yang¹; Yufeng Guo¹; Guangsheng Wei²; Ting Cheng¹; ¹Central South University; ²University of Science and Technology Beijing

3:55 PM Break

4:15 PM

Thermodynamic Modelling of Magnesium-Oxide, Calcium-Oxide and Strontium-Oxide Reduction Systems via Pidgeon Process: Mehmet Bugdayci¹; Kerem Tasyurek¹; Onuralp Yucel¹; ¹Istanbul Technical University

4:35 PM

Metallization and Carburization Kinetics in DR Shaft Furnaces. The Metcarb Model: *Edelink Falero*¹; Jose D'Abreu¹; Mauricio Otaviano²; ¹Pontificia Universidade Católica do Rio de Janeiro; ²Samarco

4:55 PM

CFD Modeling of Flow and Chemical Reactions in a Submerged Lance Copper Smelting Furnace: Guangwu Tang¹; Kaile Tang¹; Armin Silaen¹; Hongjie Yan²; Zhixiang Cui³; Zhi Wang³; Haibin Wang³; Ping Zhou²; *Chenn Zhou*¹; ¹Purdue University Northwest; ²Central South University; ³Dongying Fangyuan Nonferrous Metals

5:15 PM

Numerical Simulation of Ultrasound-Induced Cavitation Bubbling in a Calcium Ferrite Melt: *Ruirui Wei*¹; ¹Chongqing University

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling – Neutron Irradiation and Ion vs Neutron

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California, Berkeley; Julie Tucker, Oregon State University; Elaine West, Knolls Atomic Power Laboratory

Monday PMRoom: 102AMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: John Jackson, Idaho National Laboratory; Janelle Wharry, Purdue University

2:30 PM

High-dose Neutron Irradiation Induced Evolution of Mechanical Properties and Microstructure of Ferritic/Martensitic Steels: *Kun Wang*¹; Kevin Field¹; Chad Parish¹; Josina Geringer¹; Yutai Katoh¹; ¹Oak Ridge National Laboratory, UT-Battelle

2:55 PM

Microstructural Investigations of Temperature Effects in Reactor Pressure Vessel Steels from the UCSB ATR-2 Irradiation: *Nathan Almirall*¹; Peter Wells¹; Takuya Yamamoto¹; David Gragg¹; Kirk Fields¹; G. R. Odette¹; Randy Nanstad²; Keith Wilford³; Tim Williams³; Lynne Ecker⁴; David Sprouster⁴; ¹University of California, Santa Barbara; ²Oak Ridge National Laboratory; ³Rolls Royce; ⁴Brookhaven National Laboratory

3:20 PM

Using Ion Irradiation to Extend the Damage Level of Neutron Irradiated 304L Stainless Steel: Samara Levine¹; Zhijie Jiao¹; Gary Was¹; ¹University of Michigan

3:45 PM

Neutron Re-irradiation and Neutron-ion Irradiation Bootstrapping Approaches to Study Very High Dpa and He Effects in Nuclear Materials: *Takuya Yamamoto*¹; Danny Edwards²; Richard Kurtz²; G. Robert Odette¹; ¹University of California, Santa Barbara; ²Pacific Northwest National Laboratory

4:10 PM Break

4:30 PM Invited

Temperature Shift for Emulating Solute Cluster Evolution Using Higher Dose Rate Irradiation: *Matthew Swenson*¹; Janelle Wharry²; ¹University of Idaho; ²Purdue University

4:55 PM

Microstructure Evolution in BOR60 Irradiated T91: *Zhijie Jiao*¹; Stephen Taller¹; Kevin Field²; Gary Was¹; ¹University of Michigan; ²ORNL

5:20 PM

The Structure and Composition of Mn-Ni-Si Precipitates in an Irradiated High-Ni RPV Steel Following Aging at 425°C for 57 Weeks: *Soupitak Pal*¹; Peter Wells¹; G Odette¹; ¹University of California, Santa Barbara

Accident Tolerant Fuels for Light Water Reactor – Modeling & Simulation

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Lingfeng He, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory; Kumar Sridharan, University of Wisconsin; Peng Xu, Westinghouse Electric Company

Monday PM	Room: 104A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Brian Wirth, University of Tennessee; Yongfeng Zhang, Idaho National Laboratory

2:30 PM Invited

Atomic to Mesoscale Research and Development for U3Si2 Accident Tolerant Fuel: *Yongfeng Zhang*¹; David Andersson²; ¹Idaho National Laboratory; ²Los Alamos National Laboratory

3:00 PM

Calculating Swelling in U3Si2 Nuclear Fuel Using a Multi-scale Computational Approach: *Larry Aagesen*¹; Karim Ahmed¹; Benjamin Beeler¹; David Andersson²; Daniel Schwen¹; Yongfeng Zhang¹; ¹Idaho National Laboratory; ²Los Alamos National Laboratory

3:20 PM

Rate Theory Simulation of Fission Gas Behavior in U₃Si₂ under LWR Conditions: *Yinbin Miao*¹; Kyle Gamble²; David Andersson³; Bei Ye¹; Mei Zhi-Gang¹; Gerard Hofman¹; Abdellatif Yacout¹; ¹Argonne National Laboratory; ²Idaho National Laboratory; ³Los Alamos National Laboratory

3:40 PM

Gaseous Fission Product Swelling Behavior in U₃**Si**₂ **Fuel**: *Kyle Gamble*¹; Tommaso Barani²; Davide Pizzocri²; Giovanni Pastore¹; Yinbin Miao³; Jason Hales¹; ¹Idaho National Laboratory; ²Politecnico di Milano; ³Argonne National Laboratory

4:00 PM Break

4:20 PM

UB2 as Advanced Nuclear Fuel: Modelling In-reactor Evolution of Thermo-physical and Chemical Properties: *Patrick Burr*¹; Simon Middleburgh²; ¹UNSW Sydney; ²Westinghouse Electric

4:40 PM

Improvements to TRISO Based FCM Fuel Performance Modeling: Daniel Schappel¹; Kurt Terrani²; Brian Wirth¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

5:00 PM

Thermal Conductivity of Uranium: Fei Lin¹; Eric Tea¹; Manuel Umanzor¹; Shuxiang Zhou²; Ryan Jacobs²; Dane Morgan²; *Celine Hin*¹; ¹Virginia Tech; ²University of Wisconsin-Madison

5:20 PM

Thermal Conductivity of SiC Fiber-reinforced Composites for Accident Tolerant Fuel by the Finite Element Method: Leo Carrilho¹; Artem Aleshin¹; *Peng Xu*¹; ¹Westinghouse Electric Company

5:40 PM

PCI Analysis of Coated Zircaloy Cladding under LWR Steady State and Startup Operations: *Nathan Capps*¹; Wenfeng Liu¹; ¹Structrual Integraty

Additive Manufacturing – Joint Keynote Session

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: David Bourell, University of Texas-Austin; John Carpenter, Los Alamos National Laboratory

Monday PMRoom: 231ABCMarch 12, 2018Location: Phoenix Convention Center

Session Chair: David Bourell, University of Texas-Austin

2:30 PM Introductory Comments

2:35 PM Keynote

Additive Manufacturing Technologies, Applications, Markets and Opportunities: *Ming Leu*¹; ¹Missouri University of Science and Technology

3:05 PM Keynote

Enabling Next Generation Additive Manufacturing: The 3D Deposition of Functional Materials for the Additive Manufacturing of Smart Devices - A UK Perspective: *Richard Hague*¹; ¹University of Nottingham

3:35 PM Keynote

Metal Additive Manufacturing in Australasia and China: *Ma Qian*¹; ¹Centre for Additive Manufacturing, Royal Melbourne Institute of Technology

4:05 PM Break

4:25 PM Keynote

Additive Manufacturing of Metals: Current Status and Future Outlook: *Todd Palmer*¹; ¹Pennsylvania State University

4:55 PM Keynote

Polymers in Additive Manufacturing: Survey and Opportunities: *David Rosen*¹; ¹Georgia Institute of Technology

5:25 PM Keynote

Additive Manufacturing of Ceramics: Suman Das¹; ¹Georgia Institute of Technology

5:55 PM Concluding Comments

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Local Strain & Misorientation II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Monday PM	Room: 122B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Veronica Livescu, Los Alamos National Laboratory; Cem Tasan, Massachusetts Institute of Technology

2:30 PM Invited

Applications of Low(er) Voltage EBSD to Heavily Deformed Material Systems: *Farangis Ram*¹; Marc De Graef¹; ¹Carnegie Mellon University

3:00 PM

Investigating Surface Deformation and 3D Microstructure in Polycrystalline Metals: Zhe Chen¹; Samantha Daly¹; ¹University of California, Santa Barbara

3:20 PM

Characterization of Dislocation/GB Interactions via HR-EBSD and Machine Learning: Landon Hansen¹; Jay Carroll²; David Fullwood¹; Eric Homer¹; Robert Wagoner³; ¹Brigham Young University; ²Sandia National Laboratories; ³Ohio State University

3:40 PM

Using Correlative HRDIC, EBSD and ECCI to Answer Questions of Microstructure-specific Plasticity: *Allan Harte*¹; Alistair Garner¹; Alberto Orozco-Caballero¹; João Quinta da Fonseca¹; Michael Preuss¹; ¹The University of Manchester

4:00 PM Break

4:20 PM

Using EBSD to Quantify Defect Structures in Deformed IF Steels: David Field¹; ¹Washington State University

4:40 PM

In-situ Characterization of Plasticity Mechanisms along Complex Stain Paths: *Emeric Plancher*¹; Ke Qu¹; Nicolaas Vonk¹; Cem Tasan¹; ¹MIT

5:00 PM

Plastic Deformation Behaviour of a γ-TiAl Alloy in High Cycle Fatigue at up to 700 °C by Nano-scale Digital Image Correlation of a Remodelled Au Speckle Pattern: *Thomas Edwards*¹; Fabio Di Gioacchino¹; Nigel Martin²; Mark Dixon²; William Clegg¹; ¹University of Cambridge; ²Rolls-Royce plc

5:20 PM

Microstructural Evolution of 316L Stainless Steel Subjected to Shear: *Veronica Livescu*¹; Curt Bronkhorst¹; Benjamin Morrow¹; Cheng Liu¹; Hashem Mourad¹; Bineh Ndefru¹; Carl Trujillo¹; ¹Los Alamos National Laboratory

5:40 PM

Correlating Structural Heterogeneity to Deformation of Metallic Glasses Using Fluctuation Microscopy and Mesoscale Simulation: Soohyun Im¹; Pengyang Zhao¹; Ju Li²; Yunzhi Wang¹; *Jinwoo Hwang¹*; ¹The Ohio State University; ²Massachusetts Institute of Technology

Advanced High-strength Steels – Quenching and Partitioning (Q&P) Steels

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Monday PM March 12, 2018 Room: 121C Location: Phoenix Convention Center

Session Chairs: Amy Clarke, Colorado School of Mines; Sébastien Allain, Université de Lorraine

2:30 PM Invited

About the Origins and the Effects of Internal Stresses in Retained Austenite

of Q&P Steels: *Sébastien Allain*¹; Steve Gaudez¹; Guillaume Geandier¹; Jean-Christophe Hell²; Samy Aoued³; Mohamed Gouné³; Michel Soler²; Frédéric Danoix⁴; Angéline Poulon³; ¹Institut Jean Lamour UMR 7198; ²Arcelormittal Maizières Research SA; ³Institut de Chimie de la Matière Condensée de Bordeaux UPR 9048; ⁴Groupe de Physique des Matériaux UMR 6634

2:55 PM

Retained Austenite Stability in Quenching and Partitioning Steels Investigating by Means of In Situ High Energy X-ray Diffraction during Tensile Testing: Jean Christophe Hell¹; Michel Soler¹; Sébastien Allain²; Guillaume Geandier²; Mohamed Gouné³; Frédéric Danoix⁴; Samy Aoued³; ¹ArcelorMittal Global R&D; ²Institut Jean Lamour; ³ICMCB Bordeaux; ⁴GPM Rouen

3:15 PM

A Modified Quenching and Partitioning Process of Medium Mn Steel: Ran Ding¹; Jie Su²; ¹Tsinghua University; ²Central Iron & Steel Research Institute

3:35 PM

MONDAY PM

On the Selection of Optimal Quenching Temperature in Quenching and Partitioning (Q&P) Steels: *Li Liu*¹; Mingxin Huang¹; ¹The University of Hong Kong

3:55 PM Break

4:15 PM Invited

Interface Migration and Carbon Partitioning during Quenching and Partitioning: Role of Interfacial Mn Partitioning: *Hao Chen*¹; Zongbiao Dai¹; Chi Zhang¹; Zhigang Yang¹; ¹Tsinghua University

4:40 PM

Microstructure Evolution in a Model Fe-0.3%C-1.5%Si-2.5%Mn Steel during Quenching and Partitioning Treatments: In-situ Investigation by High Energy X-ray Diffraction and Modeling: *Samy Aoued*¹; Angéline Poulon-Quintin¹; Frédéric Danoix²; Sébastien Allain³; Steve Gaudez³; Guillaume Geandier³; Jean-Christophe Hell⁴; Michel Soler⁴; Mohamed Gouné¹; ¹CNRS, University Bordeaux, ICMCB; ²Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux; ³Institut Jean Lamour, CNRS - Université de Lorraine, Parc de Saurupt; ⁴Automotive Products, ArcelorMittal Maizières Research

5:00 PM

Austenite-martensite Interface Migration during Partitioning Treatment in a Quenching & Partitioning Steel: Zhuangming Li Zhuangming Li¹; Richard Thiessen²; Stefan Zaefferer¹; Dierk Raabe¹; ¹Max-Planck-Institut fuer Eisenforschung; ²ThyssenKrupp AG

5:20 PM

The Super High Strength of Aluminium-added Medium Manganese Steel after the Quenching and Tempering-associated Partitioning Process: *Juhua Liang*¹; Zhengzhi Zhao¹; Jiangtao Liang¹; Di Tang¹; ¹USTB

5:40 PM

Deformation Behaviour and Finite Element Method Modelling of TWinning Induced Plasticity (TWIP) Steel: Ching-Tun Peng¹; *Huijun Li*²; ¹Jiangsu University; ²University of Wollongong

Advanced Magnetic Materials for Energy and Power Conversion Applications – Advances in Permanent Magnet Alloys

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Monday PMRoom: 229AMarch 12, 2018Location: Phoenix Convention Center

Session Chair: Jun Cui, Iowa State University

2:30 PM Introductory Comments

2:35 PM Invited

Nd-Fe-B Permanent Magnets with Ultimate Hard Magnetic Properties: *Kazuhiro Hono*¹; Taisuke Sasaki¹; Hossein Sepehri-Amin¹; Tadakatsu Ohkubo¹; ¹National Institute for Materials Science

3:05 PM

TECHNICAL PROGRAM

Role of Ga on the Microstructure and Coercivity in Nd-rich Ga-doped Nd-Fe-B Sintered Magnets: *Taisuke Sasaki*¹; Yukio Takada²; Takashi Sato²; Tadakatsu Ohkubo¹; Akira Kato³; Yuji Kaneko²; Kazuhiro Hono¹; ¹National Institute for Materials Science; ²Toyota Central R&D Labs., Inc.; ³Toyota Motor Corp.

3:25 PM

Advances in Solid State Texture Development in Powder Processed Alnico Magnets: *Aaron Kassen*¹; Emma White²; Wei Tang²; Liangfa Hu²; Matthew Kramer²; Iver Anderson²; ¹Iowa State University; ²Ames Laboratory

3:45 PM Invited

Toward Production of Bulk Exchange-spring Magnets: *Scott McCall*¹; Alex Baker¹; Sarah Baker¹; Matthew Worthington¹; Jonathon Lee¹; Christine Orme¹; Joshua Kuntz¹; ¹Lawrence Livermore National Laboratory

4:15 PM Break

4:30 PM Invited

Microstructure and Coercivity in Alnico Permanent Magnets: *M. Kramer*¹; Liqin Ke¹; Ralph Skomski²; Lin Zhou¹; Duane Johnson¹; Qingfeng Xing¹; Wei Tang¹; Iver Anderson¹; ¹Iowa State University; ²University of Nebraska

5:00 PM Invited

Microstructural Effects of Thermomagnetic Processing in Nd2Fe14Bbased Permanent Magnet Materials: *Michael Kesler*¹; B. Jensen²; Lin Zhou²; Olena Palasyuk²; Kewei Sun²; Kevin Dennis²; Ben Conner¹; William Carter¹; Orlando Rios¹; Matthew Kramer²; Cajetan Nlebedim²; Michael McGuire¹; ¹Oak Ridge National Laboratory; ²The Ames Laboratory

5:20 PM

Nitrogenation of Nd_{1-.}Zr_xFe₁₀Si₂ with the ThMn12-type Structure as a Candidate Alloy for Permanent Magnets: *Andrés Martín-Cid*¹; David Mérida²; Margarit Gjoka³; Daniel Salazar¹; Jose Manuel Barandiaran²; Dimitris Niarchos³; George Hadjipanayis⁴; ¹BCMaterials; ²University of the Basque Country (UPV/EHU); ³NCSR Demokritos; ⁴University of Delaware

5:40 PM

Quantifying Contributions of Praseodymium and Dysprosium to Hard Magnetic Properties of Nd-Fe-B Magnets: *Cajetan Nlebedim*¹; Kinjal Gandha¹; Wei Tang¹; Matthew Kramer¹; ¹Ames Laboratory, US Department of Energy

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder – Quality and Reliability of Advanced Microelectronic Packaging I

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee *Program Organizers:* Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Monday PM	Room: 226C
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Chih Chen, National Chiao Tung University; Luhua Xu, Apple

2:30 PM

In Situ Studies of Whisker Nucleation Induced by Thermal Strain: Nupur Jain¹; Andrew Hitt¹; Justin Vasquez¹; *Eric Chason*¹; ¹Brown University

2:50 PM

IMCs Growth Mechanism in Tricrystal Sn3.0Ag0.5Cu Solder Joints under Current Stressing: *Fu Guo*¹; Jing Han¹; Yishu Wang¹; Yu Tian¹; ¹Beijing University of Technology

3:10 PM

Electromigration Behavior in SABI333 Solder Joints: *Jing Han*¹; Yishu Wang¹; Peng Li¹; Fu Guo¹; ¹Beijing University of Technology

3:30 PM

The Role of Inhomogeneous Properties on Tin Solder Electromigration Performance: Zachary Morgan¹; Yongmei Jin¹; Vahid Attari²; Raymundo Arróyave²; ¹Michigan Technological University; ²Texas A&M University

3:50 PM

Characterization of Electromigration Damage in Sn-Cu Solder Joints Using Electron Backscatter Diffraction and 3D X-ray Microtomography: *Marion Branch Kelly*¹; C. Shashank Kaira¹; Antony Kirubanandham¹; Tyler Stannard¹; Jason Williams¹; Aravindha Antoniswamy²; Ravi Mahajan²; Nikhilesh Chawla¹; ¹Arizona State University; ²Intel

4:10 PM Break

4:30 PM

Growth of Intermetallic Compound in Co/Sn3.5Ag/Co and Co/Sn3.5Ag/ Cu Structure under Thermomigration: *Yuan-Ruei Hsu*¹; Gong-Lin Hong¹; Shan-Yu Mao¹; Wei-Jun Liu¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

4:50 PM

Investigation of Processes Leading to Whisker Growth in Tin Thin Films with Advanced Multi-physics Simulations: *Aritra Chakraborty*¹; Philip Eisenlohr¹; Pratheek Shanthraj²; ¹Michigan State University; ²Max-Planck-Institut für Eisenforschung GmbH

5:10 PM

Role of Surface Layer on Whisker Mitigation in Tin Doped with Indium: Sherin Bhassyvasantha¹; Bhaskar Majumdar¹; Indranath Dutta²; ¹New Mexico Tech; ²Washington State University

5:30 PM

Effect of Copper Wire Diameter on the Variation in Shear Mode and Shear Strength: *Patrick McCluskey*¹; Subramani Manoharan¹; Christian Runyon²; Stevan Hunter³; ¹University of Maryland; ²Virginia Tech; ³ON Semconductor

Alloys and Compounds for Thermoelectric and Solar Cell Applications VI – Session II

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Ensicaen University of Caen; Soon-Jik Hong, Kongju National University and Institute for Rare Metals; Philippe Jund, Université Montpellier 2; Lan Li, Boise State University; Takao Mori, National Institute for Materials Science (NIMS); Hsin-jay Wu, National Sun Yat-sen University; Tiejun Zhu, Zhejiang University

Monday PM	Room: 226B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Franck Gascoin, Ensicaen University of Caen; Lan Li, Boise State University

2:30 PM Invited

Effect of the Processing Method on the Thermoelectric Properties of Mg2(Si,Sn,Ge) Materials: *Theodora Kyratsi*¹; ¹University of Cyprus

2:50 PM Invited

Novel Synthesis and Optimization of Half-Heusler Materials for Thermoelectric Applications: Brian Jaques¹; Samuel Pedersen¹; Joseph Croteau¹; Addrianna Lupercio¹; Robert Bellomy¹; Nick Kempf²; Matthew Lawson¹; Lan Li¹; Yanliang Zhang²; Darryl Butt³; ¹Boise State University; ²Notre Dame; ³University of Utah

3:10 PM Invited

Thermoelectric Performance Enhancement via Modifying Band Structure: *Wenjie Xie*¹; ¹University of Stuttgart

3:30 PM Invited

Atomic and Electronic Structures of 2D Semiconductors: *Kyeongjae Cho*¹; ¹UT Dallas

3:50 PM

Hierarchical Control of Microstructure in Fe-Si-Ge Based Thermoelectric Alloys to Control Thermal Boundary Conductance: *Wade Jensen*¹; ¹University of Virginia

4:10 PM Break

4:30 PM Invited

Controlling Stoichiometry, Defects, and Interfaces in Epitaxial Heusler Compounds: a Multifunctional Thermoelectrics Platform: Jason Kawasaki¹; ¹University of Wisconsin Madison

4:50 PM Invited

Low Thermal Conductivity and Stacking Faults in Layered Selenides: Ba4Cu8Se13 and InGeTe3: Franck Gascoin¹; ¹CRISMAT Laboratory

5:10 PM Invited

Thermoelectric Properties of Porphyrins: *Lawrence Cook*¹; Winnie Wong-Ng²; Greg Brewer¹; Lan Li³; ¹The Catholic University of America; ²National Institute of Standards and Technology; ³Boise State University

Alumina & Bauxite – Digestion and Precipitation

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Linus Perander, Outotec

Monday PM March 12, 2018 Room: 221A Location: Phoenix Convention Center

Session Chair: Alessio Scarsella, Outotec GmbH

2:30 PM Introductory Comments

2:35 PM

Roasting Pretreatment- low Temperature Digestion Method for Comprehensive Utilization of High-sulfur Bauxite: Dong Lu¹; *Guozhi Lyu¹*; Zhang Ting'an¹; Weiguang Zhang¹; Dong Xie¹; Yanxiu Wang¹; Long Wang¹; 'Northeastern University

3:00 PM

Industrial Experience of New Sinter Hydro-chemical Processing Process at BAZ-SUAL: Andrey Panov¹; *Maksim Pechenkin*¹; Sergey Ordon¹; Oleg Milshin²; Aleksandr Fedyaev³; ¹RUSAL Engineering & Technology Centre; ²RUSAL Global Management B.V.; ³RUSAL-VAMI LLC

3:25 PM

Effect of Sintering Conditions on the Stability of B-2CaO·SiO₂ in High Sodium Carbonate Solution: Dongdong Ma¹; *Bo Wang*¹; ¹Hebei University of Science and Technology

3:50 PM

Research on Impurity Removal of Low Grade Bauxite: Zhuang Li¹; *Yijun Cao*¹; Guihong Han¹; Guixia Fan¹; ¹Zhengzhou University

4:15 PM Break

4:30 PM

Study on the Structure and Generation Mechanism of Intermediate (6AIO-OH) in Decomposition Process of Sodium Aluminate Solutions: *Wei Liu*¹; Zhoulan Yin¹; Yaling Huang¹; Zhiying Ding¹; ¹Central South University

4:55 PM

The Properties of Superfine ATH Precipitated by Carbonation Method: *Andrey Panov*¹; Aleksandr Senyuta¹; Aleksandr Damaskin¹; ¹RUSAL Engineering & Technology Centre

Aluminum Alloys, Processing and Characterization – Characterizations and Applications of High Strength Aluminum Allovs

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Room: 221B Mondav PM March 12, 2018 Location: Phoenix Convention Center

Session Chair: Randall Bowers, Secat, Inc.

2:30 PM Invited

Aluminum for Aerospace Application: History, Current Challenges, and Path Forward: Zhengdong (Steven) Long1; 1Kaiser Aluminum

Grain Boundary Precipitation and Fracture Behavior of Al-Cu-Li Alloys: Ramasis Goswami¹; Noam Bernstein¹; ¹Naval Research Laboratory

3:20 PM

Characterization and Constitutive Modelling of AA 7075 for Hot Blankcold Die Stamping: Gopinath Kannadasan¹; Fadi Abu-Farha¹; Zeren Xu¹; ¹Clemson University

3:40 PM

Comparison of Texture and Surface Finish Evolution during Single Point Incremental Forming and Formability Testing of AA 7075: Maya Nath¹; Jaekwang Shin1; Ankush Bansal1; Mihaela Banu1; Alan Taub1; 1University of Michigan

4:00 PM Break

4:20 PM

Understanding the Co-precipitation Mechanisms of Al3(Sc, Zr) with Strengthening Phases in Extruded Al-Cu-Li Model Alloys: Katrin Mester1; Baptiste Rouxel¹; Timothy Langan¹; Justin Lamb¹; Matthew Barnett¹; Thomas Dorin¹; Kathleen Wood²; ¹Institute for Frontier Materials, Deakin University; ²ANSTO

4:40 PM

Microstructural Evolution after Single and Multi-pass Friction Stir Welding (FSW) of Wrought Mg-WE43 and Al-2024 Alloys: Michael Frank¹; Saurabh Nene¹; Gaurav Argade¹; Rajiv Mishra¹; R.E. Brennan²; K. Cho2; 1University of North Texas; 2U.S. Army Research Laboratory

5.00 PM

Determining a Retrogression Heat Treatment to Apply during Warm Forming of a High Strength AA7075 Sheet Material: Katherine Rader¹; Thomas Ivanoff¹; Hyunwook Shin¹; Jon Carter²; Louis Hector²; Eric Taleff¹; ¹The University of Texas at Austin; ²General Motors

5:20 PM

Development of High-strength and High-electrical-conductivity Aluminum Alloys for Power Transmission Conductors: Francisco Flores¹; Nhon Vo¹; David Seidman²; David Dunand²; ¹NanoAl; ²Northwestern University

Aluminum Reduction Technology – Cell Operations, Control & Improvements

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Abdalla Zarouni, Emirates Global Aluminium

Monday PM Room: 221C March 12, 2018 Location: Phoenix Convention Center

Session Chair: Till Reek, TRIMET Aluminium SE

2:30 PM Introductory Comments

2:35 PM

Maximizing Previous Pot Design to Have Higher Capacity: Sahala Sijabat1; Ivan Ermisyam¹; Indah Pandia¹; Ivan Yudho¹; ¹PT Inalum (Persero)

3:00 PM

On the Use of Multivariate Statistical Methods to Detect, Diagnose and Mitigate Abnormal Events in Aluminium Smelters: Petre Manolescu1; Carl Duchesne1; Jayson Tessier2; Gudrun Saevarsdottir3; 1Laval University; 2Alcoa Corporation, Smelting Center of Excellence; 3Reykjavik University

3:25 PM

Spike Detection Using Advanced Analytics and Data Analysis: Arthur Martel1; 1Rio Tinto

3.50 PM

Speed, Agility and Simplicity (SAS) Recovery of Reduction Line-5 in Alba: Abdulla Ahmed¹; ¹Aluminium Bahrain (Alba)

4:15 PM Break

4:30 PM

Partial Repair and Restart of a Damaged Aluminium Reduction Cell: Abd El Zaher Abd El Star¹; Khalid Youssif¹; Mahmoud Salem¹; ¹Aluminium Company of Egypt "EGYPTALUM"

4:55 PM

Theory and Practice of High Temperature Gas Baking Technology for Alumninium Electrolysis Cells: Xudong Wang¹; Chengbo Wu¹; Yingwu Li¹; ¹Zhengzhou Jingwei Technology Industry Co., Ltd

5:20 PM Concluding Comments

Bio-nano Interfaces and Engineering Applications Symposium – Bio-Nano Interfaces II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Terry Lowe, Colorado School of Mines; Kalpana Katti, North Dakota State University; Po-Yu Chen, National Tsing Hua University; John Nychka, University of Alberta

Monday PM	Room: 225A
March 12, 2018	Location: Phoenix Convention Center

Session Chair: To Be Announced

2:30 PM Invited

Use of Nanostructured Diamond in Medical Device Applications: Roger Narayan1; 1UNC/NCSU Joint Department of Biomedical Engineering

3:00 PM

Surface Modification of Ti6Al4V to Confer Antibacterial Properties against Listeria Monocytogenes: Jesus Morales Espejo¹; Susana Díaz A.¹; David Bahr1; Lia Stanciu1; 1Purdue University

3:20 PM Invited

Oligopeptides and Recombinamers at Surfaces and Interfaces to Address Oral Infections: Conrado Aparicio1; 1University of Minnesota

3:50 PM

New Antimicrobial Peptides Generated through Genetic Algorithm Approach Using Chemical Property Based Cross-over: Kyle Boone¹; Kyle Camarda¹; Paulette Spencer¹; Candan Tamerler¹; ¹University of Kansas

4:05 PM Break

4:20 PM Invited

Connecting Biology and Electronics with Protons: From Ion Channels to Cells: Marco Rolandi1; 1University of California, Santa Cruz

4:50 PM

Chemically Functionalised Graphene FET with Double Conductance Minima for the Label-free Sensing of Exosomes: Deana Kwong Hong Tsang¹; ¹Imperial College London

5:05 PM Invited

Bioconjugated Nanoparticle Imaging Probes for Molecular Imaging with Computed Tomography: Ryan Roeder¹; Tyler Curtis¹; Prakash Nallathamby¹; Tyler Finamore¹; Lisa Irimata¹; Tracie McGinnity¹; Lisa Cole¹; Tracy Vargo-Gogola2; Karen Cowden Dahl2; 1University of Notre Dame; 2Indiana University School of Medicine

114

TECHNICAL PROGRAM

5:35 PM

Biofilm Formation Behavior on Polymer Brush Surfaces by E.Coli and S. Epidermidis: *Hideyuki Kanematsu*¹; Takaya Sato²; Toshio Kamijo²; Saika Honma²; Atsuya Ohizumi¹; Senshin Umeki³; Akiko Ogawa¹; Nobumitsu Hirai¹; Takeshi Kogo¹; Daisuke Kuroda¹; Hajime Ikegai⁴; Yoshimitsu Mizunoe⁵; ¹National Institute of Technology, Suzuka College; ²National Institute of Technology, Tsuruoka College; ³Tohoku University; ⁴University of Human Arts and Science; ⁵Jikei University

Biological Materials Science – Synthesis of Bioinspired Materials and Structures

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee Program Organizers: Steven Naleway, University of Utah; Vinoy Thomas, University of Alabama at Birmingham; Holly Martin, Youngstown State University; Jing Du, Pennsylvania State University

Monday PM	Room: 225B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Vinoy Thomas, University of Alabama, Birmingham; Steven Naleway, University of Utah

2:30 PM Invited

Synergistic Structures from Magnetic Freeze Casting with Surface Magnetized Alumina Particles and Platelets: Michael Frank; Sze Hei Siu¹; Keyur Karandikar¹; Chin-Hung Liu¹; Steven Naleway²; Michael Porter³; Olivia Greave¹; *Joanna McKittrick*¹; ¹University of California, San Diego; ²University of Utah; ³Clemson University

3:00 PM

Synthesis of PVA Scaffolds with Gradient Porous Structures by Freeze Casting: *Ching-Chun Chiu*¹; Haw-Kai Chang¹; Hsin-Juei Wang¹; Po-Yu Chen¹; ¹National Tsing Hua University

3:20 PM

Freeze Casting of Surface-magnetized TiO₂ Using a Uniform Magnetic Field to Fabricate Materials Inspired by Bone: *Isaac Nelson*¹; Taylor Ogden¹; Jake Abbott¹; Steven Naleway¹; ¹Department of Mechanical Engineering, University of Utah

3:40 PM Invited

Development of Bamboo Based Bio-composites: *Uday Vaidya*¹; Vinoy Thomas²; ¹University of Knoxville; ²University of Alabama at Birmingham

4:10 PM Break

4:30 PM Invited

Bioinspired Structural and Functional Materials: *Cordt Zollfrank*¹; ¹Technische Universität München, Germany

5:00 PM

Brick-and-mortar Alumina Containing a Nickel Compliant Phase Synthesized Using Spark Plasma Sintering: *Amy Wat*¹; Claudio Ferraro²; Xu Deng³; Antoni Tomsia⁴; Eduardo Saiz Gutierrez²; Robert Ritchie¹; ¹University of California, Berkeley; ²Imperial College London; ³University of Electronic Science and Technology of China; ⁴Lawrence Berkeley National Laboratory

5:20 PM

Mechanics and Toughening Mechanisms of Nacre-inspired Composites: Sina Askarinejad¹; Nima Rahbar¹; ¹Worcester Polytechnic Institute

5:40 PM

Porous Bioinspired Materials through a Variety of Templating Techniques: *Steven Naleway*¹; Isaac Nelson¹; Taylor Ogden¹; ¹University of Utah

Cast Shop Technology – HSE and Cast House Operation

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mark Badowski, Hydro Aluminium

Monday PM March 12, 2018

Room: 222A Location: Phoenix Convention Center

Session Chair: Jean-Francois Desmeules, Dynamic Concept

2:30 PM Introductory Comments

2:35 PM

Root Cause Analysis Findings of a Force 3 Explosion: *Alex Lowery*¹; ¹WISE CHEM LLC

3:00 PM

Condensation Warning System for Dry Material Storage: *Gregory Blackstock*¹; Jake Niedling¹; ¹Arconic Inc.

3:25 PM

ACS/Aluminum Crucible Skimmer: Bruno Maltais¹; Florent Gougerot¹; ¹STAS Inc.

3:50 PM

Drive-in Feeding of Crucibles for Casting Machine: Jean-Francois Desmeules¹; *Jean-Benoît Néron*¹; ¹Dynamic Concept

4:15 PM Break

4:30 PM

In-line Salt Fluxing Process with an FFDTM: Florent Gougerot¹; Bruno Maltais¹; *Etienne Tremblay*¹; ¹STAS Inc.

4:55 PM

The "Alcoa Filter System": A Cost Effective Solution for Enhanced CFF Performance: *Robert Dumont*¹; Jean-Francois Desmeules²; ¹Alcoa; ²Dynamic Concept

5:20 PM

Continuous Centrifugal Casting: A Revolutionary Process for Casting Aluminium Tubes: *Luc Montgrain*¹; Olivier Dion-Martin²; Jean-François Desmeules²; ¹AluMC3; ²Dynamic-Concept

5:45 PM

Development of a Prototype Unit for Continuous Centrifugal Casting of Aluminium Tubes: Olivier Dion-Martin¹; Jean-François Desmeules¹; Luc Montgrain²; ¹Dynamic-Concept; ²AluMC3

CFD Modeling and Simulation in Materials Processing – Casting and Solidification II

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee *Program Organizers:* Laurentiu Nastac, The University of Alabama; Koulis Pericleous, University of Greenwich; Adrian Sabau, Oak Ridge National Laboratory; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, Colorado School of Mines

Monday PM March 12, 2018 Room: 228B Location: Phoenix Convention Center

Session Chairs: Gregory Poole, The University of South Alabama; Adrian Sabau, Oak Ridge National Laboratory

2:30 PM

Microstructure Effects in High-pressure Die Casting Using an Innovative Two-phase Cooling System: *Adrian Sabau*¹; Emilian Popov¹; Sam Kassoumeh²; ¹Oak Ridge National Laboratory; ²Shiloh Industries

2:50 PM

Numerical Modelling of Shrinkage and Hot Tears in High Pressure Die Casting of Al-Si-Cu Alloys: *Mikko Karkkainen*¹; Tao Liu¹; Laurentiu Nastac¹; Luke Brewer¹; Vishweshwar Arvikar²; Ilya Levin²; ¹The University of Alabama; ²Nemak Alabama

3:10 PM Invited

Modeling the De-agglomeration and Dispersion of Particles in Metallic Alloy Melts during Ultrasonic Treatment: *Koulis Pericleous*¹; Georgi Djambazov¹; Bruno Lebon¹; Anton Manoylov¹; ¹University of Greenwich

3:40 PM

Numerical Modeling and Experimental Verification of Macrosegregation and CET Predictions in Large Steel Roll Ingots: Laurentiu Nastac¹; Konstantin Redkin²; Chris Hrizo²; Kevin Marsden²; ¹The University of Alabama; ²Whemco

4:00 PM Break

4:20 PM

Numerical Simulation of Electromagnetic and Heat Transfer Phenomena in Inductively Heated Risers: Michael Cox¹; *Gregory Poole*¹; ¹University of South Alabama

4:40 PM

Effect of Inlet Velocities on Mould Filling in Investment Casting: *Victoria Thomas*¹; Steve Leyland²; Robbie Bennett²; Stephen Brown¹; Nicholas Lavery¹; ¹Swansea University; ²Jiangyin Uni-Pol Ltd.

5:00 PM

Modeling of the Effect of Ultrasonic Frequency and Amplitude on Acoustic Streaming: *Young Ki Lee*¹; Jeong IL Youn¹; Young Jig Kim¹; Woo Chun Kim²; Tae Yup Lee²; ¹Sungkyunkwan University; ²DR Axion Co., Ltd.

Characterization of Minerals, Metals, and Materials – Characterization of Ceramics

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, AI Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Monday PMRoom: 122CMarch 12, 2018Location: Phoenix Convention Center

Session Chair: Bowen Li, Michigan Technological University

2:30 PM Introductory Comments

2:35 PM Invited

Natural Fiber Composites: Could They Compete with Kevlar[™] in Personal Armor Systems against High Impact Ammunition?: Sergio Monteiro¹; ¹Military Institute of Engineering

2:55 PM Invited

3D Chracterization of Ultra High Temperature Ceramics: *Veeraraghavan Sundar*¹; Derek King¹; Satya Ganti¹; Brian Turner¹; ¹UES Inc.

3:15 PM

TECHNICAL PROGRAM

The Study of Freeze-thaw Cycling of Water-saturated Porous Illite-based Ceramics: *Michal Knapek*¹; Tomas Hulan²; Patrik Dobron¹; Stefan Csaki¹; Frantisek Chmelik¹; ¹Charles University; ²Constantine the Philosopher University

3:35 PM

Preparation and Characteristics of Steel Slag Ceramics from Converter Slag: *Mingsheng He*¹; Bowen Li²; Wangzhi Zhou¹; Meng Liu¹; Huasheng Chen¹; Long Zou¹; ¹Wuhan Iron & Steel Co., Ltd.; ²Michigan Technological University

3:55 PM Break

4:10 PM

In-situ XRD Investigation of Bauxite Dehydroxylation: *Hong Peng*¹; James Vaughan¹; ¹The University of Queensland

4:30 PM

New Higher Temperature Composites Based on Zirconium Cements: Ilyoukha Nickolai¹; ¹Academic Ceramic Center

4:50 PM

The Investigation of Humics as a Binder for LiFePO4 Cathode Using in Lithium Ion Battery: *Guihong Han*¹; Shuzhen Yang¹; Jiongtian Liu¹; Yanfang Huang¹; ¹Zhengzhou University

5:10 PM

Evaluation of Brazilian Bentonite Modified by Acid Attack in Biofuel Production: *Christiano Gianesi Bastos Andrade*¹; Samuel Marcio Toffoli¹; Francisco Rolando Valenzuela Diaz¹; ¹University of São Paulo

5:30 PM

Influence of Addition of Na₂CO₃ on the Al₂O₃-4wt% Nb₂O₅ Ceramic Compound: *Jheison Santos*¹; Luis Henrique Louro¹; Lúcio Fábio Nascimento¹; Paulo Roberto Jesus¹; Rubens Marçal¹; ¹Military Institute of Engineering

Characterization of Minerals, Metals, and Materials – Microstructure and Performance of Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, AI Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Monday PM March 12, 2018 Room: 124B Location: Phoenix Convention Center

Session Chair: Paul Sanders, Michigan Technological University

2:30 PM Introductory Comments

2:35 PM

Automated Microstructure Validation and Flaw Detection Using Computer Vision: *Andrew Kitahara*¹; Brian DeCost¹; Elizabeth Holm¹; ¹Carnegie Mellon University

2:55 PM

Correlation between As-solidified Microstructures and Mechanical/ Tribological Behavior of Al-5wt.%Si-Xwt.%Bi Alloys: José Marcelino da Silva Dias¹; Thiago Costa²; Fábio Mariani³; Luiz Casteletti³; Noé Cheung¹; Amauri Garcia¹; ¹UNICAMP; ²IFPA; ³USP

3:15 PM

Correlation of Microstructure to Mechanical Properties in Two Grades of Alumina: *Tomoko Sano*¹; Ian Buterbaugh²; Timothy Walter¹; James Catalano¹; Brendan Koch³; Calvin Lo³; James Hogan³; ¹U.S. Army Research Laboratory; ²University of Arizona; ³The University of Alberta

3:35 PM

Effect of Orientations on Microstructure and Mechanical Properties of 7075 Aluminum Alloy by Rolling at Liquid Nitrogen Temperature: Jun Luo¹; Hongyun Luo¹; ¹Beihang University 3:55 PM Break

4:10 PM

Grain Size Characterization in Austenitic Stainless Steel Using Parameterized Ultrasonic Gaussian Echo Model: Song Peng¹; Qi Ouyang¹; Zizong Zhu¹; Tao Liu¹; ¹Chongqing University

4:30 PM

Laboratory Methods for Controlling Microstructure in Titanium Grade 2 and 5 Materials for the Calibration of Ultrasonic Microstructure Characterization: *Matthew Schick*¹; Philip Noell²; Thomas Ivanoff¹; Doyle Motes³; Mark Warchol³; Lyudmila Warchol³; Eric Taleff¹; ¹The University of Texas at Austin; ²Sandia National Laboratories; ³TRI/Austin

4:50 PM

The Effect of Extrusion Rate on the Microstructural Evolution of ECAE Processed Pure Mg: Nicholas Krywopusk¹; Laszlo Kecskes²; Timothy Weihs¹; ¹Johns Hopkins University; ²Army Research Laboratory, Aberdeen Proving Ground

5:10 PM

The Influence of Microstructure on the Collapse Mechanisms and Specific Energy Absorption Capacity of Aluminium Alloy Foams: *Md Abdul Kader*¹; Paul Hazell¹; Mohammad Saadatfar²; Andrew Brown¹; Md Ashraful Islam¹; Juan Escobedo-Diaz¹; ¹UNSW, Canberra; ²Australian National University

5:30 PM

Bending Mechanical Evaluation in Composites with Epoxy Matrix Incorporating with Natural Fabric of Malva/Jute Fiber: Janaina da Silva Vieira¹; Felipe Perissé Duarte Lopes¹; Ygor Macabú de Moraes¹; Sergio Neves Monteiro²; Frederico Muylaert Margem³; Jean Igor Margem⁴; Djalma Souza¹; ¹State University of the Northern Rio de Janeiro; ²Military Institute of Engineering; ³UniREDENTOR; ⁴Institutos Superiores de Ensino do CENSA

Computational Design and Simulation of Materials (CDSM 2018) – Plenary Session

Sponsored by: Chinese Society for Metals

Program Organizers: Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Monday PM	Room: 131B
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Alan Luo, The Ohio State University

2:30 PM Introductory Comments

2:35 PM Plenary

Genomic Materials Design: From CALPHAD to Space: Greg Olson¹; Charles Kuehmann²; ¹Northwestern University; ²SpaceX & Tesla

3:25 PM Plenary

Theoretical Modeling and Atomistic Calculation Verifications of Sizedependent Mechanical and Thermal Behaviors in Nanomaterials: *Tong-Yi Zhang*¹; ¹Shanghai University

4:15 PM Break

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Phase Field Simulations II: Lightweight Alloys

Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Monday PM	Room: 131B
March 12, 2018	Location: Phoenix Convention Center

Session Chair: John Allison, University of Michigan, Ann Arbor

4:40 PM

Examination of Precipitate Composition, Morphology, and Interactions in Mg-RE Alloys Using Phase Field Modeling: *Stephen DeWitt*¹; Katsuyo Thornton¹; John Allison¹; ¹University of Michigan - Ann Arbor

5:00 PM

Microstructure Prediction of Titanium Aluminides Using Multi-phase Phase Field Modelling: Junyi Lee¹; Daniel Balint¹; ¹Imperial College London

5:20 PM

Phase Field Simulations of Grain Boundary Variant Selection and Intragranular Microstructure Formation in Polycrystalline Ti-6Al-4V: Bala Radhakrishnan'; Sarma Gorti¹; John Turner¹; 'Oak Ridge National Laboratory

Computational Design and Simulation of Materials (CDSM 2018): Computational Design of Materials – Computational Design of Materials: Uncertainty Sponsored by: Chinese Society for Metals

Program Organizers: Alan Luo, The Ohio State University; Suveen Mathaudhu, University of California, Riverside; Yong Du, Central South University; Raymundo Arroyave, Texas A & M University; Dianzhong Li, Institute of Metal Research, Chinese Academy of Sciences; Zi-Kui Liu, The Pennsylvania State University

Monday PM March 12, 2018 Room: 131C Location: Phoenix Convention Center

Session Chair: Raymundo Arroyave, Texas A&M University

4:40 PM Invited

Uncertainty of Thermodynamic Data for Materials Design: Marius Stan¹; Noah Paulson¹; ¹Argonne National Laboratory

5:10 PM Invited

Thermodynamic Modeling with Uncertainty Quantification and its Implications for Additive Manufacturing: Brandon Bocklund¹; Richard Otis²; Zi-Kui Liu¹; ¹Pennsylvania State University; ²Jet Propulsion Laboratory

5:40 PM

Reduced Order Modelling and Smart Regression Sampling of Energy Landscapes: Ruben Villarreal¹; ¹A&M University

Computational Materials Discovery and Optimization – Materials Interfaces, 2D Materials, and

Nanomaterials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers:* Richard Hennig, University of Florida; Houlong Zhuang, Arizona State University; Arunima Singh, Lawrence Berkeley National Laboratory; Eric Homer, Brigham Young University; Francesca Tavazza, National Institute of Standards and Technology

Monday PM	Room: 132B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Francesca Tavazza, NIST; Houlong Zhuang, Mechanical and Aerospace Engineering

2:30 PM Invited

The Use of Cluster Expansions to Predict the Structure and Properties of Catalysts: *Tim Mueller*¹; ¹Johns Hopkins University

3:00 PM

A Combined Experimental-computational Approach to Determining Nanoscale Structures: *Spencer Hills*¹; Alper Kinaci²; Fatih Sen¹; Maria Chan¹; ¹Argonne National Laboratory; ²Northwestern University

3:20 PM

Data-driven Discovery of Photocathodes for CO, Reduction: Arunima Singh¹; Kristin Persson¹; ¹Lawrence Berkeley National Laboratory

3:40 PM

High-throughput Investigation of the Electronic Properties of 2D and Bulk Materials in the MaterialsWeb Database: *Joshua Paul*¹; Andy Linscheid¹; Joshua Gabriel¹; Richard Hennig¹; ¹University of Florida **MONDAY PM**

4:00 PM Break

4:20 PM

Computational Screening of Novel Two-dimensional Topological Insulators and Layer-dependent Properties: *Kamal Choudhary*¹; Kevin Garrity¹; Francesca Tavazza¹; ¹National Institute of Standards and Technology

4:40 PM

MONDAY PM

First Principle Prediction of Magnetic Topological Phase in Thin Films of Bi2XY4 (X = Mn, Cr; Y = Se, Te): *Sugata Chowdhury*¹; Joseph Hagmann¹; Curt Richter¹; Angela Hight Walker¹; Francesca Tavazza¹; ¹National Institute of Standard and Technology

5:00 PM

First-principles Calculations on the Multiferroic Properties of Twodimensional Oxides: *G.P. Zheng*¹; ¹Hong Kong Polytechnic University

Computational Materials Science and Engineering

for Nuclear Energy – Nuclear Fuels and Cladding II Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Haixuan Xu, University of Tennessee; Michael Tonks, Pennsylvania State University; Blas Uberuaga, Los Alamos National Laboratory; James Morris, Oak Ridge National Laboratory

Monday PMRoom: 102BMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: David Anderson, Los Alamos National Laboratory; Daniel Schwen, Idaho National Laboratory

2:30 PM Invited

Fundamental Understanding of Corrosion of Nuclear Materials: Holistic Approach to Fuel Cladding Corrosion under Irradiation: Adrien Couet¹; ¹University of Wisconsin - Madison

3:00 PM

A Model Coupling Hydrides Formation and Mechanical Behavior of Zircaloy Cladding during Fuel Rod Lifecycle: *Hao Wang*¹; Vikas Tomar¹; ¹Purdue University

3:20 PM

Competition of Deformation Modes in Irradiated Zr Alloys: A Micromechanical Approach: *Pierre-Alexandre Juan*¹; Remi Dingreville¹; 'Sandia National Laboratories

3:40 PM

Hydrogen Transport and Trapping in Irradiation Damaged Zirconium Alloys: Jared Tannenbaum¹; Jesse Carter¹; Richard Smith¹; Bruce Kammenzind¹; ¹Bettis Laboratory, NNL

4:00 PM Break

4:20 PM

Formation and Re-orientation of Multi-phase Zirconium Hydrides under Applied Strain: Jacob Bair¹; *Mohsen Asle Zaeem*¹; ¹Missouri University of Science and Technology

4:40 PM

Residual Point Defects and their Evolution near Dislocation Loops and Grain Boundaries in α-zirconium: An Atomistic Study: *Cong Dai*¹; Peyman Saidi¹; Zhongwen Yao¹; Mark Daymond¹; ¹Queen's University

5:00 PM

A Quantitative Phase-Field Model for Gas Bubble Evolution in Nuclear Fuels: San-Qiang Shi¹; Z. Xiao¹; ¹The Hong Kong Polytechnic University

Computational Thermodynamics and Kinetics – Transport

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Elif Ertekin, University of Illinois; Shawn Coleman, U.S. Army Research Laboratory; Brent Fultz, California Institute of Technology; Richard Hennig, University of Florida; Suveen Mathaudhu, University of California, Riverside

Monday PM	Room: 128A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Elif Ertekin, University of Illinois; Mahmoud Hussein, University of Colorado Boulder

2:30 PM Invited

Supersonic Phasons Observed in Fresnoite: Michael Manley¹; 'Oak Ridge National Laboratory

3:00 PM

A First-principles Investigation of Various Vibrational Entropy Contribution Methods on Self-diffusion Coefficient Calculations in FCC and BCC Metals: *Chelsey Hargather*¹; John O'Connell¹; Harrison Lee¹; ¹New Mexico Institute of Mining and Technology

3:20 PM

Development of a Mg Mobility Database Using Diffusion Multiples and Liquid-solid Diffusion Couples: *Wei Zhong*¹; Ji-Cheng Zhao¹; ¹The Ohio State University

3:40 PM Invited

Nanophononic Metamaterial: Severe Thermal Conductivity Reduction by Non-scattering Resonance Hybridizations: *Mahmoud Hussein*¹; ¹University of Colorado Boulder

4:10 PM Break

4:30 PM

Ab Initio Molecular Dynamics Simulation of Transport in Al-Si Binary Liquids: Venkateswara Rao Manga¹; David Poirier¹; ¹University of Arizona

4:50 PM

Anharmonic Phonons in Low-symmetry FeGe, at the Paramagnetic Phase: *Yang Shen*¹; Hillary Smith¹; Dennis Kim¹; Fred Yang¹; Doug Abernathy²; Matt Stone²; Brent Fultz¹; ¹California Institute of Technology; ²Oak Ridge National Laboratory

5:10 PM

Effects of Simultaneous Pressure and Temperature on the Stability of Silicon₂₄: *Brent Fultz*¹; Timothy Strobel²; ¹California Institute of Technology; ²Carnegie Institution of Washington

MONDAY PM

Coupling Experiments and Modeling to Understand Plasticity and Failure – Fatigue

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Sangid, Purdue University; Philip Eisenlohr, Michigan State University; Matthew Miller, Cornell University; Paul Shade, Air Force Research Laboratory

Monday PM	Room: 126B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Michael Sangid, Purdue University; Paul Shade, Air Force Research Laboratory; Matt Miller, Cornell University; Philip Eisenlohr, Michigan State University

2:30 PM Invited

Integrated Micromechanical Approaches to Understand Dwell Fatigue: In-situ Experiments from the Micro-scale Upwards: Terry Jun¹; Zhen Zhang¹; Fionn Dunne¹; *T Ben Britton*¹; ¹Department of Materials, Imperial College

2:55 PM Invited

Integrated Micromechanical Approaches to Understand Dwell Fatigue: Crystal and Discrete Dislocation Plasticity Modelling: *Fionn Dunne*¹; Ben Britton¹; Zebang Zheng¹; Daniel Balint¹; Zhen Zhang¹; ¹Imperial College

3:20 PM Invited

Understanding the Fatigue Response of Each Crystal within a Copper Aggregate: Mark Obstalecki¹; Robert Carson¹; Paul Dawson¹; *Matthew Miller*¹; ¹Cornell University

3:45 PM

Characterizing the Effects a Smooth Crystal Lattice Orientation Field Formulation Has on the Evolution of Intragrain Deformation: *Robert Carson*¹; Paul Dawson¹; ¹Cornell University

4:05 PM Break

4:25 PM Invited

Opportunities for Validation of Grain-Level Plasticity and Fatigue Crack Growth Using High Energy X-ray Diffraction Microscopy; Part 1: Experimental Methods: *Paul Shade*¹; William Musinski¹; Todd Turner¹; David Menasche²; Joel Bernier³; Sirina Safriet⁴; Darren Pagan⁵; Peter Kenesei⁶; Jun-Sang Park⁶; Jon Almer⁶; ¹Air Force Research Laboratory; ²Hamiltonian Group; ³Lawrence Livermore National Laboratory; ⁴University of Dayton Research Institute; ⁵Cornell High Energy Synchrotron Source; ⁶Argonne National Laboratory

4:50 PM Invited

Opportunities for Validation of Grain-Level Plasticity and Fatigue Crack Growth Using High Energy X-ray Diffraction Microscopy; Part 2: Modeling Development and Considerations: *William Musinski*¹; Paul Shade¹; Todd Turner¹; David Menasche²; Joel Bernier³; Sirina Safriet⁴; Darren Pagan⁵; Peter Kenesei⁶; Jun-Sang Park⁶; Jon Almer⁶; ¹US Air Force Research Lab; ²Hamiltonian Group; ³Lawrence Livermore National Laboratory; ⁴University of Dayton Research Institute; ⁵Cornell High Energy Synchrotron Source; ⁶Argonne National Laboratory

5:15 PM Evening Poster Session Overview

Deformation and Damage Mechanisms in High Temperature Ni, Co and Fe-based Superalloys – 2A: Precipitation Dissolution, Liquation in & Welding of Ni-based Superalloy and 2B: Effects of Ordering and Precipitate Behavior in Ni-based Superalloys

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials; Chantal Sudbrack, QuesTek Innovations, LLC; Michael Titus, Purdue University; Kinga Unocic, Oak Ridge National Laboratory; Yukinori Yamamoto, Oak Ridge National Laboratory

Monday PM March 12, 2018 Room: 126A Location: Phoenix Convention Center

Session Chairs: Chantal Sudbrack, QuesTek Innovations, LLC; Mark Hardy, Rolls-Royce plc

2:30 PM Invited

An Overview of the Modeling of Precipitation and Dissolution in Gammagamma Prime Nickel-base Superalloys: *Lee Semiatin*¹; David Mahaffey¹; Eric Payton¹; Jay Tiley¹; Oleg Senkov²; Nathan Levkulich³; ¹US Air Force Research Laboratory; ²UES, Inc; ³Wright-State University

3:00 PM

Liquation Mechanisms of a Powder Processed Nickel Superalloy: Sean John¹; Helen Davies¹; Simon Bray²; ¹Swansea University; ²Rolls Royce Plc

3:20 PM

Peculiar Semi-solid Deformation Behaviour in Co and Ni Alloys: An In Situ X-ray Tomographic Investigation: *Mohammed Azeem*¹; Robert Atwood²; Peter Lee¹; ¹Manchester University; ²Diamond Light Source

3:40 PM

Role of Anisotropic Deformation on the Weld Cracking of a Directionally Solidified Ni-base Superalloy: *Avinash Prabhu*¹; Sudarsanam Suresh Babu¹; ¹The University of Tennessee

4:00 PM Break

4:20 PM Invited

Portevin-Le Chatelier Effect in Ni-based Superalloys: Experiments and Mechanisms: *Chuanyong Cui*¹; ¹Institute of Metal Research

4:50 PM

The Effect of γ Particles in γ' Precipitates on the Mechanical Properties in Ni-Al-Ti Superalloys: *Markus Kolb*¹; Steffen Neumeier¹; Mathias Göken¹; ¹Universität Erlangen-Nürnberg

5:10 PM

Influence of the Starting Microstructure on the Hot Deformation Behavior of a Low Stacking Fault Energy Ni-based Superalloy: *Joshua McCarley*¹; Sammy Tin¹; ¹Illinois Institute of Technology

5:30 PM

Mechanical Properties and Microstructural Characterization of Inconel Alloy 725 Variants: *Martin Detrois*¹; Kyle Rozman¹; Paul Jablonski¹; Jeffrey Hawk¹; ¹National Energy Technology Laboratory

Design for Mechanical Behavior of Architectured Materials via Topology Optimization – Architected and Topology Optimization (TO) Design for Dynamic, Nonlinear, and Energy Applications

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Natasha Vermaak, Lehigh University; Andrew Gaynor, U.S. Army Research Laboratory

Monday PMRoom: 132CMarch 12, 2018Location: Phoenix Convention Center

Session Chair: Ted Blacker, Sandia National Labs

2:30 PM

Design of Honeycomb TWIP Steels for Maximum Energy Absorption: *Mackenzie Jones*¹; David Garcia¹; Yunhui Zhu¹; Hang Yu¹; ¹Virginia Tech

3:00 PM

Discrete-element Modeling of Nacre-like Materials: Random Microstructures, Nonlinear Deformations and Fracture: Najmul Abid¹; Mohammad Mirkhalaf¹; Francois Barthelat¹; ¹McGill University

3:30 PM

Tailoring the Dynamic Properties of 3D Woven Metallic Lattices through Topology Optimization: *Hak Yong Lee*¹; David Mills¹; Ju Xue¹; Timothy Weihs¹; Kevin Hemker¹; James Guest¹; ¹Johns Hopkins University

4:00 PM Invited

Extreme Design: An Adrenalin Rush with Topology Optimization, Metamaterials and Additive Manufacturing: *Ted Blacker*¹; ¹Sandia National Laboratories

Dynamic Behavior of Materials VIII – Energetic Materials

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Saryu Fensin, Los Alamos National Laboratory; George Gray, Los Alamos National Laboratory; Naresh Thadhani, Georgia Institute of Technology; Kenneth Vecchio, University of California, San Diego; Marc Meyers, University of California, San Diego

Monday PMRoom: 127BMarch 12, 2018Location: Phoenix Convention Center

Session Chair: To Be Announced

2:30 PM Invited

Initiation of Explosives by Hypervelocity Metal Fragments: *John Yeager*¹; Patrick Bowden¹; Daniel Guildenbecher²; Joseph Olles²; ¹Los Alamos National Laboratory; ²Sandia National Laboratories

3:10 PM

Modeling B-HMX-based Polymer-bonded Explosive: Shock, Plasticity and Damage Mechanics: *Nicolò Grilli*¹; Camilo Duarte Cordon¹; Marisol Koslowski¹; ¹Purdue University

3:30 PM

Atomistic Insights into Decomposition and Reactions of Energetic Materials under Shock and Thermal Loading: *Md Mahbubul Islam*¹; Alejandro Strachan¹; ¹Purdue University

3:50 PM

TECHNICAL PROGRAM

Hotspots in High-energy Density Materials: The Role of Non-equilibrium Loading in Reactivity: *Michael Sakano*¹; Mahbub Islam¹; Brenden Hamilton¹; Alejandro Strachan¹; ¹Purdue University

4:10 PM Break

4:30 PM Invited

Anisotropic Shock Response of Poly (P-Phenylene Terephthalamide) (PPTA) and its Implications for Aramid-based Fibers Performance: *Paulo Branicio*¹; Subodh Tiwari¹; Kohei Shimamura¹; Fuyuki Shimojo²; Aiichiro Nakano¹; Rajiv Kalia¹; Priya Vashishta¹; ¹University of Southern California; ²Kumamoto University

5:10 PM

Dynamic Deformation and Stress Wave Propagation in Ballistic Gel: *Ghatu Subhash*¹; ¹University of Florida

5:30 PM Demonstration: One minute oral presentation for posters

Electrode Technology Symposium for Aluminum Production – Anode Raw Materials

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xianan Liao, Elkem Carbon

Monday PMRoom: 222CMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Guanghui Lang, Sunstone Development; Jilai Xue, University of Science and Technology Beijing

2:30 PM Introductory Comments

2:35 PM

An XANES Study of Sulfur Speciation and Reactivity of Cokes Used for Aluminium Production: *Gøril Jahrsengene*¹; Richard Haverkamp²; Hannah Wells²; Stein Rørvik³; Arne Petter Ratvik³; Ann Mari Svensson¹; ¹Norwegian University of Science and Technology; ²Massey University; ³SINTEF Materials and Chemistry

3:00 PM

Influence of Crushing Technology and Particle Shape on the Bulk Density of Anode Grade Petroleum Coke: *Frank Cannova*¹; Mike Davidson¹; Laura Forte¹; Barry Sadler²; ¹BP; ²Net Carbon Consulting

3:25 PM

Study on the Calcination Performance and Desulfurization Mechanism of Petroleum Cokes with Different Sulfur Contents between 700-1100°C: Shoulei Gao¹; Jilai Xue¹; Guanghui Lang¹; Rui Liu¹; Chongai Bao¹; Zhiguo Wang¹; Fali Zhang¹; ¹Sunstone Development Co., Ltd

3:50 PM

Rotary Hearth Calcining of Petroleum Cokes: *William Barraclough*¹; ¹Tenova Inc.

4:15 PM Break

4:30 PM

Effects of High-Sulfur Cokes on Physicochemical Properties of Prebaked Anodes in Aluminium Electrolysis: *Jiang Haitao*¹; Tang Changting¹; Ma Zhengqing¹; Zhou Ping¹; Li Yuan¹; GAO Panpan¹; ¹Shandong Nanshan Aluminium Co. Ltd

4:55 PM

The Research and Industrial Application of An Improved Impact Cleaning Technology of the Double Anode Butts in Aluminium Electrolysis: Youlai Wang¹; Qiusi Yang¹; Yong Li¹; Xiancong Xiao²; Lei He¹; *Hengjun Zhao*¹; ¹Sichuan Aostar Aluminium Co., Ltd.; ²Guiyang New High Alumina Carbon Technology Co., Ltd.

5:20 PM

Analysis on the Material Balance Based on the Calcination Characteristics of a Chamber Calciner: Sun Jiyun¹; *Wei Dong*²; ¹Guiyang Aluminium Magnesium Design & Research Institute Co. Ltd, Guiyang; ²Elkem Carbon (China)

Energy Technologies and CO2 Management Symposium – Carbon-based Energy Materials and Sustainable Metallurgical Processes

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Ziqi Sun, Queensland University of Technology; Cong Wang, Northeastern University; Donna Guillen, Idaho National Laboratory; Tao Wang, Nucor Steel; Neale Neelameggham, Ind LLC; John Howarter, Purdue University

Monday PM	Room: 224B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Nawshad Haque, CSIRO, Australia; Jie Tang, National Institute for Materials Science

2:30 PM Keynote

Graphene Electrode of Porous Structure for Supercapacitors with Ionic Liquid Electrolyte: *Jie Tang*¹; Lu-Chang Qin²; ¹Natioanl Institute for Materials Science; ²University of North Carolina at Chapel Hill

3:10 PM Invited

Carbon Nanotube-containing Electrocatalysts for Oxygen Reduction Reaction: Jincheng Li¹; Pengxiang Hou¹; *Chang Liu¹*; Hui-Ming Cheng¹; ¹Institute of Metal Research, Chinese Academy of Sciences

3:30 PM Invited

Electrochemical Exfoliation of Graphite and Production of Functional Graphene: *Yu Lin Zhong*¹; ¹Griffith University

3:50 PM Invited

Atom-functionalized Carbon-based Nanomaterials in Energy Applications: DFT Study: *Ting Liao*¹; ¹Queensland University of Technology

4:10 PM Break

4:25 PM Invited

Evaluation of Variation in the Life Cycle Based Environmental Impacts for Copper Concentrate Production: Will Sikora¹; Trevor Saldanha¹; *Nawshad Haque*¹; ¹CSIRO

4:45 PM

Direct Reduction of Copper Slag Composite Pellets within Lignite Using Biomass as Binder: Zongliang Zuo¹; Qingbo Yu¹; Huaqing Xie¹; Qin Qin¹; Mengqi Wei¹; ¹Northeastern University

5:05 PM

Thermodynamic Analysis of Incineration Treatment of Waste Disposable Syringes in an EAF Steel-making Process: *Maryam Ghodrat*¹; Bijan Samali¹; ¹Western Sydney University

5:25 PM

The Reduction Kinetic of the Combined Cu-based Oxygen Carrier Used for Chemical Looping Gasification Technology: *Kun Wang*¹; Weipeng Luan¹; Qingbo Yu¹; Qin Qin¹; ¹Northeastern University

5:45 PM

Synergistic Effect Between Fat Coal and Poplar During Co-pyrolysis with Thermal Behavior and ATR-FTIR Analysis: *Qingyun Zhang*¹; Shengfu Zhang¹; Rongjin Zhu¹; Shuxing Qiu¹; Yue Wu¹; ¹Chongqing University

Environmentally Assisted Cracking: Theory and Practice – Stress Corrosion Cracking I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Bai Cui, University of Nebraska–Lincoln; Raul Rebak, GE Global Research; Sebastien Dryepondt, Oak Ridge National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday PM March 12, 2018 Room: 127A Location: Phoenix Convention Center

Session Chairs: Gary Was, University of Michigan; Peter Andresen, GE Global Research

2:30 PM Introductory Comments

2:40 PM Invited

Environmental Cracking: Theory Depends on Practice: *Peter L. Andresen*¹; ¹GE Global Research (Retired)

3:20 PM

Characterization of Stress Corrosion Cracking of 304 Stainless Steel Using High-energy Synchrotron X-ray Microtomography: Li Xi¹; *Djamel Kaoumi*¹; D. G. Enos²; Peter Kenesei³; ¹North Carolina State University; ²Sandia National Laboratory; ³Argonne National Laboratory

3:40 PM

Fundamental Mechanisms of Preventing Stress Corrosion Cracking of Austenitic Alloys by Laser Shock Peening: *Bai Cui*¹; Xueliang Yan¹; Fei Wang¹; Chenfei Zhang¹; Yongfeng Lu¹; Michael Nastasi¹; ¹University of Nebraska–Lincoln

4:00 PM Break

4:20 PM Invited

Mechanisms of High Temperature Stress Corrosion Crack Initiation in Austenitic Alloys: *Gary Was*¹; Wenjun Kuang¹; Mi Wang¹; Miao Song¹; Mo-RIgen He²; Ian Robertson²; Zhijie Jiao¹; ¹University of Michigan; ²University of Wisconsin

5:00 PM

IASCC Behavior of Additively Manufactured 316L Stainless Steel in Light Water Reactor Environments: *Mi Wang*¹; Miao Song¹; Xiaoyuan Lou²; Raul Rebak³; Gary Was¹; ¹University of Michigan; ²Corromet LLC; ³GE Global Research

5:20 PM

The Effects of Grain Boundary Structure on the Intergranular Stress Corrosion Cracking Initiation Susceptibility of Alloy 690 in High Temperature Water: *Wenjun Kuang*¹; Gary Was¹; ¹University of Michigan

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention – Multiscale Modeling Approaches to Improve Fatigue Predictions

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Ashley Spear, University of Utah; Jean-Briac le Graverend, Texas A&M University; Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky

Room: 125B Location: Phoenix Convention Center

Session Chair: Ashley Spear, University of Utah

2:30 PM Invited

Monday PM

March 12, 2018

Simulation and Experimental Validation of Damage Accumulation and Phase Transformation during Cyclic Mechanical Loading of a Metastable Austenitic Stainless Steel Considering Prehistory Effects: Martina Zimmermann¹; Philipp Hilgendorff²; Andrei Grigorescu³; Claus Fritzen⁴; Hans-Jürgen Christ⁴; ¹TU Dresden; ²Otto Fuchs KG; ³Thyssenkrupp Presta; ⁴Universitaet Siegen

2:50 PM Invited

Prediction of Microstructurally-influenced Fatigue Crack Propagation: *Patrick Golden*¹; Robert Brockman²; Rebecca Hoffman²; William Musinski¹; Sushant Jha²; Reji John¹; ¹Air Force Research Laboratory; ²University of Dayton Research Institute

3:10 PM

A Qualitative FE Analysis of the Effect of the Local Texture on the Heterogeneous Plastic Strain Field in Nickel-based Superalloys during Low Cycle Fatigue: Jean-Briac le Graverend¹; ¹Texas A&M University

3:30 PM

A Voxel-based Meshing Framework for the Simulation of Arbitrary 3D Crack Growth in Heterogeneous Materials: *Brian Phung*¹; Ashley Spear¹; ¹University of Utah

3:50 PM Break

4:10 PM

A Physically-based Methodology for the Deterministic Prediction of Microstucturally-sensitive Fatigue Crack Growth: David Wilson¹; Fionn Dunne¹; ¹Imperial College London

4:30 PM Invited

Time-based Subcycle Formulation for Fatigue Crack Growth under Arbitrary Random Variable Loadings: *Yongming Liu*¹; Karthik Rajan Venkatesan¹; Wei Zhang²; ¹Arizona State University; ²Beihang University

4:50 PM

Cyclic Stress-strain Response and Microstructural Evolution Modeling of Nickel-based Superalloys during Low Cycle Fatigue: *Fernando Leon-Cazares*¹; Enrique Galindo-Nava¹; Olivier Messé¹; Thomas Jackson²; Catherine Rae¹; ¹University of Cambridge; ²Rolls-Royce

5:10 PM

TECHNICAL PROGRAM

Prediction of Intergranular Micro-crack Initiation Induced by the Impingement of Persistent Slip Bands on Grain Boundaries: Jerome Hazan¹; Maxime Sauzay¹; ¹CEA

Fracture: 65 Years after the Weibull Distribution and the Williams Singularity – Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Brad Boyce, Sandia National Laboratories; Ellen Cerreta, Los Alamos National Laboratory; Jacob Hochhalter, NASA LaRC; Jonathan Zimmerman, Sandia National Laboratories

Monday PM	Room: 128B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Brad Boyce, Sandia National Laboratories; K. Ravi-Chandar, University of Texas at Austin

2:30 PM Invited

Toughness, Roughness and Crack Path Engineering for Improved Ductile Fracture Resistance: *Alan Needleman*¹; ¹Texas A&M University

3:00 PM Invited

An Integrity Basis of Fracture Challenges: *Amine Benzerga*¹; ¹Texas A&M University

3:30 PM Invited

The Complexity of Ductile Fracture: *Krishnaswamy Ravi-Chandar*¹; ¹The University of Texas at Austin

4:00 PM Break

4:20 PM Invited

Computational Procedure for Designing New Gen 3 Steels with High Formability and Ductile Fracture Resistance: *Louis Hector Jr*¹; Ankit Srivastava²; Daniel Gerbig³; Allan Bower³; ¹General Motors; ²Texas A&M University; ³Brown University

4:50 PM Invited

Re-tooling the Engineering Predictive Practices for Durability and Damage Tolerance: *Robert Piascik*¹; Norman Knight²; ¹NASA Lanley Research Center; ²Retired

5:20 PM Invited

NASA's Plan for Development and Transition of Computational Materialsbased Capabilities for Next-generation Durability / Damage Tolerance and Additive Manufacturing: *Ed Glaessgen*¹; ¹NASA

Frontiers in Advanced Functional Thin Films and Nanostructured Materials – Session II

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Army Research Office; Srinivasa Rao Singamaneni, The University of Texas at El Paso; Haiyan Wang, Purdue University; Nuggehalli Ravindra, New Jersey Institute of Technology; Raj Singh, Oklahoma State University; Amit Pandey, LG Fuel Cell Systems Inc.

Monday PMRoom: 103AMarch 12, 2018Location: Phoenix Convention Center

Funding support provided by: Quantum Design and Radiant Technologies

Session Chairs: Srinivasa Rao Singamaneni, University of Texas-El Paso; John Prater, Army Research Office

2:30 PM Invited

Graphene Film Nano Geometry Control for Advanced Functional Properties: Sungho Jin¹; ¹University of California, San Diego

3:00 PM Invited

Materials Science in Two Dimensions: *Daniel Kaplan*¹; ¹U.S. Army RDECOM-ARDEC

3:30 PM

Defects in Nanoscale Transitional Metal Di-chalcogenide Semiconducting Layers: *L. M. Martinez*¹; J. van Tol²; Srinivasa Rao Singamaneni¹; ¹The University of Texas at El Paso; ²National High Magnetic Field Laboratory

3:50 PM Break

4:10 PM

FunctionalizedGraphene-polyoxometalateNanodotsAssemblyas "Organic-inorganic"HybridSupercapacitorsandAdvancedElectrochemicalMicroscopy:SanjuGupta¹;BryceAberg¹;SaraCarrizosa¹;¹WesternKentuckyUniversity

4:30 PM Invited

Processing and Properties of Nanomaterials in the C-B-N System: *Raj Singh*¹; ¹Oklahoma State University

5:00 PM

Novel Synthesis and Characterization of Carbon-doped Cubic Boron Nitride (c-BN) by Pulsed Laser Annealing Technique: Ariful Haque¹; Jagdish Narayan¹; ¹NCSU

High Entropy Alloys VI – Alloy Development and Applications II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Monday PM	Room: 121B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: James Saal, QuesTek Innovations; An-Chou Yeh, National Tsing Hua University

2:30 PM Invited

Development of High Temperature Alloys Based on the HEA Design Concept: An-Chou Yeh¹; ¹National Tsing Hua University

2:50 PM Invited

Brazing of Ni-base Superalloy 600 Using a Newly Developed Mn35Fe5 (CoNiCu)20 Filler Foil: *Zhenzhen Yu*¹; Minrui Gao¹; Stephen Liu¹; Michael Kaufman¹; ¹Colorado School of Mines

3:10 PM Invited

High-throughput Predictive Design of Refractory High-entropy Alloys: Application to Ti-Zr-Ta-Mo-W with Validation: *Duane Johnson*¹; Prashant Singh¹; Andrei Smirnov¹; Pratik Ray¹; Matt Kramer¹; ¹Ames Laboratory/Iowa State University

3:30 PM Invited

Calphad and New-phacomp Assisted Design of Single Phase CrMnFeCoNitype High Entropy Alloys: *Katerina Christofidou*¹; Thomas McAuliffe¹; Paul Mignanelli¹; Pietro Orsatti¹; Ed Pickering²; Howard Stone¹; Nicholas Jones¹; ¹University of Cambridge; ²University of Manchester

3:50 PM Break

4:10 PM Invited

ICME Design of High Entropy Alloys: James Saal¹; Ricardo Komai¹; Pin Lu¹; Ida Berglund¹; Jeff Doak¹; Jason Sebastian¹; Greg Olson¹; ¹QuesTek Innovations

4:30 PM Invited

Intermetallic Compound Enhances Twinning and Strength in a Duplex High Entropy Alloy: *Deep Choudhuri*¹; Bharat Gwalani¹; Mageshwari Komarasamy¹; Sinivas Mantri¹; Rajiv Mishra¹; Rajarshi Banerjee¹; ¹University of North Texas

4:50 PM

Strengthening of an High Entropy Alloys Using Nanotwinned Grains: *Bin Gan*¹; William Yi Wang¹; Yiguang Wang¹; Jeffrey M. Wheeler²; ¹Northwestern Polytechnical University; ²ETH Zurich

5:10 PM Invited

Insight into High-temperature Oxidation of Refractory High-entropy Alloys and Mechanical Properties: Saad Sheikh¹; Sheng Guo¹; ¹Chalmers University of Technology

5:30 PM

Solidification and Miscibility of 3d Transition Metal High Entropy Alloys Containing Copper: *Nicholas Derimow*¹; Abraham Munitz²; Reza Abbaschian¹; ¹University of California, Riverside; ²Nuclear Research Center-Negev

High Entropy Alloys VI – Thermal and Other Properties II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Monday PM	Room: 122A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Jim Hu, HRA; Alice Hu, City University of Hong Kong

2:30 PM Invited

Configuration Entropy of High Entropy Alloys: *Alice Hu*¹; JW Yeh²; PK Liaw³; CH Hu⁴; Ky Fung¹; PJ Yu¹; ¹City University of Hong Kong; ²National Tsing Hua University; ³The University of Tennessee; ⁴National Taiwan University

2:50 PM

Evaluation of Microstructure and Mechanical Property Variations in AlxCrCoFeNi High Entropy Alloys by a High-throughput Laser Deposition Method: *Mu Li*¹; Rohan Mishra¹; Katharine Flores¹; ¹Washington University in St. Louis

3:10 PM Invited

Validation of High Entropy Alloy Diffusion Databases: John Morral¹; ¹The Ohio State University

3:30 PM Invited

Phase Stabilization of High Entropy Alloy under Dynamic Forcing Condition: Hyun Seok Oh¹; Zhiming Li²; Jin Yeon Kim¹; Chae Woo Ryu¹; Andreas Meyer³; Koichi Tsuchiya⁴; Dierk Raabe²; *Eun Soo Park*¹; ¹Seoul National University; ²Max-Planck Institut für Eisenforschung GmbH; ³Deutsches Zentrum fuer Luft- und Raumfahrt (DLR); ⁴National Institute for Materials Science

3:50 PM Invited

Phase Formation and Stability in High Entropy Alloys: Nicholas Derimow¹; Trevor Clark¹; Reza Abbaschian¹; *Suveen Mathaudhu*¹; ¹University of California, Riverside

4:10 PM Break

4:30 PM

Rare-earth High-entropy Alloys with Giant Magnetocaloric Effect: *Yuan Wu*¹; Y. Yuan¹; X. Tong²; Z. P. Lu¹; ¹State Key Lab for Advanced Metals and Materials, USTB; ²Oak Ridge National Laboratory

4:50 PM

Phase Stability in the Al-Co-Cr-Fe-Nb-Ni High-entropy Alloy System: *Martin Detrois*¹; Stoichko Antonov²; Sammy Tin²; ¹National Energy Technology Laboratory; ²Illinois Institute of Technology

5:10 PM Invited

Investigation of High Entropy Alloys (HEAs) and the Application in Dissimilar Metals Welding: *Jim Hu*¹; Eric Walker¹; Peiyong Chen²; Chanho Lee²; Douglas Fielden²; Peter Liaw²; ¹Honda R&D Americas; ²The University of Tennessee, Knoxville

5:30 PM

Unusual Interstitial Strengthening of High-entropy Alloys Evading the Strength-ductility Trade-off: *Zhifeng Lei*¹; Xiongjun Liu¹; Shudao Wang¹; Hui Wang¹; Yuan Wu¹; Paraskevas Kontis²; Baptiste Gault²; Dierk Raabe²; Houwen Chen³; Tai-Gang Nieh⁴; Zhaoping Lu¹; ¹University of Science and Technology Beijing; ²Max-Planck-Institut für Eisenforschung GmbH; ³Chongqing University; ⁴University of Tennessee

5:50 PM

MONDAY PM

Diffusion Characteristics of AlxCoCrFeNi High Entropy Alloys: K. Mathes¹; Emily Holcombe²; *Thanh Tran*²; Peter Liaw¹; ¹University of Tennessee; ²NSWC Carderock

Hume-Rothery Award Symposium: Computational Thermodynamics and Its Implications to Kinetics, Properties, and Materials Design – Density Functional Theory Methods

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Suveen Mathaudhu, University of California, Riverside; Michael Gao, National Energy Technology Lab; Chelsey Hargather, New Mexico Institute of Mining and Technology; Richard Hennig, University of Florida; James Saal, QuesTek Innovations; Dongwon Shin, Oak Ridge National Laboratory

Monday PM Room: 127C March 12, 2018 Location: Phoenix Convention Center

Session Chairs: Richard Hennig, University of Florida; Chelsey Hargather, New Mexico Institute of Mining and Technology

2:30 PM Invited

Density Functional Theory Applied to Alloy Phase Stability and Transformations – Is it Worth it?: *Patrice Turchi*¹; ¹Lawrence Livermore National Laboratory

3:00 PM Invited

Automated Solute Diffusivity from First Principles: Dallas Trinkle¹; ¹University of Illinois, Urbana-Champaign

3:30 PM Invited

Vibrational Entropy Effects on the Phase Diagrams of Nanostructured Thermoelectrics: *Chris Wolverton*¹; ¹Northwestern University

4:00 PM Break

4:20 PM Invited

A Study of (Ti-6Al-4V)-hydrogen Phase Diagram and its Application in Engineering Microstructures of Ti Alloys: Z. Zak Fang¹; Pei Sun¹; ¹University of Utah, Dept of Metallurgical Engineering

4:50 PM Invited

Exploration of Large Ab Initio Data Spaces to Design Structural Materials with Superior Mechanical Properties: *Joerg Neugebauer*¹; Jan Janssen¹; Blazej Grabowski¹; Tilmann Hickel¹; ¹Max-Planck-Institut fuer Eisenforschung

5:20 PM Invited

Thermodynamics of Some Liquid Alkali Metals: *Marcel Sluiter*¹; Masanori Enoki²; Hiroshi Ohtani²; ¹TU Delft; ²Tohoku University

Integrative Materials Design III: Performance and Sustainability – Microstructure Evolution and Fatigue Performance in Additive Manufacturing & Other Advanced Manufacturing Technologies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee *Program Organizers:* Diana A. Lados, Worcester Polytechnic Institute; Brad Boyce, Sandia National Laboratories; Corbett Battaile, Sandia National Laboratories; Anastasios Gavras, Riley Power

Monday PM	Room: 132A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Fei Cao, Worcester Polytechnic Institute; Yuwei Zhai, Worcester Polytechnic Institute

2:30 PM Invited

Additive Materials Behavior: Importance of Collecting Data Along the Way: Amber Andreaco¹; ¹GE Additive

2:50 PM Invited

Characterization of Very High Cycle Fatigue in Ti-6Al-4V and Al-10Si-0.4Mg Alloys Fabricated by Laser Powder Bed Fusion: Jason Carroll¹; ¹Eaton

3:10 PM

A Comparison of Fatigue Performance and Behavior of Ti-6Al-4V Made by Different Additive Manufacturing Technologies: *Fei Cao*¹; Diana Lados; ¹Worcester Polytechnic Institute

3:30 PM

Microstructure, Tensile Properties, and Fatigue Crack Growth Mechanisms at the Microstructure Scale in Inconel 718 Manufactured by Laser Engineered Net Shaping: *Yuwei Zhai*¹; Diana Lados¹; ¹Worcester Polytechnic Institute, Integrative Materials Design Center

3:50 PM

Microstructure Evolution, Fatigue Crack Growth Mechanisms, and Effects of Heat Treatment in Ti-6Al-4V and Al-10Si-0.4Mg Alloys Fabricated by Laser and Electron Beam Powder Bed Fusion: *Robert Warren*¹; Haize Galarraga¹; Diana Lados¹; Ryan Dehoff²; Michael Kirka²; Ed Hummelt³; ¹Worcester Polytechnic Institute; ²Oakridge National Laboratory; ³Eaton Corporation

4:10 PM Break

4:25 PM Invited

Optimizing HIP and Printing Parameters for EBM Ti-6Al-4V: Magnus Ahlfors¹; ¹Quintus Technologies

4:45 PM Invited

Through-process Modeling for Alloy Design and Process Optimization for Cold Spray: *Danielle Cote*¹; Victor Champagne²; ¹Worcester Polytechnic Institute; ²US Army Research Laboratory

5:05 PM

Design of Cold-spray 6061 Aluminum Alloys for Fatigue Crack Growth Resistance in Structural Components, Coatings, and Repairs: *Christopher Sample*¹; Robert Warren¹; Anastasios Gavras²; Diana Lados¹; Victor Champagne³; ¹Worcester Polytechnic Institute; ²Riley Power; ³US Army Research Laboratory

5:25 PM

Friction Stir Welding of Wrought and Cast Aluminum Alloys: Property Evaluations and Thermo-mechanical Modeling: *Yi Pan*¹; Diana Lados¹; ¹Worcester Polytechnic Institution

5:45 PM

Friction Stir Welding of Dissimilar Metals: *Xiangbin Wang*¹; Yi Pan¹; Diana Lados¹; ¹Worcester Polytechnic Institute, Integrative Materials Design Center

Magnesium Technology 2018 – Corrosion and Surface Protection

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Monday PM	Room: 224A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Mikhail Zheludkevich, Helmholtz-Zentrum Geesthacht (HZG); Nick Birbilis, Monash University

2:30 PM Introductory Comments

2:35 PM

Adding Dimensions to the Immersion Testing of Magnesium Corrosion: Lars Wadsö¹; *Dmytro Orlov*¹; ¹Lund University

2:55 PM

Corrosion Characteristics of Two RE Containing Magnesium Alloys: *Marwa AbdelJawad*¹; Bilal Mansoor¹; Ali Usman Chaudhry¹; ¹Texas A&M University at Qatar

3:15 PM

Effect of Fluoride Ion on the Microstructure and Properties of Permanganate Conversion Coating on AZ91D Magnesium Alloy: *Shih-An Yang*¹; Chao-Sung Lin¹; ¹Department of Materials Science and Engineering, National Taiwan University

3:35 PM

Ni-P-MWNTs Composite Coatings on Magnesium Alloys AZ31 Part 1: MWNTs Content in Coating: *Dong Guo*¹; ¹Hebei University of Science and Technology

3:55 PM

Ni-P-MWNTs Composite Coatings on Magnesium Alloys AZ31 Part 2: Tribological Behavior and MWNTs Content in Coating: *Dong Guo*¹; ¹Hebei University of Science and Technology

4:15 PM Break

Magnesium Technology 2018 – Poster Pitches

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Monday PMRoom: 224AMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Vineet Joshi, Pacific Northwest National Laboratory - PNNL; Neale Neelameggham, IND LLC

4:30 PM Poster Pitches

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Nuclear Materials

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Monday PM March 12, 2018 Room: 104B Location: Phoenix Convention Center

Session Chairs: Assel Aitkaliyeva, University of Florida; Maria Okuniewski, Purdue University

2:30 PM

Characterization of Intragranular Creep Deformation in Uranium Dioxide Using Electron Backscatter Diffraction and Electron Channeling Contrast Imaging: *Benjamin Shaffer*¹; Pedro Peralta¹; ¹Arizona State University

2:50 PM

Corrosion Assessment of an Alloy/Oxide Composite Using Electrochemical Techniques: *Vineeth Kumar Gattu*¹; William Ebert¹; J Ernesto Indacochea²; ¹Argonne National Laboratory; ²University of Illinois at Chicago

3:10 PM

Grain Boundary Engineering for Improved Resistance to Corrosion and Stress Corrosion Cracking Resistance of Nuclear Alloys: Abhishek Telang¹; Amrinder Gill²; Mukul Kumar³; Sebastien Teysseyre⁴; Seetha Mannava⁵; Dong Qian⁶; *Vijay Vasudevan⁵*; ¹Integer; ²AK Steel; ³Lawrence Livermore National Laboratory; ⁴Idaho National Laboratory; ⁵University of Cincinnati; ⁶University of Texas at Dallas

3:30 PM

Comprehensive Characterization of Irradiation Defects in Ferric Nuclear Alloy via STEM-based Microscopy: *Yuanyuan Zhu*¹; Mychailo Toloczko¹; Dan Edwards¹; ¹Pacific Northwest National Laboratory

3:50 PM

Fabrication of Lumped Gd₂O₃ Inserted Oxide Pellets for Burnable Absorber Fuel: *Qusai Mistarihi*¹; Ho Jin Ryu¹; ¹Korea Advanced Institute of Science and Technology

4:10 PM Break

4:30 PM

Understanding Micromechanical Deformation in Hard-facing Alloys for Improving Galling Resistance: *Chong Zhao*¹; Jun Jiang¹; Fionn Dunne¹; ¹Imperial College London

4:50 PM

Probing Local Disorder in Ln-UO2 (Ln = Y, Nd, La) and UO2+x Systems: Raul Palomares¹; Sarah Finkeldei²; Lei Zhang³; Tiankai Yao⁴; Felix Brandt²; Alexandra Navrotsky³; Jie Lian⁴; *Maik Lang*¹; ¹The University of Tennessee; ²Forschungszentrum Jülich; ³University of California Davis; ⁴Rensselaer Polytechnic Institute

5:10 PM

Radiation Effect on Nanomaterials at High Temperature -New Type of Radiation Detector for TREAT Nuclear Reactor-: *You Qiang*¹; Lokendra Khanal¹; ¹University of Idaho and The Center for Advanced Energy Studies

Materials for Energy Conversion and Storage – Solid Oxide Fuel Cells I

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Monday PM	Room: 229B
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Amit Pandey, LGFCS; Jung Pyung Choi, PNNL

2:30 PM Invited

Comparison of Chromium Poisoning Effects on Performances of (La,Sr) MnO3 and (La,Sr)FeO3 Based Cathodes in Solid Oxide Fuel Cells: Uday Pal¹; *Ruofan Wang*¹; Srikanth Gopalan¹; Soumendra Basu¹; ¹Boston University

2:55 PM Invited

Chromium Sensor for Use in SOFC Systems: *Jeffrey Fergus*¹; Moaiz Shahzad¹; Tommy Britt¹; ¹Auburn University

3:15 PM

Chromium Evaporation from Metallic Components and Cathode Poisoning in SOFC: Ashish Aphale¹; Md Aman Uddin¹; Junsung Hong¹; Justin Webster¹; Su Jeong Heo¹; Boxun Hu¹; Prabhakar Singh¹; ¹University of Connecticut

3:40 PM Invited

Advanced Reactive Air Aluminization Process for SOFC Stacks: Jung Pyung Choi¹; Jeffry Stevenson¹; ¹Pacific Northwest National Laboratory

4:05 PM Break

4:20 PM Introductory Comments

4:25 PM Invited

Cr-poisoning and Recovery at SOFC Cathode/Electrolyte Interfaces: Teruhisa Horita¹; ¹AIST

4:50 PM

Gaseous Chromium Capture and Mitigation of LSM Cathode Poisoning at 650 °C: *Su Jeong Heo*¹; Boxun Hu¹; Ashish Aphale¹; Junsung Hong¹; Prabhakar Singh¹; ¹University of Connecticut

5:10 PM

Developing an ITSOFC for Electrocatalytically Controlled Partial Oxidation of Methane to Methanol: *Abhinav Poozhikunnath*¹; Radenka Maric¹; ¹University of Connecticut

5:30 PM Invited

Electrochemical Properties of (La,Sr)MnO₃ for Interconnector Application: Fen Qin¹; Hyun-Jong Choi²; Sun-Dong Kim²; Sang-Kuk Woo²; *Jung-Kun Lee*¹; ¹University of Pittsburgh; ²Korea Institute of Energy

5:55 PM

Structural, Electrical and Dielectric Properties of Iron (Fe) Doped Gallium Oxide (Ga₂O₃): *Swadipta Roy*¹; Ramana Chintalapalle¹; ¹University of Texas at El Paso

Materials Processing Fundamentals – Steelmaking - Properties

Sponsored by: TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee *Program Organizers:* Guillaume Lambotte, Boston Electromet;

Antoine Allanore, Massachusetts Institute of Technology; Jonghyun Lee, Iowa State University; Samuel Wagstaff, Novelis

Monday PM	Room: 228A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Jonghyun Lee, Iowa State University; Guillaume Lambotte, Boston Electromet

2:30 PM

Research on the Pinpoint Controlling of CRA N08028 OCTG Microstructure and Properties: *Pan Dong*¹; Zhiqiang Yu²; Zhifang Zhang³; Genshu Zhou²; Pengsheng Yao⁴; Xitang Kang⁴; Guangwei Fan⁵; ¹State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron & Steel (Group) Co., Ltd.; ²State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University; ³Shanxi Taigang Stainless Steel Co., Ltd.; ⁴Shanxi Taigang Stainless Steel Tubes & Pipes Co., Ltd.; ⁵Technology Center, Shanxi Taigang Stainless Steel Co., Ltd.

2:50 PM

Electron Beam Surface Hardening of AISI H13 Tool Steel: Sandeep Thakare¹; ¹Bharat Forge Limited

3:10 PM

Effects of Aging Treatment on the Microstructure and Mechanical Properties of a Nanoprecipitates-strengthened Ferritic Steel: Yu Zhao¹; Ye Cui¹; Hao Guo¹; Songsong Xu¹; Xinghao Wei¹; Zhongwu Zhang¹; ¹Harbin Engineering University

3:30 PM

Experimental Study on Formation Mechanism of Hot Charging Cracks of HSLA Steel: Banglun Wang¹; *Fenglian Wang*¹; ¹Anhui Polytechnic University

3:50 PM

Influence of Heat Treatment on PKS-HSS Cutting Tool (ASTM A600) and its Behaviour during Machining of Mild Steel (ASTM A36): Adeniran Afolalu¹; Enesi Salawu¹; Imhade Okokpujie¹; Abiodun Abioye¹; Olugbenga Omotosho¹; Babatope Adejuyigbe²; Olayide Adetunji³; Omolayo Ikumapayi⁴; Oluwabunmi Abioye¹; *Oluseyi Ajayi*¹; ¹Covenant University; ²Federal University of Oye; ³Federal University of Agriculture, Abeokuta; ⁴Afe Babalola University, Ado-Ekiti

Mechanical Behavior at the Nanoscale IV – Twinning at the Nanoscale

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Monday PM	Room: 101C
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Irene Beyerlein, UCSB; Andrea Hodge, USC

2:30 PM Invited

The Mechanics of Twinning at the Nanoscale: Irene Beyerlein¹; ¹University of California, Santa Barbara

MONDAY PM

3:00 PM

Deformation Twinning in BCC Nanocrystals: Atomistic Modeling and In Situ Experiment: *Yin Zhang*¹; Jiangwei Wang²; Li Zhong³; Christopher Weinberger⁴; Scott Mao³; Ting Zhu¹; ¹Georgia Institute of Technology; ²Zhejiang University; ³University of Pittsburgh; ⁴Colorado State University

3:20 PM

Mechanical Behavior and Strengthening Mechanisms of Nanotwinned AlMg Alloy: *Sichuang Xue*¹; Qiang Li¹; Zhe Fan²; Yifan Zhang¹; Han Wang¹; Xinghang Zhang¹; ¹Purdue University; ²Texas A&M University

3:40 PM Invited

Mechanical Behavior of Nanotwinned Alloys: Andrea Hodge¹; ¹University of Southern California

4:10 PM Break

4:30 PM

In Situ Study on Strain-rate-dependent Work Hardening in FCC Co Dominated by High-density Stacking Faults: *Ruizhe Su*¹; Dajla Neffati²; Sichuang Xue¹; Qiang Li¹; Zhe Fan¹; Yue Liu³; Haiyan Wang¹; Yashashree Kulkarni²; Xinghang Zhang¹; ¹Purdue University; ²University of Houston; ³Shanghai Jiao Tong University

4:50 PM

Uniaxial Deformation of Nanotwinned Nanopillars/Nanotubes in Bodycentered Cubic Tungsten: *Shuozhi Xu*¹; Thomas Payne²; Jacob Startt²; Chaitanya Deo²; David McDowell²; ¹University of California, Santa Barbara; ²Georgia Institute of Technology

5:10 PM

Development of New Titanium Alloys with High Strain Hardening Thanks to Combined TRIP and TWIP Effects: Microstructure/Mechanical Properties Relationships: *Yolaine Danard*¹; Lola Lilensten¹; Cédrik Brozek¹; Fan Sun¹; Philippe Vermaut¹; Frédéric Prima¹; ¹PSL Research University, Chimie ParisTech — CNRS, Institut de Recherche de Chimie Paris

Mechanical Characteristics and Application Properties of Metals and Non-metals for Technology: An EPD Symposium in Honor of Donato Firrao – Steel

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, AI Isra University; Jiann-Yang Hwang, Michigan Technological University; Bowen Li, Michigan Technological University; Pasquale Russo Spena, Free University of Bozen-Bolzano

Monday PMRoom: 123March 12, 2018Location: Phoenix Convention Center

Session Chairs: Pasquale Spena, Free University of Bozen-Bolzano; Jiann-Yang Hwang, Michigan Technological University

2:30 PM Invited

Quench Embrittlement and Intergranular Fracture in High Carbon Steels: George Krauss¹; ¹Colorado School of Mines

3:10 PM

Effect of Initial As-cast Structure on the Evolution of Microstructure and Texture and Finally Ridging Behavior of Ferritic Stainless Steel: *Pranabananda Modak*¹; Sudipta Patra¹; Rahul Mitra¹; Debalay Chakrabarti¹; ¹Indian Institute of Technology Kharagpur

3:30 PM

Tensile Behavior and Microstructure of TWIP Steels from Low to Warm Temperatures: Pasquale Russo Spena¹; ¹Free University of Bozen-Bolzano

3:50 PM

Friction and Wear Characteristics of 304 Stainless and Rolled Upper Bainitic Rail Steels: *Ayodeji Aapata*¹; ¹Federal Polytechnic Idah

Metal-Matrix Composites Innovations, Advances and Applications: An SMD Symposium in Honor of William C. Harrigan, Jr. – Synthesis and Developments of Emerging Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Srivatsan Tirumalai, The University of Akron; Yuzheng Zhang, Gamma Alloys, LLC; William Harrigan, Gamma Technology, LLC

Monday PM March 12, 2018 Room: 121A Location: Phoenix Convention Center

Session Chairs: Peter Liaw, University of Tennessee; Bakr Rabeeh, German University in Cairo, GUC

2:30 PM Invited

Study on Hot Deformation Behavior and Processing Map of 20vol.%Al18B4O33w/2024 Composites: Wenchen Xu¹; ¹Harbin Institute of Technology

3:00 PM

High-entropy-alloy Composites: Microstructures and Mechanical Behavior: Rui Feng¹; Michael C. Gao²; Xuesong Fan¹; Haoyan Diao¹; Wei Li³; *Peter K. Liaw*¹; ¹The University of Tennessee; ²National Energy Technology Laboratory; ³University of Shanghai for Science and Technology

3:20 PM

Mechanisms of Solid State Interactions of Titanium Nitride and Titanium Carbide Particles in a Secondary Hardenable Steel Matrix: *Josef Pörnbacher*¹; Stefan Marsoner¹; Harald Leitner²; Gerald Ressel¹; ¹Materials Center Leoben Forschung GmbH; ²Böhler Edelstahl GmbH & Co KG

3:40 PM

Influence of Interface Microstructure on Mechanical Properties of Metal/ Ceramic Bonding in Cu-SiC and Cu-Al₂O₃ Composites: Dariusz Jarzabek¹; Marcin Chmielewski²; ¹Institute of Fundamental Technological Research; ²Institute of Electronic Materials Technology

4:00 PM Break

4:20 PM

Development and Characterization of In-situ Al-TiC Composites Prepared by Pneumatic Powder Injection Route: *Sheetal Gupta*¹; Anirban Giri¹; Saikat Adhikari¹; Vivek Srivastava²; ¹Aditya Birla Science & Tech. Co. Pvt. Ltd.; ²Hindalco Industries Ltd.

4:40 PM

The Effect of Si on the Interface Reaction of Ti3SiC2/Al Composites: *Jianbo Zhang*¹; Taotao Hu¹; Yiming Jin¹; ¹Jiangxi University of Science & Technology

5:00 PM

The Synthesis and Processing of Light Weight Low Cost and High Performance Structural Aluminum Metal Matrix Composite Foam: Bakr Rabeeh¹; Mahmoud M. AbuEl-khier¹; 'German University in Cairo, GUC

5:20 PM

Tensile Behavior of Hot Isostatically Pressed TiC-SKD11 Composite and Characteristic Analysis: *Seong-Ju Park*¹; Seung-Chan Cho²; Sang-Kwan Lee²; Dae-Ha Kim³; Keum-Cheol Hwang³; Hyun-Uk Hong¹; ¹Department of Materials Science and Engineering, Changwon National University; ²Composites Research Division, Korea Institute of Materials Science; ³Daewha Alloytech

Nanocomposites V: Structure-Property Relationships in Nanostructured Materials – Nanostructures and Polymer Nanocomposites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Meisha Shofner, Georgia Institute of Technology; Nikhilesh Chawla, Arizona State University

Monday PM	Room: 102C
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Meisha Shofner, Georgia Institute of Technology

2:30 PM Invited

Interfacial Study of Nanocomposites and Hybrid Systems: Jun Lou¹; ¹Rice University

3:10 PM

In Situ Deformation Characteristics of a Free-standing Three-dimensional Graphene Foam-aluminum Nanohybrid: *Pranjal Nautiyal*¹; Mubarak Mujawar¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University

3:30 PM

Probing the Effects of Composition and Morphology on the Mechanical Properties of Nanocomposites Made via Liquid Metal Dealloying: *Ian McCue*¹; Bernard Gaskey²; Michael Demkowicz¹; Jonah Erlebacher²; ¹Texas A&M University; ²Johns Hopkins University

3:50 PM

Synthesis and Characterization of Highly Porous Carbon from Waste Packaging Material for Value Added Products: *Vijay Rangari*¹; Mohanad Idrees¹; ¹Tuskegee University

4:10 PM Break

4:30 PM

Structure Property Relationship in Polyimide Nanocomposite for Hightemperature Applications: *Colin Rowbottom*¹; Jonathan Spowart²; Hassan Mahfuz¹; ¹Florida Atlantic University; ²Air Force Research Laboratory

4:50 PM

Ultra-high Elastic Strain Energy Storage in Hybrid Metal-oxide Infiltrated Polymer Nanocomposites: *Keith Dusoe*¹; Xinyi Ye²; Kim Kisslinger²; Aaron Stein²; Seok-Woo Lee¹; Chang-Yong Nam²; ¹University of Connecticut; ²Brookhaven National Laboratory

5:10 PM

Carbon Nanocomposite for Reliable Seal Applications in Hightemperature, High-pressure, Corrosive Environments: Lei Zhao¹; Zhiyue Xu¹; ¹Baker Hughes, Inc.

5:30 PM

The Dielectric Behavior in Reduced Graphene Oxide /Polymer Composites with a Segregated Structure: Yonghua Li¹; Mengkai Li²; ¹Harbin Engineering University; ²Jilin University

Non-equilibrium Features of Grain Boundaries – Structure of Non-equilibrium Grain Boundaries

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan, Ann Arbor; Josh Kacher, Georgia Tech; Elizabeth Holm, Carnegie Mellon University; Irene Beyerlein, University of California, Santa Barbara; Shigenobu Ogata, Osaka University

Monday PMRoom: 125AMarch 12, 2018Location: Phoenix Convention Center

Session Chair: To Be Announced

2:30 PM Invited

Understanding the Behavior of a Polycrystalline Aggregate with Subcrystal Resolution Using High Energy X-rays: Matthew Miller¹; ¹Cornell University

3:00 PM

Changes in the Grain Boundary Character and Curvature Distributions of Nickel at Multiple Annealing Stages from Three-dimensional X-ray Microscopy: *Aditi Bhattacharya*¹; C.M. Hefferan²; S.F. Li³; J. Lind⁴; Yufeng Shen¹; R.M. Suter¹; G.S. Rohrer¹; ¹Carnegie Mellon University; ²R. J. Lee Group; ³Ditto Inc.; ⁴Lawence Livermore National Laboratory

3:20 PM

CSL Pinning Mechanism Associated with Non-thermally Activated Mobility in Sigma 7 and Sigma 9 Grain Boundaries: Jake Bair¹; Eric Homer¹; ¹Brigham Young University

3:40 PM

Discovering the Atomic Building Blocks of Grain Boundaries Using Machine Learning: Conrad Rosenbrock¹; Jonathan Priedeman¹; *Eric Homer*¹; Gus Hart¹; Gábor Csányi²; ¹Brigham Young University; ²University of Cambridge

4:00 PM Break

4:20 PM Invited

Structures and Transitions in BCC W Grain Boundaries: *Timofey Frolov*¹; ¹Lawrence Livermore National Laboratory

4:50 PM

Grain Boundary Network Structural Metrics and Phase Transitions: *Oliver Johnson*¹; Christian Kurniawan¹; ¹Brigham Young University

5:10 PM

Grain Boundary Structure Characterization with the Smooth Overlap of Atomic Positions Descriptor: *Jonathan Priedeman*¹; Conrad Rosenbrock¹; Gus Hart¹; Eric Homer¹; ¹Brigham Young University

5:30 PM

Mapping of 3D Grain Boundary Characteristics by LabDCT: Nicolas Gueninchault¹; Jun Sun¹; Florian Bachmann¹; Hrishikesh Bale²; Christian Holzner²; Leah Lavery²; *Erik Lauridsen*¹; ¹Xnovo Technology ApS; ²Carl Zeiss X-ray Microscopy Inc.

MONDAY PM

Phase Transformation Across Multiscale Material Interfaces – Modeling and Joined Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Computational Materials Science and Engineering Committee *Program Organizers:* Soumya Nag, GE Global Research; Sudarsanam Babu, The University of Tennessee, Knoxville; Gregory Thompson, University of Alabama; Mohsen Asle Zaeem, Missouri University of Science and Technology; Niyanth Sridharan, Oak Ridge National Laboratory

Monday PMRoom: 126CMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Niyanth Sridharan, Oak Ridge National Laboratory; Timofey Frolov, UC Berkeley; Timothy Rupert, University of California, Irvine

2:30 PM Invited

Effect of Lattice-level Covalent Character on Phase and Interfacial Stability in Mg-alloys: D Choudhuri¹; R Banerjee¹; *Srinivasan Srivilliputhur*¹; ¹University of North Texas

3:00 PM Invited

Modeling Transitions at Interfaces: *Timofey Frolov*¹; ¹Lawrence Livermore National Laboratory

3:30 PM Invited

Modeling of Complexion Transitions at One- and Two-dimensional Defects: *Timothy Rupert*¹; ¹University of California, Irvine

4:00 PM Break

4:20 PM Invited

Efficient and Systematic Study of Phase Transformations Using Dualanneal Diffusion Multiples: *Ji-Cheng Zhao*¹; ¹The Ohio State University

4:50 PM

Analysis of the Stability of Interfaces Fabricated Using Solid State Welds: *Niyanth Sridharan*¹; Maxim Gussev¹; Chad Parish¹; Juan Carlos Tapia¹; Kurt Terrani¹; Sudarsanam Babu²; ¹Oak Ridge National Laboratory; ²University of Tennessee Knoxville

5:10 PM

Prevention of Coarsening Induced Phase Transformations in Al-Cu Alloys: Role of Interfaces: *Amit Shyam*¹; Dongwon Shin¹; Yukinori Yamamoto¹; Patrick Shower¹; Brian Milligan¹; James Morris¹; Lawrence Allard¹; Jonathan Poplawsky¹; Juan Idrobo¹; German Samolyuk¹; James Haynes¹; ¹Oak Ridge National Laboratory

Phase Transformations and Microstructural Evolution – Phase Transformations in Steels II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Monday PM	Room: 129A
March 12, 2018	Location: Phoenix Convention Center

 $\ensuremath{\textit{Session Chairs:}}$ Tushar Borkar, Cleveland State Univesity ; Peeyush Nandwana, ORNL

2:30 PM

The Evolution of Grain Structure of Pure Iron during Directional Recrystallization: Ye Cui¹; Naimeng Liu¹; Xianliang Xin¹; Yang Zhang¹; Dan Chen¹; Zhongwu Zhang¹; ¹Harbin Engineering University

2:50 PM

Computational Design of Creep-resistant Ferritic Alloy Strengthened by Laves Phase: Chih-Hsiang Kuo¹; Benjamin Shassere²; Yukinori Yamamoto²; Sudarsanam Babu¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

3:10 PM

Solid State Phase Transformation Mechanism in High Carbon Steel under Compressive Load and with Varying Cr Percent: *Rumana Hossain*¹; Farshid Pahlevani¹; Veena Sahajwalla¹; ¹Centre for Sustainable Materials, Research & Technology

3:30 PM Demonstration: Poster Preview

4:00 PM Break

4:20 PM

Phase Transformations, Boron Segregation, and the Metatectic Reaction in Boron-containing Steels: *Kara Luitjohan*¹; Matthew Krane¹; Volkan Ortalan¹; David Johnson¹; ¹Purdue University

4:40 PM

Microstructure Characterization of Aged Heat Resistant Steels: Victor Lopez-Hirata¹; Maribel Saucedo-Muñoz¹; Arturo Ortiz-Mariscal¹; Jose Villegas-Cardenas²; ¹Instituto Politecnico Nacional (ESIQIE); ²Universidad Politécnica

5:00 PM

Abnormal Formation of the Sigma Phase in Sputter-deposited Austenitic Stainless Steel Coatings: *Uma M.R. Seelam*¹; Challapalli Suryanarayana²; ¹EAG Laboratories; ²University of Central Florida

Rare Metal Extraction & Processing – Rare Earth Elements II and Platinum Group Metals

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee Program Organizers: Hojong Kim, The Pennsylvania State University; Bradford Wesstrom, Freeport-McMoRan Copper & Gold; Shafiq Alam, University of Saskatchewan; Takanari Ouchi, The University of Tokyo; Gisele Azimi, University of Toronto; Neale Neelameggham, Ind LLC; Shijie Wang, Rio Tinto Kennecott Utah Copper; Xiaofei Guan, ShanghaiTech University

Monday PM March 12, 2018

Room: 227C Location: Phoenix Convention Center

Session Chairs: Hojong Kim, The Pennsylvania State University; Shijie Wang, Rio Tinto

2:30 PM

Electrochemical Formation of Tb Alloys in Molten LiCl-KCl Eutectic Melts and Separation of Tb: *Hirokazu Konishi*¹; Hideki Ono¹; Tetsuo Oishi²; Toshiyuki Nohira³; ¹Osaka University; ²National Institute of Advanced Industrial Science and Technology (in Japan); ³Kyoto University

2:55 PM

Electrochemical and Spectroscopic Study of Eu(III)/Eu(II) Couple in the Ehtylmethylimidazolium Bis(trifluromethanesulfonyl)imide Ionic Liquid: David Bengio¹; Thomas Dumas¹; Eric Mendes¹; Pier Lorenzo Solari²; Richard Husar¹; Michel Schlegel³; Philippe Moisy¹; Stéphane Pellet-Rostaing⁴; ¹CEA Marcoule; ²Synchrotron SOLEIL; ³CEA Saclay; ⁴ICSM

3:20 PM

The Electrolytic Production of Rare Earths from their Oxides: James Withers¹; ¹ATS-MER, LLC

3:45 PM

Commercial Processes for the Extraction of Platinum Group Metals (**PGMs**): *Rekha Panda*¹; Manis Kumar Jha¹; D. D. Pathak²; ¹CSIR-National Metallurgical Laboratory; ²IIT-Indian School of Mines

4:10 PM Break

4:30 PM

Recovery of Valuable Metals from Waste Printed Circuit Boards by Using Iodine-Iodide Leaching and Precipitation: *Altansukh Batnasan*¹; Kazutoshi Haga¹; Atsushi Shibayama¹; ¹Akita University

4:55 PM

MONDAY PM

Recent Developments in Biological, Structural and Functional Thin Films & Coatings – Functional Films & Coatings I

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Adele Carradò, Université de Strasbourg IPCMS; Nancy Michael, University of Texas at Arlington; Ramana Chintalapalle, University of Texas - El Paso; Heinz Palkowski, Clausthal University of Technology; Nuggehalli Ravindra, New Jersey Institute of Technology; Vikas Tomar, Purdue University; Gerald Ferblantier, Strasbourg University - ICube Laboratory

Monday PM	Room: 226A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Ravindra Nuggenhalli, New Jersey Institute of Technology; Ramana Chintalapalle, University of Texas at El Paso El Paso - UTEP

2:30 PM Keynote

Application of Synchrotron Techniques in Characterization of Metal Matrix Nano Composites: *Prakash Srirangam*¹; ¹University of Warwick

3:10 PM Invited

Deformation, Failure and Fracture Mechanisms of ZrC-ZrB₂ and Cu-**ZrB**₂**Multilayered Nanostructures: An Atomistic Simulation Study**: *Ashfaq Adnan*¹; Md. Kayser¹; Krutarth Patel¹; ¹The University of Texas at Arlington

3:40 PM Invited

Exploring the Thermal and Mechanical Stability of Amorphous and Nanocrystalline Tantalum Films: *Khalid Hattar*¹; Olivia Donaldson²; Kathryn Small¹; Jason Trelewicz²; ¹Sandia National Laboratories; ²Stony Brook University

4:10 PM Break

4:30 PM

Influence of Very Low Frequency on Particles in Freely Suspended Single Floating Droplet: *Kinnari Shah*¹; Nuggehalli Ravindra²; ¹LaGuardia Community College-CUNY; ²New Jersey Institute of Technology

4:50 PM

Stresses and Strains Effect on Light Emission from Indirect-bandgap Semiconductors: *Sufian Abedrabbo*¹; Nuggehalli Ravindra²; Anthony Fiory²; ¹Khalifa Institute of Science and Technology and the University of Jordan; ²New Jersey Institute of Technology

5:10 PM

Ceramic Nanofibers for High-temperature Gas Sensing Applications: *Nanthakishore Makeswaran*¹; James Kelly²; Jeffery Haslam²; Ramana Chintalapalle¹; ¹University of Texas-El Paso; ²Lawrence Livermore National Laboratory

5:30 PM

Influence of Pressure and Temperature on Chromic Materials and their Technological Applications: *Airefetalo Sadoh*¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

Refractory Metals 2018 – Refractory Metals and Alloys

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals Committee

Program Organizers: Eric Taleff, The University of Texas at Austin; Martin Heilmaier, Karlsruhe Institute of Technology (KIT); Kevin Jaansalu, Royal Military College of Canada

Monday PM March 12, 2018 Room: 124A Location: Phoenix Convention Center

Session Chairs: Martin Heilmaier, KIT Karlsruhe; Eric Taleff, The University of Texas at Austin

2:30 PM

High Temperature Oxidation Behaviors of Refractory Complex Concentrated Alloys (RCCAs): *Todd Butler*¹; Kevin Chaput¹; James Dietrich¹; Oleg Senkov²; ¹Air Force Research Laboratory; ²UES, Inc.

2:50 PM

Opportunities for BCC Refractory-metal-based Superalloys: *Alexander Knowles*¹; Howard Stone²; David Dye¹; ¹Imperial College London; ²University of Cambridge

3:10 PM

High Ductility in Bulk Polycrystalline Tungsten Produced by Equal Channel Angular Extrusion: Zachary Levin¹; Karl Hartwig¹; ¹Texas A&M University

3:30 PM

Fracture Toughness Evaluation and Microstructural Characterization of Drawn Tungsten Wires: *Vladica Nikolic*¹; Manuel Pfeifenberger¹; Anton Hohenwarter²; Reinhard Pippan¹; ¹Austrian Academy of Sciences - Erich Schmid Institute of Materials Science; ²Department of Materials Physics, University of Leoben

3:50 PM

Fabrication of Tungsten Nanopowder by Combustion-based Method: Mingli Qin¹; Zheng Chen¹; Xuanhui Qu¹; ¹University of Science and Technology Beijing

4:10 PM Break

4:30 PM

A Study on the Potential Analogous Rhenium Effect of Manganese in Tungsten-molybdenum Alloys Prepared by Mechanical Alloying: Ossama Elsebaie¹; *Kevin Jaansalu*¹; ¹Royal Military College of Canada

4:50 PM

Effect of Oxide Coating on the Fusion Welding of Molybdenum Tubing: Samuel Barrette-Bédard¹; *Kevin Jaansalu*¹; ¹Royal Military College of Canada

5:10 PM

A Metallurgical Study of Pressure Resistance Welded Molybdenum Based Materials: *Sean Instasi*¹; Nathan Jerred¹; Indrajit Charit¹; Gary Rozak²; ¹University of Idaho; ²H.C. Starck Inc.

5:30 PM

Characteristics of Dynamic Abnormal Grain Growth in Mo and Ta: *Eric Taleff*¹; ¹The University of Texas at Austin

Scandium Extraction and Use in Aluminum Alloys -**Scandium Extraction**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizers: John Grandfield, Grandfield Technology Pty Ltd; Aleksandr Krokhin, Rusal GM; Dmitry Eskin, Brunel University London; Antoine Allanore, Massachusetts Institute of Technology; Nigel Ricketts, Scandium International Mining Corp

Monday PM Room: 222B March 12, 2018 Location: Phoenix Convention Center

Session Chair: Nigel Ricketts, Scandium International Mining

2:30 PM Introductory Comments

2:40 PM

Commercial Scandium Oxide Production by Sumitomo Metal Mining Co., Ltd.: Fumio Iwamoto1; Nobuhiro Matsumoto1; 1Sumitomo Metal Mining Co., Ltd.

3:10 PM

Scandium Recovery from the Nyngan Laterite Project in NSW: Nigel Ricketts1; Willem Duyvesteyn2; 1EMC Metals Australia Pty Ltd; 2Scandium International Mining Corp

3:30 PM

Electrochemical Formation of Alloys of Scandium in Molten Salts: Caglar Polat¹; Metehan Erdogan²; Ali Iplikçioglu³; Ishak Karakaya¹; ¹Middle East Technical University; ²Yildirim Beyazit University; ³MINERTEK

3:50 PM

Extraction of Scandium from Lateritic Nickel-cobalt Ore Leach Solution by Ion Exchange: A Special Study and Literature Review on Previous Works: Yigit Altinsel1; Yavuz Topkaya2; Serif Kaya2; Bülent Sentürk1; 1META Nikel Kobalt A.S.; 2METU

4:10 PM Break

4:25 PM

Direct Method for Producing Scandium Metal and Scandium-aluminium Intermetallic Compounds from the Oxides: Ana Maria Martinez¹; Karen Osen1; Henrik Gudbrandsen1; Camilla Sommerseth1; Zhaohui Wang1; Ove Darell1; 1SINTEF

Surface Engineering for Improved Corrosion Resistance – Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Rajeev Gupta, The University of Akron; Sandip Harimkar, Oklahoma State University; Carlos Schvezov, Institute of Materials of Misiones; Arvind Agarwal, Florida International University

Monday PM	Room: 227A
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Arvind Agarwal, Florida International University; Rajeev Gupta, The University of Akron

2:30 PM Invited

Corrosion Resistant Magnesium Surface Alloys by SMASH: Krista Limmer¹; Joseph Labukas¹; Heather Murdoch¹; ¹U.S. Army Research Laboratory

2:50 PM Invited

Enhancing the Corrosion Resistance of Biodegradable WE43 Mg Alloy via Solid Solution Alloying: Wenjun Cai1; 1University of South Florida

3:10 PM

Performance of Thermal Spray Coating on Proprietary Magnesium/ Aluminum Alloy: Deepak Kumar¹; Zhiyue Xu¹; ¹Baker Hughes Inc.

3:30 PM Invited

Influence of Surface Chemistry on the Formation of Crystalline Hydroxide Coatings on Mg Alloys in Liquid Water and Steam Systems: Xiaobo Chen¹; Chong Ke2; Nick Birbilis2; 1RMIT; 2Monash University

3:50 PM Break

4:10 PM

Examining the Corrosion Resistance of Magnesium Coated with Polyetherimide Using Three Different Methods: Holly Martin¹; Snjezana Balaz1; 1Youngstown State University

4:30 PM

Study on Corrosion Behavior of Rare-earth Added High Strength Magnesium in Presence of 8-hydroxyquinoline Corrosion Inhibitor: Gaurav Argade1; Gowri Mohandass1; Steve Sanders1; Francis D'souza1; Teresa Golden1; Rajiv Mishra1; 1University of North Texas

4:50 PM

Impact of Pre-straining Induced Surface Modification on the Corrosion Resistance of Lean Duplex Stainless Steel: Charles David¹; Fiona Ruel¹; Saghi Saedlou1; Paulina Erazmus-Vignal2; Vincent Vignal3; Muriel Veron4; Ricardo Nogueira⁵; ¹Aperam Stainless Europe; ²SATT Grand Est; ³ICB, UMR 6303 CNRS - Université Bourgogne Franche-Comté; 4SIMAP, UMR 5266 CNRS - Université Grenoble-Alpes; 5The Petroleum Institute

5:10 PM

Corrosion Behavior of Microarc Oxidized Mg Alloy in Simulated Body Fluid: Junqing Zhang¹; Lei Zhang¹; Benjamin Wilke¹; Weiping Li²; Chengyun Ning²; Tonoy Chowdhury¹; ¹University of Alaska Fairbanks; ²South China University of Technology

5:30 PM

Corrosion Characteristics of Additively Manufactured Materials: Daniel Hooks1; Tom Leinert1; Justin Tokash1; 1Los Alamos National Laboratory

Surface Interactions in Materials – Physical and **Mechanical Interactions**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Carlos Schvezov, Institute of Materials of Misiones; Sandip Harimkar, Oklahoma State University; Rajeev Gupta, The University of Akron

Monday PM	Room: 101A
March 12, 2018	Location: Phoenix Convention Center

Session Chair: To Be Announced

2:30 PM

Melt Expulsion during Ultrasonic Vibration-assisted Continuous Wave Laser Surface Melting: Sandip Harimkar1; S. Habib Alavi1; 10klahoma State University

2:50 PM

Support Structure-dependent Reduction of Cobalt Oxide on Ceria: Zhongqi Liu1; Ruigang Wang1; 1The University of Alabama

3:10 PM

Effect of Trace Addition of Graphene in Tribological Properties of Ultrasonic Vibration-assisted Laser Surface Textured Stainless Steel: Sourabh Biswas¹; Linqi Zhang¹; Seyyed Habib Alavi¹; Ali Kalkan¹; Sandip Harimkar1; 1Oklahoma State University

3:30 PM

Wear Mechanism for H13 Steel Tool during Friction Stir Welding of CuCrZr Alloy: Pankaj Sahlot¹; Rajiv Mishra²; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar; ²University of North Texas

3:50 PM Break

4:05 PM

Understanding the Effects of Lubricants/Coatings on Friction and Wear during Reciprocatory Sliding Motion at High Contact Pressures: *Dewika Mishra*¹; Farjana Sonia¹; Muntashir Hayat¹; Ranjan Kathuria¹; Dinesh Srivastava²; G. Ganesha²; Utpal Singha²; Amartya Mukhopadhyay¹; ¹Indian Institute of Technology Bombay; ²Nuclear Fuel Complex, Department of Atomic Energy

4:25 PM

Surface Mediated Diffusive Deformation in Nanometer-sized Metallic Crystals: *Scott Mao*¹; Li Zhong¹; Frederic Sansoz²; Yang He¹; Chongmin Wang³; Ze Zhang⁴; ¹University of Pittsburgh; ²University of Vermont; ³Pacific Northwest National Laboratory; ⁴Zhejiang University

4:45 PM

Deformation of Erythrocytes Adhered to a Solid Surface by a Laminar Flow: Alejandro Moreno¹; Jonathan M. Schuster²; *Carlos Schvezov*³; Mario Rosenberger³; ¹IMAM (UNaM-Conicet) - FCEQyN (UNaM); ²IMAM (UNaM-Conicet) - Inst. Sabato (UNSAM-CNEA); ³IMAM (UNaM-Conicet)

5:05 PM

FUESDAY AM

Surface Roughening by Plastic Deformation in Amorphous and Crystalline Solids: *Adam Hinkle*¹; Lars Pastewka²; ¹Sandia National Laboratories; ²Albert Ludwig University of Freiburg

Ultrafine-grained Materials X – Pioneers of Alternative SPD Methods

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Monday PM Room: 103B March 12, 2018 Location: Phoenix Convention Center

Session Chair: To Be Announced

2:30 PM Keynote

Ultra-fine Grained Al Alloys and Composites Processed via Powder Metallurgy Route: Yaojun Lin¹; Ying Li²; Tao Hu²; Fei Chen¹; *Enrique Lavernia*³; ¹Wuhan University of Technology; ²University of California, Davis; ³University of California, Irvine

3:00 PM Keynote

Accumulative Roll Bonding (ARB) for Making Bulky Metals with Ultrafine Grained Structures: Nobuhiro Tsuji¹; ¹Kyoto University

3:30 PM Keynote

Exceptional Properties by Expanding Microstructural Landscape via Friction Stir Processing: *Rajiv Mishra*¹; ¹University of North Texas

4:00 PM Break

4:20 PM Keynote

Heterogeneous Structures: The Next Hot Research Area?!: Yuntian Zhu¹; Xiaolei Wu²; ¹North Carolina State University; ²Institute of Mechanics, Chinese Academy of Science

4:50 PM Invited

Extending the Limits of Nanostructured Metals Created by Dislocation Plasticity: *Darcy Hughes*¹; Tianbo Yu²; Niels Hansen²; Xiaoxu Huang²; ¹Consultant; ² Technical University of Denmark

5:20 PM Panel Discussion

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials – Nanomaterials for Environmental and Energy Applications

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Stephen McDonnell, University of Virginia; Chang-Yong Nam, Brookhaven National Laboratory; Lanxia Cheng, University of Texas Dallas; Dong Lin, Kansas State University; Wenda Tan, University of Utah

Tuesday AM	Room: 101B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Chang-Yong Nam, Brookhaven National Lab; Dong Lin, Kansas State University

8:30 AM Invited

Functional Oxide Nanotubes for Energy and Environmental Applications: *Oomman Varghese*¹; ¹University of Houston

9:00 AM

Mixed-phase Nanoscale TiO₂ Photocatalysts: Aqueous Synthesis and Application to Water Detoxification: *Konstantina Chalastara*¹; George Demopoulos¹; ¹McGill University

9:20 AM Invited

Microfluidic Synthesis of Functional Nanomaterials: Principles, Design and its Applications in Biomedical Engineering: John Zhang¹; Nanjing Hao¹; Yuan Nie¹; ¹Dartmouth College

9:50 AM

An Enhanced Electrochemical Biosensor Based on Novel 3D Nanowire Array/Nanoparticles Hybrid Structures: *Zhiyang Li*¹; Fan Gao¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell

10:10 AM Break

10:30 AM

Nickel Promoted CO Oxidation over Ceria Supported Cobalt-nickel Bimetallic Oxide Catalysts: Zhongqi Liu¹; Ruigang Wang¹; ¹The University of Alabma

10:50 AM Invited

Scalable and Hierarchical Nanostructure Integration for Energy and Environmental Applications: *Pu-Xian Gao*¹; ¹University of Connecticut

11:20 AM

Sensing Properties of Nano RuO₂ in Amorphous Ta₂O₅ to Hydrogen Phosphate and Hydrogen Carbonate Ions: Ai Honda¹; Kenji Kawaguchi¹; *Masatsugu Morimitsu*¹; ¹Doshisha University

9th International Symposium on High Temperature Metallurgical Processing – Alloys and Materials Preparation

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Tuesday AMRoom: 227BMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Dean Gregurek, RHI AG; Yuanbo Zhang, Central South University

8:30 AM Introductory Comments

8:35 AM

Supersolidus Liquid Phase Sintering of H13 Tool Steel Fabricated via Binder Jet Additive Manufacturing: *Peeyush Nandwana*¹; Derek Siddel¹; Christopher Shafer¹; Amy Elliott¹; ¹Oak Ridge National Laboratory

8:55 AM

High throughput Experimental Technologies for Novel Amorphous Metallic Materials Research: Xiaoping Jiang¹; Andy Huang¹; Parker Liu¹; ¹MTI Corporation

9:15 AM

Pilot Scale Production of Ferrochrome with Si Wafer Kerf Loss Reductants Using 280kW Direct Current Arc Furnace: Jong Ho Kim¹; ¹Research Institute of Industrial Science and Technology

9:35 AM

Sintering Study of WC-Co Hardmetals Obtained from Nanocrystalline Powders: Zhao Ding¹; Leon L. Shaw¹; ¹Illinois Institute of Technology

9:55 AM Break

10:15 AM

Synthesis of Nanocrystalline Carbide Ceramics via Reduction of Anionloaded Activated Carbon Precursors: *Grant Wallace*¹; Jerome Downey¹; Jannette Chorney¹; Katie Schumacher¹; Alaina Mallard¹; ¹Montana Tech of the University of Montana

10:35 AM

Growth of Iridium and Iridium Alloy Fibers from the Melt by Alloymicro-pulling-down Method: Yuui Yokota¹; Takayuki Nihei¹; Yuji Ohashi¹; Shunsuke Kurosawa¹; Kei Kamada¹; Akira Yoshikawa¹; ¹Tohoku University

10:55 AM

Production of Lithium-Ion Cathode Material for Automotive Batteries Using Melting Casting Process: *Delin Li*¹; Wojciech Kasprzak¹; Gregory Patience²; Pierre Sauriol²; Hernando Villazón Amarís²; Mickaël Dollé³; Michel Gauthier³; Steeve Rousselot³; Thomas Bibienne³; Majid Talebi-Esfandarani³; Yulong Liu⁴; Xueliang Sun⁴; Guoxian Liang⁵; ¹CanmetMATERIALS; ²Polytechnique Montréal; ³Université de Montréal; ⁴Western University; ⁵Johnson Matthey Battery Materials Itd

11:15 AM

Fabrication Methods and Applications of Microstructured Carbon Based Liquid Copper Alloys: *Khurram Iqbal*¹; ¹University of Karachi

11:35 AM

Structural Analysis of Ge-containing Ferrous Calcium Silicate Magnesia Slag for Applications of Black Copper Smelting: Mohammad Al Hossaini Shuva¹; M Akbar Rhamdhani¹; *Geoffrey A Brooks*¹; Syed H Masood¹; Markus A Reuter²; ¹Swinburne University of Technology; ²Helmholtz Institute Freiberg for Resource Technology

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling – Modelingsimulation and Fundamental Studies

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California, Berkeley; Julie Tucker, Oregon State University; Elaine West, Knolls Atomic Power Laboratory

Tuesday AM March 13, 2018 Room: 102A Location: Phoenix Convention Center

Session Chairs: Yongfeng Zhang, Idaho National Laboratory; Clinique Brundidge, Naval Nuclear Laboratory

8:30 AM

A Heterogeneous Cavity Nucleation Model for Swelling in Simulated Ferritic Alloys: *Gerrit VanCoevering*¹; Aaron Kohnert²; Brian Wirth³; Gary Was¹; ¹University of Michigan; ²Los Alamos National Laboratory; ³University of Tennessee

8:55 AM

Accelerated Materials Evaluation of Damage Mechanisms in Concentrated Solid Solution Alloys: *Yanwen Zhang*¹; Gihan Velisa¹; Shijun Zhao¹; Mohammad Ullah¹; Ke Jin¹; Hongbin Bei¹; William Weber²; ¹Oak Ridge National Laboratory; ²University of Tennessee

9:20 AM

Simulation of Impact Toughness with the Effect of Temperature and Irradiation in Steels: *Chenchong Wang*¹; Wei Xu²; Chi Zhang¹; ¹Tsinghua University; ²Northeastern University

9:45 AM

Impact of Irradiation-Enhanced Diffusion on Implanted Ion Profiles: Peter Doyle¹; Kelsa Benensky¹; Steven Zinkle¹; ¹University of Tennessee, Knoxville

10:10 AM Break

10:30 AM Invited

Atomistically-informed Cluster Dynamics Modeling of Defect Cluster Evolution in Irradiated Structural Materials: *Brian Wirth*¹; Aaron Kohnert²; Andrew Payant¹; ¹University of Tennessee; ²Los Alamos National Laboratory

11:00 AM

Ion and Neutron Irradiation Effects in a Co-free High Entropy Alloy: *Congyi Li*¹; Xunxiang Hu²; Tengfei Yang³; Brian Wirth³; Steve Zinkle³; ¹Bredesen Center; ²Oak Ridge National Laboratory; ³University of Tennessee, Knoxville

11:25 AM

Microstructural Evaluation of Ion Irradiated Model Binary Alloys: Ling Wang¹; Steve Zinkle¹; ¹University of Tennessee

Accident Tolerant Fuels for Light Water Reactor – Advanced Fuels

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Lingfeng He, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory; Kumar Sridharan, University of Wisconsin; Peng Xu, Westinghouse Electric Company

Tuesday AM March 13, 2018 Room: 104A Location: Phoenix Convention Center

Session Chairs: Andrew Nelson, Los Alamos National Laboratory; Jason Harp, Idaho National Laboratory

8:30 AM Invited

Uranium Silicide Behavior in Reactor Relevant Atmospheres: *Elizabeth Sooby Wood*¹; Joshua White¹; Christopher Grote¹; Andrew Nelson¹; ¹Los Alamos National Laboratory

9:00 AM

Microstructure Studies of Interdiffusion Behavior of U₃Si₂ and SiC: Rita Hoggan¹; Jason Harp¹; *Lingfeng He*¹; ¹Idaho National Laboratory

9:20 AM

Spark Plasma Sintering and Microstructural Analysis of Pure and Mo Doped U3Si2 Pellets: *Denise Adorno Lopes*¹; Anna Benarosch¹; Simon Middleburgh²; Kyle Johnson³; ¹Royal Institute of Technology; ²Westinghouse Electric Sweden; ³Studsvik Nuclear

9:40 AM

Microstructure Characterization of U₃Si₂ Irradiated by High-energy Ions at LWR Temperatures: *Yinbin Miao*¹; Jason Harp²; Kun Mo¹; Shaofei Zhu¹; Abdellatif Yacout¹; ¹Argonne National Laboratory; ²Idaho National Laboratory

10:00 AM Break

10:20 AM Invited

Laser Based Characterization of Microstructure and Thermal Properties in Nuclear Fuel Materials: Marat Khafizov¹; ¹The Ohio State University

10:50 AM

TUESDAY AM

The Microstructure and Fission Product Behavior in Irradiated AGR TRISO Fuel Particles: *Isabella van Rooyen*¹; Matthew Cook¹; Yong Yang¹; ¹University of Florida

11:10 AM

Molecular Dynamics Investigation of Interfaces in U₃Si, *Benjamin Beeler*¹; Michael Baskes²; David Andersson³; Yongfeng Zhang¹; ¹Idaho National Laboratory; ²University of California, San Diego; ³Los Alamos National Laboratory

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – Mechanical Behavior of Additively Manufactured Materials

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Tuesday AM	Room: 231AB
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Lee Semiatin, Air Force Research Laboratory; Edwin Schwalbach, Air Force Research Laboratory

8:30 AM Invited

Process-microstructure-property-performance Relationships in Electron Beam Additively Manufactured Ti-6Al-4V: Brian Hayes¹; Brian Welk²; Sam Kuhr²; Wenqi Li³; Thomas Ales⁴; Iman Ghamarian⁴; Matt Clark³; D. Harlow⁵; Hamish Fraser²; *Peter Collins*⁴; ¹UES; ²Ohio State University; ³University of Nottingham; ⁴Iowa State University; ⁵Lehigh University

9:00 AM Invited

Strength Variability Assessment within an SLM Ti-6AL-4V Component: *Nicholas Mule*¹; ¹Aerojet Rocketdyne

9:30 AM

Location Dependent Shear Strength Testing of Additively Manufactured Titanium: *Matthew Vaughn*¹; Andrew Gaynor²; Justin Unger¹; Jamie Guest¹; Kevin Hemker¹; ¹Johns Hopkins University; ²U.S. Army Research Laboratory

9:50 AM

Dynamic Mechanical Response of AMTi64: Effect of Post-processing Treatments: *Sindhura Gangireddy*¹; Rajiv Mishra²; Eric Faierson²; ¹National Institute of Standards and Technology; ²UNT Denton

10:10 AM Break

10:30 AM

Effect of Laser Scan Strategy and Post Processing on High Strain Rate Deformation Response of Additively Manufactured Stainless Steel: *Brandon McWilliams*¹; Brahmananda Pramanik²; Andelle Kudzal³; Bruce Madigan²; ¹US Army Research Laboratory; ²Montana Tech; ³Worcester Polytechnic Institute

10:50 AM Invited

Implications of Crystallographic Texture and High Dislocation Density in Selective Laser Melted Stainless Steel 316L: Sean Agnew¹; Md Shamsujjoha¹; J. Fitz-Gerald¹; ¹University of Virginia

11:20 AM

Deformation Mechanisms of SLM 316L Stainless Steels and Ti-6Al-4V Alloys: *Thomas Voisin*¹; Joseph McKeown¹; Jianchao Ye¹; Nicholas Calta¹; Ross Cunningham²; Anthony Rollett²; Melissa Santala³; Morris Wang¹; ¹Lawrence Livermore National Laboratory; ²Carnegie Mellon University; ³Oregon State University

11:40 AM

Compositional Influence on Microstructure and Mechanical Behavior of Additively Manufactured Austenitic Stainless Steels: *Thale Smith*¹; Katherine Terrassa²; Baolong Zheng²; Joshua Sugar³; Chris San Marchi³; Julie Schoenung²; ¹University of California, Davis; ²University of California, Irvine; ³Sandia National Laboratories

12:00 PM

In-situ Synchrotron X-ray Diffraction Measurements of Mechanical Properties, Phase Transformation, and Strain Pole Figures of Additively Produced 17-4 Stainless Steel by Laser Powder Bed Fusion: *Thien Phan*¹; Darren Pagan²; ¹National Institute of Standards and Technology; ²Cornell High Energy Synchrotron Source

Additive Manufacturing of Metals: Fatigue and Fracture – Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International; John Lewandowski, Case Western Reserve University

Tuesday AM	Room: 232A
March 13, 2018	Location: Phoenix Convention Center

Session Chair: John Lewandowski, Case Western Reserve University

8:30 AM Invited

The 3rd Sandia Fracture Challenge: Blind Predictions of Fracture Performance in Laser Powder Bed 316L: *Brad Boyce*¹; Sharlotte Kramer¹; ¹Sandia National Laboratories

9:00 AM

Additive Manufacturing: Efficient Evaluation of Fatigue Properties Using Short-time Procedures Based on Cyclic Indentation and Physical Quantities: Marcus Klein¹; Bastian Blinn¹; Tilmann Beck; ¹TU Kaiserslautern

9:20 AM

Fatigue Prediction for AlSi10Mg Parts Produced by Laser Powder-bed Fusion: P. Chris Pistorius¹; Ming Tang¹; ¹Carnegie Mellon University

9:40 AM

Investigating Strain Localization in Additively Manufactured Ti-alloys Using Experimentally Validated Crystal Plasticity Simulations, Explicitly Accounting for Residual Stresses: *Kartik Kapoor*¹; Todd Book¹; Michael Sangid¹; ¹Purdue University

10:00 AM Break

10:20 AM Invited

Fatigue Propterties of AlSi10Mg Manufactured by SLM: the Role of Defects: *Stefano Beretta*¹; ¹Politecnico di Milano

10:50 AM

Investigating Defect Formation Mechanisms in Powder-bed Metal Additive Manufacturing Using Synchrotron-based High-speed X-ray Radiography and Microtomography: *Ross Cunningham*¹; Cang Zhao²; Tao Sun²; Anthony Rollett¹; ¹Carnegie Mellon University; ²Argonne National Laboratory

11:10 AM

Microstructural Effects on Environmental Assisted Crack Growth Behaviors of Austenitic Stainless Steel by Laser Powder Bed Fusion: *Xiaoyuan Lou*¹; Raul Rebak²; ¹CorroMet LLC; ²GE Global Research

11:30 AM

Effects of Internal Porosity and Anisotropic Microstructure on Instrumented Charpy Impact Energy for EBM Ti-6Al-4V: Nik Hrabe¹; Enrico Lucon¹; Ryan White¹; ¹National Institute of Standards and Technology

Additive Manufacturing: Building the Pathway towards Process and Material Qualification – Beam Line Science in Additive Manufacturing

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Additive Manufacturing Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas - Austin; Christian Leinenbach, Empa-Swiss Federal Laboratories for Materials Science and Technology; James Sears, Carpenter Technology Coporporation; Christopher Tuck, University of Nottingham

Tuesday AM	Room: 230
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Reeju Pokharel, Los Alamos National Laboratory; Christoph Kenel, Northwestern University

8:30 AM Invited

High-speed Synchrotron X-ray Imaging of Laser Powder Bed Fusion Process: Cang Zhao¹; Kamel Fezzaa¹; Ross Cunningham²; Lianyi Chen³; Anthony Rollett²; *Tao Sun*¹; ¹Argonne National Laboratory; ²Carnegie Mellon University; ³Missouri University of Science and Technology

9:00 AM Invited

In Situ and Real-time Investigation of AM Process by Combining High-speed X-ray Imaging, Acoustic and Optical Sensors and Machine Learning: *Kilian Wasmer*¹; ¹Empa - Swiss Federal Laboratories for Materials Science and Technology

9:30 AM Invited

In-situ Neutron Diffraction Measurements for Isolating Microstructural Effects on Mechanical Properties of As-built AM 304L SS: *Reeju Pokharel*¹; Anirban Patra¹; Don Brown¹; Bjorn Clausen¹; ¹Los Alamos National Laboratory

10:00 AM Break

10:20 AM Invited

In Situ Synchrotron X-ray Diffraction and Tomography for Timeresolved Study of Phase and Structure Evolution during Consolidation of AM Metals: *Christoph Kenel*¹; Christian Leinenbach²; Ramille Shah¹; David Dunand¹; ¹Northwestern University; ²Empa - Swiss Federal Laboratories for Materials Science and Technology

10:50 AM

Investigating Stress Relaxation Behavior and Mechanisms in Ti- and Ni-alloys by In Situ Neutron Diffraction: Application to Additive Manufacturing: *Zhuqing Wang*¹; Alexandru Stoica²; Dong Ma²; Allison Beese¹; ¹Pennsylvania State University; ²Oak Ridge National Laboratory

11:10 AM

Quasi In Situ Investigation of Microstructure Evolution in Additively Manufactured Layers: *Maria Strantza*¹; Bjorn Clausen¹; John S. Carpenter¹; Jason C. Cooley¹; Donald W. Brown¹; ¹Los Alamos National Laboratory

11:30 AM

Structure / Property (Constitutive and Dynamic Strength / Damage) Characterization of Additively Manufactured (AM) Tantalum: George Gray¹; Cameron Knapp¹; Veronica Livescu¹; David Jones¹; Saryu Fensin¹; Carl Trujillo¹; Daniel Martinez¹; ¹Los Alamos National Laboratory

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Damage / Phase Transformation Plasticity

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Tuesday AM March 13, 2018 Room: 122B Location: Phoenix Convention Center

Session Chairs: Benjamin Morrow, Los Alamos National Laboratory; Hiroyuki Toda, Kyushu University

8:30 AM Invited

Combining Experiments and Models via a Bayesian Network Approach to Predict Short Fatigue Crack Growth: Andrea Rovinelli¹; *Michael Sangid*¹; Yoann Guilhem²; Henry Proudhon³; Ricardo Lebensohn⁴; Wolfgang Ludwig⁵; ¹Purdue University; ²ENS de Cachan; ³MINES ParisTech; ⁴Los Alamos National Laboratory; ⁵INSA Lyon

9:00 AM

Statistical Model Based on Large Field-of-view Images Predicts Microstructural Damage-sites: Benjamin Cameron¹; C. Tasan¹; ¹MIT

9:20 AM

Understanding Effect of Texture and Topology on Stress Hotspots Using Machine Learning: *Ankita Mangal*¹; Elizabeth Holm¹; ¹Carnegie Mellon University

9:40 AM Invited

4D Hydrogen Embrittlement Behaviour in High Strength Aluminium Alloy: *Hiroyuki Toda*¹; Kazuyuki Shimizu¹; H. Gao¹; Kyosuke Hirayama¹; ¹Kyushu University

10:10 AM Break

10:30 AM Invited

In-situ Experiments to Capture the Rapid Evolution of Microstructure during Phase Transformation of Titanium Under Dynamic Loading: *Benjamin Morrow*¹; David Jones¹; Paulo Rigg²; Ellen Cerreta²; ¹Los Alamos National Laboratory; ²Washington State University

11:00 AM

Novel 3D Crystallite-scale Characterization of Deformation during Cyclic Loading of Low Crystal-symmetry Phases: Partha Paul¹; Harshad Paranjape²; Darren Pagan³; L Catherine Brinson¹; Aaron Stebner²; ¹Northwestern University; ²Colorado School of Mines; ³Cornell University

11:20 AM

In-situ Neutron Diffraction during Biaxial Strain Path Changes: Tobias Panzner¹; Karl Sofinowski¹; Efthymios Polatidis¹; Miroslav Smid¹; Steven Van Petegem¹; *Helena Van Swygenhoven*¹; ¹Paul Scherrer Institut

11:40 AM

In Situ Electron Microscopy Investigation on Plastic Deformation in a Metastable Beta Titanium Alloy: *Kui Du*¹; Tingting Yao¹; Miao Song¹; Yulin Hao¹; Rui Yang¹; Hengqiang Ye¹; ¹Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences **TUESDAY AM**

12:00 PM

Characterization of the Factors Influencing Retained Austenite Transformation in Q&P Steels via EBSD Analysis: Derrik Adams¹; David Fullwood¹; Jeff Cramer¹; Shamoon Irfan¹; Hannah Evanson¹; Tyler Mathis¹; Stephen Cluff¹; Mike Miles¹; Eric Homer¹; Tyson Brown²; Raj Mishra²; Robert Kubic²; ¹Brigham Young University; ²General Motors

Advanced High-strength Steels – 1st Generation AHSS

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Tuesday AM	Room: 121C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Tadashi Furuhara, Tohoku University; Nobuhiro Tsuji, Kyoto University

8:30 AM Invited

Important Factors to Design High-strength Ferritic Steel with Nano-sized Interphase Precipitation of Alloy Carbide: *Tadashi Furuhara*¹; Yongjie Zhang¹; Goro Miyamoto¹; ¹Tohoku University

8:55 AM

TUESDAY AM

Delamination Crack, Core/Shell Interface Precipitate, and Mechanical Properties in HSLA Steels: Jae Bok Seol¹; J.-C. Han²; S.-H. Na²; ¹NINT, POSTECH; ²POSTECH

9:15 AM

Significant Influence of Carbon and Niobium on the Precipitation Behavior and Microstructural Evolution and their Consequent Impact on Mechanical Properties in Microalloyed Steels: Devesh Misra¹; Vignesh Natarajan¹; DM Sidorenko²; MD Mullholland²; M Manohar²; JE Hartmann²; ¹University of Texas at El Paso; ²ArcelorMittal Research and Development Center – Chicago

9:35 AM

Nanoscale Precipitation and Strengthening Mechanisms in Steels: Zhongwu Zhang¹; SongSong Xu¹; Yu Zhao¹; ¹Harbin Engineering University

9:55 AM

Effect of Untransformed Ferrite on Tensile and Impact Properties of Martensitic Hot-press-forming Steels: *Min Cheol Jo*¹; Jaeyeong Park¹; Seok Su Sohn¹; Seongwoo Kim²; Jinkeun Oh²; Sunghak Lee¹; ¹POSTECH; ²POSCO

10:15 AM Break

10:30 AM Invited

Deformation Mechanism of Dual Phase Steels Composed of Ferrite and Martensite: *Nobuhiro Tsuji*¹; Myeong-heom Park¹; Daisuke Terada²; Yu Bai¹; Akinobu Shibata¹; ¹Kyoto University; ²Chiba Institute of Technology

10:55 AM

An Original Press Hardening Steel with Excellent Application Properties Produced by Compact Strip Process Technology: *Wang Hui*¹; Xinping Mao¹; Jinqiao Xu¹; Tao Gong¹; Jie Wu¹; Kuanhui Hu¹; Rutao Zhong¹; Hao Peng¹; Yan Yu²; Lei Sun³; ¹Wuhan Branch of Baosteel Central Research Institute; ²Automotive Engineering Institute, Guangzhou Automobile Group Co. Ltd.; ³Beijing Automotive Technology Center, BAIC Motor

11:15 AM

Effect of Strain Rate on Mechanical Properties of a 1 GPa-grade TRIPaided Multi-microstructure Steel: *Noriyuki Tsuchida*¹; Satoshi Ohkura¹; Takaaki Tanaka²; Yuki Toji²; ¹University of Hyogo; ²JFE steel

11:35 AM

Investigation of Fracture Behaviors of Coatings on Galvannealed CP1000 Steel: *Liu Huasai*¹; ¹Shougang Research Institute of Technology

Advanced Magnetic Materials for Energy and Power Conversion Applications – Development in Rare Earth Free Permanent Magnet Alloys

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Tuesday AMRoom: 229AMarch 13, 2018Location: Phoenix Convention Center

Session Chair: Ian Ashcroft, University of Nottingham

8:30 AM Introductory Comments

8:35 AM Invited

Opportunities and Challenges of Fe16N2 Compound Based Rare-earthfree Permanent Magnet: *Jian-Ping Wang*¹; ¹University of Minnesota

9:05 AM Invited

Addressing Criticality in Magnetic Materials: A System Level Performance Assessment Approach: *Cajetan Nlebedim*¹; Helena Khazdozian¹; ¹Ames Laboratory, US Department of Energy

9:35 AM Invited

A New, Structural, Permanent Magnet Based on the Theory of High Entropy Alloys: Abraham Anapolsky¹; ¹Intermolecular Inc

10:05 AM Break

10:25 AM Invited

Strategies for the Development of Coercivity in Rare Earth-lean Highenergy Permanent Magnets: Daniel Salazar¹; ¹BCMaterials

10:55 AM

Structural and Magnetic Properties of RE-Fe Compounds with Tetragonal ThMn₁₂ Structure: *Ana Schönhöbel*¹; Rajasekhar Madugundo¹; Cristina Echevarria-Bonet¹; Daniel Salazar-Jaramillo²; José Barandiarán¹; George Hadjipanayis²; ¹BCMaterials; ²University of Delaware

11:15 AM

Anisotropic Dense Bulk MnBi Magnets with High Magnetic Performance: *Baozhi Cui*¹; Wei Tang¹; Jun Cui¹; ¹Ames Lab, DOE

11:35 AM

Effect of Mn and Sb Substitutions on the Structural and Magnetic Properties of Fe1-xMnxSn1-ySby Alloys: Cristina Echevarria-Bonet¹; Olga Vekilova²; *Heike C. Herper*²; Daniel Salazar¹; Ana Maria Schönhobel¹; Andres Martin-Cid¹; Rajasekhar Madugundo¹; Jose Manuel Barandiaran¹; George C. Hadjipanayis³, ¹BCMaterials; ²Uppsala University; ³University of Delaware

11:55 AM

Coercivity Development in Mn-Al Alloys with Multi Elemental Additions: *Rajasekhar Madugundo*¹; Ana María Schönhöbel¹; Daniel Jaramillo¹; Jose Barandiaran¹; George Hadjipanayis²; ¹BCMaterials; ²University of Delaware

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder – Advanced Microelectronic Packaging Materials

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee *Program Organizers:* Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Tuesday AMRoom: 226CMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Albert Wu, National Central University; Carol Handwerker, Purdue University

8:30 AM Invited

Thermosiphon Loops for Data Center Cooling – Exceeding Water Cooling Performance: Satish Kandlikar¹; ¹Rochester Institute of Technology

9:00 AM

Advances in Copper Electroplating for IC Substrate Packaging Applications: *Kousik Ganesan*¹; Amaneh Tasooji²; Rahul Manepalli¹; ¹Intel Corporation; ²Arizona State University

9:20 AM

Bonding Property of Silver Sintered Joint between SiC Device and DBC Substrates for EV Power Module: *Won Sik Hong*¹; Mi Song Kim¹; Dajung Kim¹; Chulmin Oh¹; ¹Korea Electronics Technology Institutue(KETI)

9:40 AM

Zero Pressure Ag Sinter Joining for Low Temperature Interconnection: Hao Zhang¹; Chuantong Cheng¹; Yohji Suzuki²; Yasuyuki Akai²; Hiroyuki Fujii²; *Katsuaki Suganuma*¹; ¹Osaka University; ²Daicel

10:00 AM Break

10:20 AM

Pressureless Ag Sintering Process for IPM Modules: *Chulmin Oh*¹; Dajung Kim¹; Yoonhwa Choi²; Won Sik Hong¹; ¹KETI; ²JMJ Korea

10:40 AM

Microstructural Investigation on the Mechanism of Ag Thin Film Bonding: *Zhi-Quan Liu*¹; Hao Zhang²; Cai-Fu Li²; Tohru Sugahara²; Shijo Nagao²; Katsuaki Suganuma²; ¹Institute of Metal Research, Chinese Academy of Sciences; ²Institute of Scientific and Industrial Research, Osaka University

11:00 AM

Study of Mechanical Properties in Aluminum Wedge-wedge Bonding: *Matt McKay*¹; Madeleine Peauroi¹; Panthea Sepehrband¹; Jamie Ferris¹; ¹Santa Clara University

11:20 AM

A Study of Microstructure, Electronic Flame-off Characteristics and Electrical Properties of Au-coated Al-Zn Wires: *Keng-Yi Hsu*¹; Fei-Yi Hung¹; Truan-Sheng Lui¹; ¹National Cheng Kung University

11:40 AM

Measurement of Electrical Resistance of CNTs: Leila Ladani¹; Zakia Ahmed¹; ¹University of Texas at Arlington

Advances in Additive Manufacturing of Titanium and Titanium Based Alloys – Processing for Quality

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Peter Collins, Iowa State University; Leon Prentice, CSIRO; Andrew Baker, The Boeing Company; Craig Brice, Lockheed Martin Space Systems Company

Tuesday AM March 13, 2018 Room: 231C Location: Phoenix Convention Center

Session Chairs: Manyalibo Matthews, Lawrence Livermore National Laboratory; Ryan Dehoff, Oak Ridge National Laboratory; Andrew Baker, The Boeing Company

8:30 AM Invited

Addressing the Challenges for Additively Manufacturing Ti-6Al-4V Components for Structural Applications: Jay Keist¹; Todd Palmer¹; Edward Reutzel¹; Rich Martukanitz¹; ¹Penn State University

9:00 AM Invited

Coupling Laser Path Planning to the Formation Lack of Fusion Defects on Top Layers of Abbreviated Builds in Direct Metal Laser Melting of Ti-6Al-4V: *Kevin Chapul*¹; Edwin Schwalbach¹; Sean Donegan¹; Michael Groeber¹; Jonathan Miller¹; ¹Materials and Manufacturing Directorate

9:30 AM Invited

Development of Post-Processing Technologies to Improve the Reliability of Additively Manufactured Titanium Alloy Components: *Brady Butler*¹; Jonathan Ligda¹; Nathaniel Saenz²; James Paramore³; ¹U.S. Army Research Laboratory; ²CQL AEOP; ³ORISE

10:00 AM Break

10:15 AM Invited

Ti-6Al-4V by Selective Laser Melting: How Microstructure and Porosity Influence the Mechanical Properties: *Thomas Voisin*¹; Nicholas Calta¹; Jianchao Ye¹; Joseph McKeown¹; Ross Cunningham²; Anthony Rollett²; Morris Wang¹; ¹Lawrence Livermore National Laboratory; ²Carnegie Mellon University

10:45 AM

Non-destructive Characterization of Porosity Distributions in Additively-Manufactured Ti Parts: Sam Yang¹; Jing Zou²; Yuqi Ren³; Darren Fraser¹; Peter King¹; Clement Chu¹; Tony Murphy¹; Leon Prentice¹; ¹CSIRO; ²Tianjin University; ³Chinese Academy of Sciences

11:05 AM

Investigating Sources of Porosity in Electron Beam-based Directed Energy Deposition of Titanium Components: *Kyle Snyder*¹; Richard Martukanitz¹; Scott Stecker²; ¹Penn State Applied Research Lab; ²Sciaky, Inc.

11:25 AM

Effect of Geometry on the Porosity and Microstructure of Additively manufactured Titanium: *Andelle Kudzal*¹; Clara Hofmeister²; Joshua Taggart-Scarff²; Brandon McWilliams³; Jianyu Liang¹; ¹Worcester Polytechnic Insitute; ²Oak Ridge Institute for Science and Education; ³US Army Research Laboratory

11:45 AM

Effect of Build Direction on Microstructure and Tensile Properties of Ti-6Al-4V Sheet Fabricated by Selective Electron Beam Melting: *Jian Wang*¹; Kun Yang¹; Hui Tang¹; ¹Northwest Institute for Nonferrous Metal Research

Algorithm Development in Materials Science and Engineering – DFT, Atomistic and Machine Learning Algorithms for Study and Design of Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Mark Tschopp, Army Research Laboratory; Jonathan Zimmerman, Sandia National Laboratories; Ebrahim Asadi, University of Memphis; Mark Horstemeyer, Mississippi State University

Tuesday AM Room: 130 March 13, 2018 Location: Phoenix Convention Center

Session Chair: Mohsen Asle Zaeem, Missouri University of Science and Technology

8:30 AM Introductory Comments

8:40 AM Invited

Using Machine-learning to Create Predictive Material Property Models: Chris Wolverton1; 1Northwestern University

9:10 AM

TUESDAY AM

MSGalaxy: A Web-based Platform for Framework Design and Integration: Daniel Sauceda1; Raymundo Arroyave1; Rodolfo Aramayo1; 1Texas A&M

9:30 AM

Open Source Distributed Tools for Multiscale Modeling of Materials: Marcus Hanwell¹; TJ Corona¹; Robert O'Bara¹; Dennis Dimiduk²; Michael Jackson²; Glen Hansen³; Sean Donegan⁴; Michael Groeber⁴; ¹Kitware; ²BlueQuartz; ³Sandia National Laboratories; ⁴Air Force Research Laboratory

9:50 AM Invited

Rational Design and Parametric Uncertainty Analysis of Classical Interatomic Potentials: Eugene Ragasa1; Christopher O'Brien2; Richard Hennig¹; Stephen Foiles²; Simon Phillpot¹; ¹University of Florida; ²Sandia National Laboratories

10:20 AM Break

10·40 AM

High-throughput Evaluation and Comparison of Classical Interatomicpotentials: Structural, Elastic, Defect, Surface and Phonon Properties: Kamal Choudhary1; Francesca Tavazza1; 1National Institute of Standards and Technology

11:00 AM

Reactive Molecular Dynamics of Electrochemical Processes - Ultrafast Resistance Switching in Electro-metallization Cells: Alejandro Strachan¹; Nicolas Onofrio²; Md Mahbubul Islam¹; ¹Purdue University; ²The Hong Kong Polytechnic University

11:20 AM

Atomistically-informed Chemistry Models for Thermo-chemical Degradation of Ablative Composite Materials: Srujan Rokkam¹; Kiran Sasikumar¹; Raghavan Ranganathan²; Peter Cross³; Richard Burnes³; ¹Advanced Cooling Technologies, Inc.; ²Massachusetts Institute of Technology; ³Naval Air Warfare Center

Alloys and Compounds for Thermoelectric and Solar Cell Applications VI – Session III

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Ensicaen University of Caen; Soon-Jik Hong, Kongju National University and Institute for Rare Metals; Philippe Jund, Université Montpellier 2; Lan Li, Boise State University; Takao Mori, National Institute for Materials Science (NIMS) ; Hsin-jay Wu, National Sun Yat-sen University; Tiejun Zhu, Zhejiang University

Tuesday AM	Room: 226B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Albert Wu, National Central University; Hsin-jay Wu, National Sun Yat-Sen University

8:30 AM Invited

Phase Boundary Mapping for the Discovery and Optimization of Thermoelectric Materials: G. Jeffrey Snyder1; 1Northwestern University

8:50 AM Invited

Phase Diagrams Evaluation for Design of Thermoelectric Materials and Development of Fabrication Processes: Yoshisato Kimura1; Natsumi Kaneko1; Yosuke Kubo1; Yong Hoon Lee2; Hiroyuki Matsunami2; Hirokuni Hachiuma2; 1Tokyo Institute of Technology; 2KELK Ltd.

9:10 AM Invited

Phase Diagram of Ag-In-Se System and Thermoelectric Properties of Incontaining Ag, Se: Sinn-wen Chen1; Zi-yang Huang1; Pai-chen Wei2; Yangyuan Chen2; 1National Tsing Hua University; 2Academia Sinica

9:30 AM

Phase Diagrams of Ternary Zn-Sb-In Systems and Thermoelectric Properties of In Doped Zn4Sb3: Su Hui Yi1; Wu Hsin Jay1; 1National Sun Yat-sen University

9:50 AM

The Phase Diagram of Ge-Te-Sb and Enhanced Thermoelectric Properties of Sb-doped GeTe: Yi-Fen Tsai1; Wu Hsin Jay1; 1Department of Materials and Optoelectronic science, National Sun Yat-sen University

10:10 AM Break

10:30 AM Invited

Evaluation of Interfacial Stability of PbTe Thermoelectric Module: Albert T. Wu¹; H. C. Hsieh¹; T. H. Lee²; H. S. Chu²; ¹National Central University; ²Industrial Technology Research Institute

10:50 AM Invited

Thin-film Metallic Glass: an Effective Diffusion Barrier for Midtemperature Thermoelectric Modules: Chia-Chi Yu1; Hsin-jay Wu2; Ping-Yuan Deng²; Matthias T. Agne³; G. Jeffrey Snyder³; Jinn Chu¹; ¹National Taiwan University of Science and Technology; ²National Sun Yat-sen University; 3Northwestern University

11:10 AM

Evaluation of Co-P Diffusion Barrier for p-Bi, Te, Thermoelectric Material: Chun-Hsien Wang1; Albert T. Wu1; 1National Central University, Taiwan

11:30 AM

Role of Ni-Mo Diffusion Barrier on the High Temperature Stability of PbTe Based Thermoelectric Module: Sundararajan Govindan¹; D Sivaprahasam²; Raghavan Gopalan2; 1Indian Institute of Technology Madras; 2ARCI

Alumina & Bauxite – Fundamentals, Product Quality, Efficiency and Modeling

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Linus Perander, Outotec

Tuesday AM Room: 221A March 13, 2018 Location: Phoenix Convention Center

Session Chair: Astrid Meyer, Hydro

8:30 AM Introductory Comments

8:35 AM

Fitness-for-service Assessment and Re-rating of Flawed Alumina Feeding Vessels: Maher Al-Dojayli1; Kyle Chomyn1; Hamid Ghorbani1; Patrice Barriault1; 1Hatch

9:00 AM

Miniplant Tests of HCl Technology of Alumina Production: Andrei Smirnov¹; Dmitriy Kibartas¹; Aleksandr Senyuta¹; Andrey Panov¹; ¹RUSAL ETC

9:25 AM

Development and Utilization of Detailed Models of Technology at RUSAL Alumina Refineries: Mamadou-Bano Balde1; Vladimir Golubev1; Dmitriy Chistyakov¹; ¹Windalco

9:50 AM

Digital Transformation in Alumina Refining: Robert Jonas¹; ¹Honeywell

10:15 AM Break

10:30 AM

Thermodynamics Analysis on Process of Pelletizing Chlorination of Fly Ash: Long Wang¹; Zhang Ting'an¹; Guozhi Lyu¹; Jingzhong Zhang¹; Zhihe Dou¹; Weiguang Zhang¹; Xijuan Pan¹; Yanxiu Wang¹; ¹Northeastern University

10:55 AM

Research on Alumina Preparation from Aluminium Chloride Solution by Electrolysis Process: Zhang Ting 'an1'; Xiuxiu Han1; Guozhi Lyu1; Xijuan Pan1; Shagulyyev Agajan¹; Daxue Fu¹; Jiang Liu¹; Junjie Zhang¹; ¹Northeastern University

11:20 AM

How Digitalization Can Further Improve Plant Performance and Product Quality - Outotec Pretium Advisory Tool for Alumina Calcination: Michael Missalla1; Linus Perander2; Steffen Haus2; Nikola Anastasijevic2; Susanna Horn3; 1Outotec Tecnologia Brasil Ltda; 2Outotec GmbH & Co. KG; 3Outotec Oyi

Aluminum Alloys, Processing and Characterization – **Behavior of Casting Alloys**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Tuesday AM	Room: 221B
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Wei Wen, Arconic

8:30 AM Invited

Aluminum In-situ Formed, Low Cost, Aluminum-silicon Nano Composite Materials: Peter Guba¹; Jerry Sokolowski¹; Al Conle¹; Andrzej Sobiesiak¹; Adam Gesing²; Subodh Das³; ¹University of Windsor; ²Gesing Consultants Inc.; ³Phinix,LLC

9:00 AM

Predicting Local Segregation and Microstructures in an Advanced High Pressure Die Cast Al Alloy: Tracy Berman1; John Allison1; 1University of Michigan

9:20 AM

The Combined Effects of Sr Additions and Heat Treatment on the Microstructure and Mechanical Properties of High Pressure Die Cast A383 Alloy: Tao Liu¹; Sydney Morales¹; Luke Brewer¹; Mikko Karkkainen¹; Nastac Laurentiu¹; Arvikar Vish²; Levin Ilya²; ¹The University of Alabama; ²Nemak Alabama

9:40 AM

The Effect of Energy Attenuation in Molten A356 Alloy during Ultrasonic Degassing: Jeong IL Youn1; Young Ki Lee1; Young Jig Kim1; Jeong Wook Park²; ¹Sungkyunkwan University; ²DR AXION Co.,Ltd

10:00 AM Break

10:20 AM

Influence of Additional Elements (Si Ti and B) on the Castability, Corrosion and Mechanical Properties of A201 Allovs: Suzan Abd El Majid¹; ¹Technion, Israel Institue of Technology

10:40 AM

Effect of Ni Addition on the Solidification Process and Microstructure of Al-12%Si-4%Cu-1.2%Mn-x%Ni Heat-resistant Alloys: Hengcheng Liao1; Qu Liu¹; Guangjin Li¹; Uday Dixit²; ¹Southeast University; ² IIT Guwahati

11:00 AM

New Design of High Strength Wrought Aluminum Alloys: Alexander Alabin¹; Viktor Mann¹; Anton Frolov¹; Aleksandr Krokhin¹; ¹UC RUSAL

Application of Solidification Fundamentals to Challenges in Metal Additive Manufacturing – Advanced Characterization

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Alex Plotkowski, University of Tennessee -Knoxville; Kevin Chaput, Materials and Manufacturing Directorate; Lang Yuan, GE Global Research

Tuesday AM March 13, 2018 Room: 232B Location: Phoenix Convention Center

Session Chair: Michael Kirka, Oak Ridge National Laboratory

8:30 AM Invited

Fast Synchrotron X-ray Imaging of the Mechanisms Controlling Laser Additive Manufacturing: Peter D. Lee1; Chu Lun Alex Leung1; Enyu Guo1; Sebastian Marussi¹; Robert Atwood²; Mike Towrie³; Phil Withers¹; ¹The University of Manchester; ²Diamond Light Source; ³Science & Technology Facilities Council

9:00 AM

Solidification Cracking during Selective Laser Melting (SLM) of Nickelbase Superalloy Inconel-738LC: Avinash Hariharan¹; Jeroen Risse²; Eric Jägle¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Fraunhofer-Institut für Lasertechnik ILT

9:20 AM

Development of an In-situ TEM with Laser Sintering Capabilities at Sandia National Laboratories: Patrick Price¹; Adam Cook¹; LaRico Treadwell1; Khalid Hattar1; 1Sandia National Laboratories

9:40 AM

Characterization of Rapid Cooling during Laser Powder Bed Fusion Additive Manufacturing of Ti-6Al-4V Using In Situ High Speed Synchrotron X-ray Diffraction: Nicholas Calta¹; Aiden Martin¹; Jenny Wang¹; Philip Depond¹; Gabriel Guss¹; Vivek Thampy²; Andrew Kiss²; Anthony Fong2; Johanna Nelson Weker2; Kevin Stone2; Christopher Tassone2; Ryan Ott³; Matthew Kramer³; Michael Toney²; Tony Van Buuren¹; Manyalibo Matthews1; 1Lawrence Livermore National Laboratory; 2SLAC National Accelerator Laboratory; 3Ames Laboratory

10:00 AM Break

10:20 AM

Tomography and 3D Grain Mapping for Additive Manufacturing Qualification: Leah Lavery1; Luke Hunter2; Jeff Gelb1; 1Carl Zeiss X-ray Microscopy; ²Carl Zeiss Industrial Metrology

TECHNICAL PROGRAM

10:40 AM

Laser Powder Bed Fusion of Metal and Bioactive Glass Revealed Via Synchrotron X-ray Imaging: *Chu Lun Alex Leung*¹; Robert Atwood²; Jesus Del Val Garcia³; Julian Jones³; Peter Lee¹; ¹University of Manchester; ²Diamond Light Source Ltd.; ³Imperial College London

11:00 AM

In-situ Monitoring of Solidification during Powder-deposition Based Additive Manufacturing: *Sarah Wolff*¹; Hao Wu¹; Cang Zhao²; Niranjan Parab²; Tao Sun²; Jian Cao¹; ¹Northwestern University; ²Argonne National Laboratory

11:20 AM

TUESDAY AM

Microstructure and Wear Resistance of Laser Deposited Cobalt-free Cubased Alloy for Valve Seat Application: *Hajime Kato*¹; Tadashi Oshima¹; Kouji Tanaka¹; Minoru Kawasaki²; Natsuki Sugiyama²; Hironori Aoyama²; ¹Toyota Central R&D Labs., Inc.; ²Toyota Motor Corporation

Atom Probe Tomography for Advanced Characterization of Metals, Minerals and Materials – General Methods and Development

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee *Program Organizers:* Haiming Wen, Missouri University of Science and Technology; Simon Ringer, The University of Sydney; Gregory Thompson, University of Alabama; Arun Devaraj, Pacific Northwest National Laboratory; Keith Knipling, U.S. Naval Research Laboratory; Gang Sha, Nanjing University of Science and Technology; David Seidman, Northwestern University; Chantal Sudbrack, QuesTek Innovations, LLC

Tuesday AMRoom: 124AMarch 13, 2018Location: Phoenix Convention Center

Funding support provided by: CAMECA Instruments, Inc.

Session Chairs: David Seidman, Northwestern University; Haiming Wen, Missouri University of Science & Technology

8:30 AM Introductory Comments

8:35 AM Keynote

The Evolution of the Atom-Probe: *John Panitz*¹; ¹The University of New Mexico

9:15 AM Invited

Instrumentation Developments for Emerging Metals and Minerals Applications of Atom Probe Tomography: *Thomas Kelly*¹; Ty Prosa¹; David Reinhard¹; Robert Ulfig¹; David Larson¹; ¹Cameca Instruments, Inc.

9:50 AM

A New Approach to Detect Clusters of Varying Density in Atom Probe Tomography and Its Applications to Oxide-dispersion Strengthened Alloys: *Jing Wang*¹; Nathan Bailey²; Peter Hosemann²; Daniel Schreiber¹; Mychailo Toloczko¹; ¹Pacific Northwest National Laboratory; ²University of California, Berkeley

10:10 AM Break

10:25 AM Invited

Segregations at Defects and Interfaces and their Relations to Properties: Baptiste Gault¹; Paraskevas Kontis¹; Huan Zhao¹; Alisson Kwiatowski da Silva¹; Surendra Kumar Makineni¹; Yanhong Chang¹; Dirk Ponge¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH

11:00 AM Invited

Applications of APT in Characterization of Magnesium Alloys – A Tool to Develop Heat-Treatable Wrought Magnesium Alloys: *Kazuhiro Hono*¹; Taisuke Sasaki¹; Ming-Zhe Bian¹; ¹National Institute for Materials Science

11:35 AM Invited

Atom-probe Tomography of Materials with Nanometer-Range Characteristic Dimensions: *Dieter Isheim*¹; David Seidman¹; ¹Northwestern University

Bio-nano Interfaces and Engineering Applications Symposium – Bio-Nano Interfaces III

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee Program Organizers: Candan Tamerler, University of Kansas; Terry Lowe, Colorado School of Mines; Kalpana Katti, North Dakota State University; Po-Yu Chen, National Tsing Hua University; John Nychka, University of Alberta

Tuesday AM	Room: 105A
March 13, 2018	Location: Phoenix Convention Center

Session Chair: To Be Announced

8:40 AM

Synthesis and Characterization of Superomniphobic Surfaces Inspired by Springtails: *Po-Yi Chen*¹; Ching-Yu Yang¹; Po-Yu Chen¹; ¹National Tsing Hua University

9:00 AM

Effects of Hydration and Mineralization on the Mechanical Behavior of Collagen Fibrils: Marco Fielder¹; Arun Nair¹; ¹University of Arkansas

9:20 AM Invited

Revealing the Full Hierarchical Structure of Spider Silks across All Length Scales: *Hannes Schniepp*¹; ¹The College of William & Mary

9:50 AM

Revealing the Multi-functional Surface and Material Property of Venus Flytrap (Dionaea Muscipula): *Tiffany Liao*¹; Po-Yi Chen¹; Yueh-Ying Chou¹; Wei-Chen Hung¹; Po-Yu Chen¹; ¹National Tsing Hua University

10:10 AM Break

10:25 AM Invited

Single Molecular Imaging of Fluorescent-tagged Peptides Diffusing on a Surface of Boron Nitride: *Peiying Li*¹; Takakazu Seki¹; Linhao Sun¹; Yuhei Hayamizu¹; ¹Tokyo Institute of Technology

10:55 AM

Smart Biomaterials for MoS₂ and Gold Mining: *Sibel Cetinel*¹; Wei-Zheng Shen¹; Maral Aminpour¹; Prasanna Bhomkar²; Feng Wang²; Carlo Montemagno¹; ¹University of Alberta; ²National Institute for Nanotechnology

11:15 AM

Computational Study of Selective Adsorption of Peptides on MoS₂ Surface: *Maral Aminpour*¹; Niloofar Nayebi¹; Sibel Cetinel¹; Carlo Montemagno¹; ¹University of Alberta

11:35 AM

Transmission Synchrotron X-ray Tomography and Nano-indentation Measurements for the Investigation of the Teeth Microstructure of Dinosaurs: Tzu-Hsuan Huang¹; *E-Wen Huang*¹; Chun-Chieh Wang²; Shou-Yi Chang³; ¹National Chiao Tung University; ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan; ³National Tsing Hua University, Hsinchu, Taiwan

Biological Materials Science – Biomaterials and Biomedical Applications I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee Program Organizers: Steven Naleway, University of Utah; Vinoy Thomas, University of Alabama at Birmingham; Holly Martin, Youngstown State University; Jing Du, Pennsylvania State University

Tuesday AM	Room: 225B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Holly Martin, Youngstown State University; Dwayne Arola, University of Washington

8:30 AM

Fracture and Fatigue Behavior of Silver-cored Drawn Filled Tube Strands for Biomedical Applications: *Janet Gbur*¹; John Lewandowski¹; ¹Case Western Reserve University

8:50 AM

3D Full-field Mechanical Measurement of Shoulder Bones under Implant Loading: *Yuxiao Zhou*¹; Michael Lamberty²; Gregory Lewis³; April Armstrong³; Jing Du¹; ¹Pennsylvania State University; ²University of Puerto Rico at Mayagüez; ³Penn State College of Medicine and M.S. Hershey Medical Center

9:10 AM

Adsorption of Maleic Acid on the Surface of Hydroxyapatite and TiO2: A Pathway Towards Biomaterial Composites: *Mitchell Albert*¹; Amanda Clifford¹; Igor Zhitomirsky¹; Oleg Rubel¹; ¹McMaster University

9:30 AM Invited

Bioinspired Polyphenolic Materials: From Biomolecular Phenomena to Applications: *Phillip Messersmith*¹; ¹University of California, Berkeley

10:00 AM Break

10:20 AM

Processing, Microstructure Characterization and Biological Response of Cold Sprayed Biocomposite Coatings: *Eden Bhatta*¹; Grant Crawford¹; ¹South Dakota School of Mines and Technology

10:40 AM

Implantable Nano-porous Resorbable and Non-resorbable Structures for Cancer Drug Delivery and Tissue Regeneration: *John Obayemi*¹; Vanessa Uzonwanne¹; Jingjie Hu²; Ali Salifu¹; Wole Soboyejo¹; ¹Worcester Polytechnic Institute; ²Princeton University

11:00 AM

Effect of Nb and Ta Content on Properties of Ti-(26-35)Nb-(0-6)Ta-7Zr -0.70: *Dalibor Preisler*¹; Josef Stráský¹; Michal Landa²; Petr Harcuba¹; Milos Janecek¹; ¹Charles University; ²The Czech Academy of Sciences

Bulk Metallic Glasses XV – Alloy Development and Application I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Tuesday AM	Room: 122A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Peter Liaw, The University of Tennesee; William Johnson, California Institute of Technology

8:30 AM Keynote

Commercial BMG's - Boutique Material or Disruptive Technology?: *William Johnson*¹; ¹California Institute of Technology

9:00 AM Keynote

Fe-based Metallic Glass (MG) Ribbons for Energy Applications: *CT Liu*¹; Anding Wang¹; ¹City University of Hong Kong

9:30 AM Invited

Bulk Metallic Glasses: A High, but Narrow Path to Success: Jan Schroers¹; ¹Yale University

9:50 AM Invited

Progress and Challenges Associated with the Development of Spacecraft Gearboxes Utilizing Bulk Metallic Glasses: *Douglas Hofmann*¹; Scott Roberts¹; Robert Dillon¹; ¹NASA JPL/Caltech

10:10 AM Break

10:30 AM Invited

Designing Color in Gold Metallic Glasses: Jong-Hyun Na¹; *Marios Demetriou*¹; William Johnson¹; ¹Glassimetal Technology

10:50 AM Invited

Property Enhancement of BMG Based Nanoglasses Prepared by RF Sputtering of Thin Films and High Pressure Torsion: *Hans Fecht*¹; Pierre Denis¹; ¹Ulm University

11:10 AM Invited

Manipulation of Plastic Flow in Metallic Glasses via Nanoscale Networks of Compositional Heterogeneities: Jin Woo Kim¹; Hyun Seok Oh¹; Wan Kim¹; Pyuck-Pa Choi²; Dierk Raabe³; *Eun Soo Park*¹; ¹Seoul National University; ²Korea Advanced institute of Science and Technology; ³Max-Planck Institut für Eisenforschung GmbH

11:30 AM

Determination of Critical Cooling Rates in Metallic Glass Forming Alloy Libraries through Laser Spike Annealing: *Punnathat Bordeenithikasem*¹; Jingbei Liu²; Sebastian Kube²; Yanglin Li²; Tianxing Ma³; Ellen Scanley⁴; Douglas Hofmann¹; Christine Broadbridge⁴; Joost Vlassak⁵; Jonathan Singer³; Jan Schroers²; ¹NASA JPL/Caltech; ²Yale University; ³Rutgers University; ⁴Southern Connecticut State University; ⁵Harvard University

11:50 AM Invited

Surface Properties of Thin Film Metallic Glasses Produced by Physical Vapor Deposition: Tatiana Stefanov¹; Harsha Vardhan Maraka¹; David Browne¹; ¹University College Dublin

Cast Shop Technology: Energy Joint Session – Cast Shop Technology: Energy Joint Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee, TMS: Energy Committee

Program Organizers: Mark Badowski, Hydro Aluminium; Mark Jolly, Cranfield University; Donald Whipple, Bloom Engineering Co Inc; Cynthia Belt, Consultant

Tuesda	ay A	M
March	13,	2018

Room: 222A Location: Phoenix Convention Center

Session Chair: Mark Jolly, Cranfield University

8:30 AM Introductory Comments

8:35 AM

Productivity and Energy Efficiency Improvements at Two Reverberatory Furnaces at Alcoa, Norway: Henrik Gripenberg¹; Delwyn Forrest²; Per-Bjornar Bekkevold³; Egil Solberg³; Johannes Lodin¹; Fredrik Stark⁴; Fredrik Nyman⁴; ¹Linde Gas; ²Alcoa; ³Alcoa Mosjoen; ⁴AGA Gas AB

9:00 AM

The Application of ALTEK Stirring Technology to a 90MT Melting Furnace at ALCOA Moesjen, Norway: *Alan Peel*¹; Delwyn Forrest²; ¹ALTEK Group; ²Alcoa

9:25 AM

Case Study of Air Cooled Electromagnetic Stirred Melting Furnace at Hydro Henderson: *James Herbert*¹; Bill Painter²; ¹ALTEK LLC; ²Hydro Henderson

9:50 AM

Efficiency of the Casting Process Starts in the Melt Shop: Ryan Brown¹; ¹Norican Group

10:15 AM Break

10:30 AM

Praxair's OPTIVIEW[™] Image Analysis System for Enhanced Combustion Control on Aluminum Tilting Rotary Furnace: Valmiro Sa Neto¹; Joseph Maiolo¹; Kevin Albrecht¹; Bryan Bielec¹; Jorge Visús Pool²; Joaquín de Diego Rincón3; Daniel Bujeda Celma2; Ignacio Parrilla Muñoz4; Juan Luis Suazo Tejeda4; ¹Praxair Inc.; ²Praxair España, S.L.U.; ³Praxair Euroholding, S.L.; ⁴Aluminio la Estrella S.L.U.

10:55 AM

Aluminum Melting Furnace Pressure Control: Edward Williams¹; Don Whipple²; ¹Alcoa; ²Bloom Engineering

11:20 AM

Gas Fired Holding Furnace Modeling for Efficient Operation: Mohamed Hassan¹; Saeed Alshehhi¹; Cynthia Belt²; ¹Khalifa University of Science and Technology, Masdar Institute; ²Energy Consultantant

11:45 AM

Resource Efficiency Analysis of High Pressure Die Casting Process: Micael Gonçalves¹; Mark Jolly¹; Konstantinos Salonitis¹; Emanuele Pagone¹; ¹Cranfield University

CFD Modeling and Simulation in Materials Processing – Processing I

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee Program Organizers: Laurentiu Nastac, The University of Alabama; Koulis Pericleous, University of Greenwich; Adrian Sabau, Oak Ridge National Laboratory; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, Colorado School of Mines

Tuesday AM	Room: 228B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Laurentiu Nastac, The University of Alabama; Kevin Chou, University of Louisville

8:30 AM

A Multiphase CFD Model for the Prediction of Particulate Accumulation in a Laser Powder Bed Fusion Process: Adam Philo1; Daniel Butcher1; Stuart Sillars¹; Chris Sutcliffe²; Johann Sienz¹; Stephen Brown¹; Nicholas Lavery¹; ¹Swansea University; ²Renishaw

8:50 AM

Numerical Model to Estimate Tool Wear and Pin Shape during Friction Stir Welding of CuCrZr Alloy: Pankaj Sahlot¹; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar

9.10 AM

CFD Modelling of High Pressure Gas Atomization of Liquid Metals: Aadhithya Priyadharshini Ashok Kumar¹; Duncan Borman¹; Andrew Mullis¹; ¹University of Leeds

9:30 AM Invited

Computational Analysis of Thermo-fluid Dynamics with Metallic Powder in SLM: Subin Shrestha1; Kevin Chou1; 1University of Louisville

10:00 AM Break

10:20 AM

Evaporation and Diffusion of Mn in Inert Systems: Håkon Olsen¹; ¹Norwegian University of Science and Technology

10:40 AM

Correlation of Heat Transfer Coefficient in Quenching Process Using ABAOUS: Sandeep Davare¹; G Balachandran²; R.K.P. Singh¹; ¹Bharat Forge; ²Kalyani Carpenter Special Steel Pvt Ltd. (KCSSPL)

11:00 AM

A Theoretical Study on Removal of Inclusions from Molten Steel during Ingot Casting by Filtration: Shahin Akbarnejad1; 1Royal Institute of Technology (KTH)

Characterization of Minerals, Metals, and Materials -Characterization and Uses of Metallurgical Slags

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Tuesday AM Room: 122C March 13, 2018 Location: Phoenix Convention Center

Session Chairs: Mingming Zhang, ArcelorMittal Global R&D; Mingsheng He, Wuhan Iron & Steel Ltd.

8:30 AM Introductory Comments

8:35 AM

Preparation and Characterization of NaNO,/BFS Composite Phase Change Materials: Jicheng Liu¹; Yuanbo Zhang¹; Zijian Su¹; Bingbing Liu¹; Manman Lu1; Tao Jiang1; Guanghui Li1; 1Central South University

8.55 AM

Characteristics of WISCO Steelmaking Slags: Bowen Li¹; Mingsheng He²; Canhua Li²; ¹Michigan Technological University; ²Wuhan Iron & Steel Co. Ltd.

9:15 AM

Pilot Trial of Direct Modification of Molten Blast Furnace Slag and Production of High Acidity Coefficient Slag Wool Fibers: Jun Li¹; Lingling Zhang¹; Guizhou Zhao¹; Daqiang Cang¹; ¹University of Science and Technology, Beijing

9:35 AM

Reduction Behavior of Ternary Calcium Ferrites for CaO-Fe₂O₂-MgO System: Senwei Xuan¹; Xuewei Lv¹; Kai Tang¹; Chengyi Ding¹; Gang Li¹; Chenguang Bai1; 1Chongqing University

9:55 AM

Propagation of Power Ultrasound in Calcium Ferrite Melt: Ruirui Wei¹; 1Chongqing University

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Boundaries and Interfaces II

Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Tuesday AMRoom: 131AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Panthea Sepehrband, Santa Clara University; Ismaila Dabo, Penn State

8:30 AM Invited

Quantum-continuum Simulations of Solid-liquid Interfaces under Electrochemical Conditions: Ismaila Dabo¹; ¹Department of Materials Science and Engineering & Materials Research Institute, Penn State University

9:00 AM

Droplet Spreading on a Surface Exhibiting Solid-liquid Interfacial Premelting: *Brian Laird*¹; Yang Yang²; ¹University of Kansas; ²East China Normal University

9:20 AM

In-plane Characterization of Structural and Thermodynamic Properties for the Steps at Faceted Chemically Heterogeneous Solid/Liquid Interfaces: *Yang Yang*¹; Hongtao Liang¹; Brian Laird²; Mark Asta³; ¹East China Normal University; ²University of Kansas; ³UC Berkeley

9:40 AM

Quantum Mechanical Simulations of MgO//Mg Interfacial Stability: *Wenwu Xu*¹; Andrew Horsfield²; Peter Lee³; ¹San Diego State University; ²Imperial College London; ³The University of Manchester

10:00 AM Break

10:20 AM

Atomistic Investigation of the Energetics and Atomic Structure of the Ferrite-cementite Interface in Pearlite: *Matthew Guziewski*¹; Christopher Weinberger¹; Shawn Coleman²; ¹Colorado State University; ²Army Research Laboratory

10:40 AM Invited

Friction and Adsorption at Nanoscale: The Effect of Metallic and Nonmetallic Properties: Wang Gao¹; Qing Jiang¹; ¹Jilin University

11:00 AM

Concurrently Coupled Atomistic and Continuum Simulation of Grain Boundaries in Materials: *Shengfeng Yang*¹; Youping Chen²; ¹Indiana University-Purdue University Indianapolis; ²University of Florida

11:20 AM

Atomistic Modeling of Point Defects Absorption and Diffusion in α-iron Grain Boundaries: *Helena Zapolsky*¹; Antoine Vaugeois¹; Renaud Patte¹; ¹University of Rouen

11:40 AM

Tribological Properties of Carbon Nanotube Reinforced Natural Rubber Composites: Molecular Dynamics Study: Sumit Sharma¹; Raj Chawla²; ¹Lovely Professional University; ²Mechanical Engineering, Lovely Professional University

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Dislocation, Plasticity, and Fracture

Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Tuesday AM	Room: 131B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Valery Levitas, Iowa State University; Dallas Trinkle, University of Illinois, Urbana-Champaign

8:30 AM Invited

Phase Field Approach to Coupled Phase Transformations and Dislocation Evolution at Large Strains: Valery Levitas¹; ¹Iowa State University

9:00 AM

A Crystal Plasticity Model for Dynamic Recrystallization in Ti-6Al-4V Alloy: *Arunabha Roy*¹; Riddhiman Bhattacharya¹; John Allison¹; Veera Sundararaghavan¹; ¹University of Michigan at Ann Arbor

9:20 AM

A Consistent Mesoscale Elastoplastic Phase-field Framework: *Tianle Cheng*¹; Youhai Wen²; Jeffrey Hawk²; ¹US Dept of Energy, National Energy Technology Laboratory / AECOM; ²US Dept of Energy, National Energy Technology Laboratory

9:40 AM

A Modified Phase-field Model for Crack Propagation in Multiphase Materials: Arezoo Emdadi¹; *Mohsen Asle Zaeem*¹; William Fahrenholtz¹; Gregory Hilmas¹; ¹Missouri University of Science and Technology

10:00 AM Break

10:20 AM

Large Scale Dislocation Dynamics Simulations of Strain Hardening of Ni Microcrystals under Tensile Loading: *Satish Rao*¹; Christopher Woodward²; Brahim Akdim¹; Edwin Antillon¹; Triplicane Parthasarathy¹; Jaafar El-Awady³; Dennis Dimiduk⁴; ¹UES Inc.; ²Air Force Research Laboratory; ³Johns Hopkins University; ⁴Ohio State University

10:40 AM

Mesoscale Modeling of Mixed-type Dislocations in Al: *Shuozhi Xu*¹; Jaber Mianroodi²; Abigail Hunter³; Irene Beyerlein¹; Bob Svendsen²; ¹University of California, Santa Barbara; ²RWTH Aachen; ³Los Alamos National Laboratory

11:00 AM

Submicron Scale {1012} Tensile Twin Embryo Size in Magnesium and its Dependence on Neighboring Grains: *M. Arul Kumar*¹; Irene Beyerlein²; Carlos Tome¹; ¹Los Alamos National Laboratory; ²University of California, Santa Barbara

11:20 AM

Minimal Continuum Dislocation Dynamics Model for Slip in BCC Metals: *Roman Gröger*¹; Vaclav Vitek²; Turab Lookman³; ¹CEITEC IPM, Academy of Sciences of the Czech Republic; ²University of Pennsylvania; ³Los Alamos National Laboratory

Computational Design and Simulation of Materials (CDSM 2018): Computational Design of Materials – Computational Design of Materials: Case Studies Sponsored by: Chinese Society for Metals

Program Organizers: Alan Luo, The Ohio State University; Suveen Mathaudhu, University of California, Riverside; Yong Du, Central South University; Raymundo Arroyave, Texas A & M University; Dianzhong Li, Institute of Metal Research, Chinese Academy of Sciences; Zi-Kui Liu, The Pennsylvania State University

Tuesday AMRoom: 131CMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Jiadong Gong, Questek; Hao Chen, Tsinghua University

8:30 AM Invited

Materials-by-design: A Mechanism-based Approach: *K Ramesh*¹; ¹Johns Hopkins University

9:00 AM Invited

Computational Design of Metastable Austenite in the Advanced Transformation Induced Plasticity Steels: *Hao Chen*¹; Zongbiao Dai¹; Chi Zhang¹; Jie Su¹; Zhigang Yang¹; Boning Zhang¹; ¹Tsinghua University

9:30 AM

FUESDAY AM

Materials Design Simulator for Al-Ce Based Alloys: Aurelien Perron¹; Vincenzo Lordi¹; Orlando Rios²; David Weiss³; Scott McCall¹; Patrice Turchi¹; ¹Lawrence Livermore National Laboratory; ²Oak Ridge National Laboratory; ³Eck Industries

9:50 AM

Investigation of Order-disorder Transition in Multi-principal-element Alloys: *Xuejun Huang*¹; Jiashi Miao¹; Maryam Ghazisaeidi¹; Alan Luo¹; ¹The Ohio State University

10:10 AM Break

10:30 AM Invited

ICME-Based Computational Materials Genomic Design: Jiadong Gong¹; Greg Olson¹; ¹QuesTek Innovations

11:00 AM

Searching for Corrosion Resistant Mg Alloys Using Genetic Algorithms: Joshua Paul¹; Krista Limmer¹; Mark Tschopp¹; Santanu Chaudhuri²; ¹U.S. Army Research Laboratory; ²University of Illinois Urbana-Champaign

11:20 AM

Ultralight Metallic/Composite Materials with Architected Cellular Structures: Maryam Tabatabaei¹; Satya N. Atluri¹; ¹Texas Tech University

11:40 AM

Effect of Stability of Critical Phases in Nickel-based Superalloys: Combined Machine Learning and CALPHAD Approach: *Rajesh Jha*¹; George Dulikravich¹; ¹Florida International University

Computational Materials Discovery and Optimization – Bulk Materials: Thermal, Magnetic, and Optical Properties

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers:* Richard Hennig, University of Florida; Houlong Zhuang, Arizona State University; Arunima Singh, Lawrence Berkeley National Laboratory; Eric Homer, Brigham Young University; Francesca Tavazza, National Institute of Standards and Technology

Tuesday AM	Room: 132B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Tim Muller, Johns Hopkins University; Anubhav Jain, Lawrence Berkeley National Laboratory

8:30 AM

A Materials-informatics Approach for Finding New Hard-magnetic Phases: *Johannes Möller*¹; Georg Krugel¹; Wolfgang Körner¹; Daniel Urban¹; Christian Elsässer¹; ¹Fraunhofer IWM

8:50 AM

Design Concepts of Optimized MRI Magnet by COMSOL Multiphysics Simulation: *Akash Oraon*¹; Sudipto Ghosh¹; Shampa Aich¹; Gautam Sinha²; ¹IIT Kharagpur; ²Raja Ramanna Centre for Advanced Technology

9:10 AM

Dual Band Metamaterial Perfect Absorber Based on Mie Resonances: *Xiaoming Liu*¹; Gaowu Qin¹; ¹Northeastern University

9:30 AM

Reentrant Melting of Sodium, Magnesium and Aluminum and Possible Universal Trend: *Qijun Hong*¹; Axel van de Walle¹; ¹Brown University

9:50 AM

Search for Rare-Earth Free Permanent Magnets in Fe and Co Based Compounds by Adaptive Genetic Algorithm: Xin Zhao¹; *Cai-Zhuang Wang*¹; Balamurugan Balasubramanian²; David Sellmyer²; Manh Cuong Nguyen¹; Kai-Ming Ho¹; ¹Ames Laboratory and Department of Physics and Astronomy, Iowa State University; ²Nebraska Center for Materials and Nanoscience and Department of Physics and Astronomy, University of Nebraska

10:10 AM Break

10:30 AM Invited

Molecular Crystal Structure Prediction with Gator and Genarris: Noa Marom¹; ¹Carnegie Mellon University

11:00 AM

Determination of Thermal Transport in Solids and Liquids by Nonequilibrium Molecular Dynamics Simulations: Jonathan Severin¹; *Philippe Jund*¹; Sophie Loehlé²; ¹University of Montpellier; ²Total

11:20 AM

Economic Analysis of National Needs for Technology Infrastructure to Support the Materials Genome Initiative: *Troy Scott*¹; Alan O'Connor¹; Gregory Tassey²; Amanda Walsh¹; Benjamin Anderson¹; ¹RTI International; ²University of Washington, Economic Policy Research Center

Computational Materials Science and Engineering for Nuclear Energy – Structural Materials I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Haixuan Xu, University of Tennessee; Michael Tonks, Pennsylvania State University; Blas Uberuaga, Los Alamos National Laboratory; James Morris, Oak Ridge National Laboratory

Tuesday AM	Room: 102B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Xian-Ming Bai, Virginia Tech ; Estelle Meslin, CEA

8:30 AM Invited

Fundamentals of Energy Dissipation and Defect Energetics of Maximally Disordered Alloys: *Malcolm Stocks*¹; Sai Mu¹; Shijun Zhao¹; Raina Olsen¹; German Samolyuk¹; Bennet Larson¹; Thom Berlijn¹; Sebastian Wimmer¹; Sergiy Mankovsky¹; Hubert Ebert¹; Biswanath Dutta¹; Tilmann Hickel¹; ¹Oak Ridge National Laboratory

9:00 AM

Density Functional Theory Simulations of Clusters in Reactor Pressure Vessel Steels: *Thomas Whiting*¹; Daniel King¹; Patrick Burr²; Mark Wenman¹; ¹Imperial College London; ²University of New South Wales

9:20 AM

Molecular Dynamics Study of Irradiation Damage in Nano-grain Sized Polycrystal: *Peyman Saidi*¹; Cong Dai¹; Zhongwen Yao¹; Mark Daymond¹; ¹Queen's University

9:40 AM

Ab Initio Modeling of Vacancy-type Defects in a High Entropy Alloy: *Congyi Li*¹; George Stocks²; Brian Wirth³; Steve Zinkle³; ¹Bredesen Center; ²Oak Ridge National Lab; ³University of Tennessee, Knoxville

10:00 AM Break

10:20 AM

Calculating Free Energies of Metal-He Interfaces from Atomic Models: Sanket Navale¹; Michael Demkowicz²; ¹Massachusetts Institute of Technology; ²Texas A&M University

10:40 AM

Simulation of Phosphorous Migration to Grain-boundary by Molecular Dynamics: *Ken-ichi Ebihara*¹; Tomoaki Suzudo¹; Masatake Yamaguchi¹; ¹Japan Atomic Energy Agency

11:00 AM

Rate Theory Modeling of Fission Gas Behavior in Ion Implantation Experiment: *Xin Xie*¹; Wenhua Zhang¹; Yedong Gao¹; Jing Liu¹; Hang Zang¹; Wenbo Liu¹; Bo Zhang¹; Di Yun¹; ¹Xi²an Jiaotong University

11:20 AM Invited

Radiation Damage in Carbon-based Materials: Nigel Marks¹; ¹Curtin University

Computational Thermodynamics and Kinetics – Transport and Structure

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Elif Ertekin, University of Illinois; Shawn Coleman, U.S. Army Research Laboratory; Brent Fultz, California Institute of Technology; Richard Hennig, University of Florida; Suveen Mathaudhu, University of California, Riverside

Tuesday AM March 13, 2018 Room: 128A Location: Phoenix Convention Center

Session Chairs: Marco Bernardi, Caltech; Brent Fultz, California Institute of Technology

8:30 AM

Numerical Evaluation of Ionic Conducting Properties of SrTi_{1-x}Fe_xO₃₋₆ Solid Solutions: *Namhoon Kim*¹; Bin Ouyang¹; Nicola Perry²; Elif Ertekin¹; ¹University of Illinois; ²Kyushu University

8:50 AM

Thermal Magnon-phonon Interaction in Pd₃Fe: *Fred (Chae-Reem) Yang*¹; Olle Hellman¹; Matthew Lucas²; Brent Fultz¹; ¹California Institute of Technology; ²Air Force Research Laboratory

9:10 AM Invited

Advances in Computing Charge Carrier Dynamics from First Principles: Marco Bernardi¹; ¹Caltech

9:40 AM

Extension of the Stability Range of Tau-10 Phase in Al-Fe-Si Alloy: Cluster Expansion Approach: *Biswas Rijal*¹; Richard Hennig¹; Michele Manuel¹; Sujeily Soto¹; ¹University of Florida

10:00 AM Break

10:20 AM

First-principles Calculations of Bulk and Interfacial Thermodynamic Properties for Al-Li and Al-Cu-Li Alloys: *Bi-Cheng Zhou*¹; Kyoungdoc Kim¹; Christopher Wolverton¹; ¹Northwestern University

11:40 AM

Oxygen Diffusion around (10-12) Twin Boundary in Ti: *Mohammad Shahriar Hooshmand*¹; Maryam Ghazisaeidi¹; ¹The Ohio State University

Coupling Advanced Characterization and Modeling Tools for Understanding Fundamental Phase Transformation Mechanisms: An MPMD Symposium in Honor of Hamish Fraser – Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Integrated Computational Materials Engineering Committee *Program Organizers:* Gregory Thompson, University of Alabama; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; Soumya Nag, GE Global Research; Rajarshi Banerjee, University of North Texas

Tuesday AM	Room: 127A
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Rajarshi Banerjee, University of North Texas

8:30 AM Introductory Comments: Symposium Organizers

8:35 AM Invited

Fun-research and Some Exciting Results (FRASER): Michael Loretto¹; ¹University of Birmingham

9:05 AM Invited

Phase Stability of Nanostructured Steel Studied by Atom Probe Tomography and the Defactant Concept: Reiner Kirchheim¹; ¹University of Goettingen

9:35 AM Invited

Lattice Site Correspondence in Active Eutectoid Decomposition in Ti-Cu and Zr-Cu Alloys: Harish Donthula¹; Raghvendra Tewari¹; Rajarshi Banerjee²; Gautam Dey¹; *Srikumar Banerjee*¹; ¹Bhabha Atomic Research Centre; ²University of North Texas

10:05 AM Break

10:25 AM Invited

Steel Ab Initio: Atomic Scale Characterization and Modeling in the Development of High Strength Steels: *J. Mayer*¹; M. Beigmohamadi²; M. Lipinska-Chwalek¹; Tilmann Hickel³; T. Scheu⁴; Christian Liebscher⁴; Dierk Raabe⁴; James Wittig⁵; ¹RWTH Aachen University; ²Ernst Ruska Centre; ³Max-Planck-Institut fuer Eisenforschung GmbH; ⁴Max-Planck-Institut für Eisenforschung; ⁵Vanderbilt University

10:55 AM Invited

Thermoelastic Equilibrium and Superfunctionality of Pre-transitional Materials: Superelasticity, Supermagnetostriction, Invar and Elinvar Effects: Armen Khachaturyan¹; Weifeng Rao²; Ye-Chuan Xu²; John Morris²; ¹Rutgers University; ²Nanjing University of Information Science and Technology

11:25 AM Invited

Phase Separation and Atomic Ordering in Mixed III – V Epitaxial Layers: *Subhash Mahajan*¹; ¹University of California

Coupling Experiments and Modeling to Understand Plasticity and Failure – Plasticity Induced Damage

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Sangid, Purdue University; Philip Eisenlohr, Michigan State University; Matthew Miller, Cornell University; Paul Shade, Air Force Research Laboratory

Tuesday AMRoom: 126BMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Matt Miller, Cornell University; Bill Musinski, Air Force Research Laboratory,

8:30 AM Invited

Coupled Experiment and Modelling to Study Grain Orientation and Interaction Effects. Part 1: *Jette Oddershede*¹; Grethe Winther²; ¹Xnovo Technology, Denmark; ²Department of Mechanical Engineering, Technical University of Denmark

8:55 AM Invited

Coupled Experiment and Modelling to Study Grain Orientation and Interaction Effects. Part 2: *Grethe Winther*¹; Jette Oddershede²; ¹Technical University of Denmark; ²Xnovo Technology, Denmark

9:20 AM

TECHNICAL PROGRAM

On the Role of Casting Pores in the Fatigue Damage Process of a Cast Aluminium Alloy: *Marcel Wicke*¹; Martin Luetje¹; Inigo Bacaicoa¹; Angelika Brueckner-Foit¹; ¹University of Kassel

9:40 AM Invited

Simulation Study on Plasticity and Fracture in Aluminum Based on Real Microstructures: *Martin Diehl*¹; Pratheek Shanthraj¹; Franz Roters¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH

10:05 AM Break

10:25 AM Invited

Using 3D Microstructure Characterization to Study the Mechanics of Polycrystalline Materials: *Henry Proudhon*¹; Wolfgang Ludwig²; Jean-Charles Stinville³; William Lenthe³; McLean Echlin³; Tresa Pollock³; ¹MINES ParisTech; ²Université de Lyon; ³University of California, Santa Barbara

10:50 AM Invited

Challenges with Virtual Sample Instantiation for Prediction of Strain Localization and Crack Initiation in Polycrystalline Ni- and Ti-base Alloys: J.C. Stinville¹; McLean Echlin¹; William Lenthe¹; Toby Francis¹; *Tresa Pollock*¹; ¹University of California, Santa Barbara

11:15 AM Invited

Integrating High Energy Diffraction Microscopy Data with Crystal Plasticity Models for Strength and Damage: *Joel Bernier*¹; Darren Pagan²; Nathan Barton¹; Paul Shade³; William Musinski³; Todd Turner³; ¹Lawrence Livermore National Laboratory; ²Cornell University; ³Air Force Research Laboratory, WPAFB

11:40 AM

Microstructure Sensitive Crack Nucleation in PM Ni Alloys: Bo Chen¹; Jun Jiang¹; Fionn Dunne¹; ¹Imperial College London

Deformation and Damage Mechanisms in High Temperature Ni, Co and Fe-based Superalloys – 3A: Characterising Strain Localization in Ni-based Superalloys. 3B Characterization & Understanding of Deformation in Ni-based Superalloys

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials; Chantal Sudbrack, QuesTek Innovations, LLC; Michael Titus, Purdue University; Kinga Unocic, Oak Ridge National Laboratory; Yukinori Yamamoto, Oak Ridge National Laboratory

Tuesday AM March 13, 2018 Room: 126A Location: Phoenix Convention Center

Session Chairs: Mark Hardy, Rolls-Royce plc; Kinga Unocic, Oak Ridge National Laboratory

8:30 AM Invited

Novel Techniques for Investigation of Cyclic Plasticity in Nickel Base Polycrystals: J.C. Stinville¹; W.C. Lenthe¹; M.P. Echlin¹; P.G. Callahan¹; T.M. Pollock¹; ¹University of California, Santa Barbara

9:00 AM

High Resolution Deformation Mapping Studies of the Deformation of a Ni Superalloy: Joao Fonseca¹; Allan Harte¹; Thomas Armitage¹; Alberto Orozco-Caballero¹; ¹The University of Manchester

9:20 AM

Benchmarking Multi-scale Models with Microtensile Experiments and 3D Microstructural Characterization of René 88DT: *David Eastman*¹; Paul Shade²; Michael Uchic²; George Weber¹; Akbar Bagri¹; Somnath Ghosh¹; Will Lenthe³; Tresa Pollock³; Kevin Hemker¹; ¹Johns Hopkins University; ²AFRL; ³University of California, Santa Barbara

9:40 AM

Tailoring the Properties of a Ni-based Superalloy via Modification of the Forging Process: An ICME Approach to Fatigue Performance: *John Rotella*¹; Martin Detrois²; Sammy Tin³; Michael Sangid¹; ¹Purdue University; ²ORISE, National Energy Technology Laboratory; ³Illinois Institute of Technology

10:00 AM Break

10:20 AM Invited

New Insights into Rate Limiting Deformation Processes in Ni-base Superalloys: Tim Smith¹; Don McAllister²; Jiashi Miao²; Maryam Ghazisaeidi²; Stephen Niezgoda²; Yunzhi Wang²; *Michael Mills*²; ¹NASA Glenn Research Center; ²The Ohio State University

10:50 AM Invited

Deformation Mechanisms in Polycrystalline Superalloys: *Catherine Rae*¹; Regina Schlütter¹; Yuan Wang-Koh¹; Olivier Messe¹; ¹University of Cambridge

11:20 AM

Effects of Strain Rate and Temperature Variation on Dislocation Structures and Faults in a Polycrystalline Ni-based Superalloy: *Regina Schlütter*¹; Olivier Messé¹; Enrique Galindo-Nava¹; Thomas Jackson²; Catherine Rae¹; ¹University of Cambridge; ²Rolls-Royce plc

11:40 AM

Influence of Long Term Ageing on Deformation and Damage Behavior in Alloy 617: *Guocai Chai*¹; Guocai Chai²; Mattias Calmunger¹; Sten Johansson¹; Johan Moverare¹; ¹Linköping University; ²Sandvik Materials Technology

Design for Mechanical Behavior of Architectured Materials via Topology Optimization – Design and Topology Optimization (TO) Considering Manufacturability, Microstructure, and Surface Effects

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Natasha Vermaak, Lehigh University; Andrew Gaynor, U.S. Army Research Laboratory

Tuesday AM	Room: 132C
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Andrew Gaynor, U.S. Army Research Laboratory

8:30 AM Invited

Incorporating Material Heterogeneity in Automated Design Tools: *Michael Groeber*¹; Edwin Schwalbach¹; Michael Uchic¹; Jonathan Miller¹; Paul Shade¹; William Musinski¹; Sean Donegan¹; Daniel Sparkman¹; ¹AFRL

9:10 AM

Realizing Optimized Mesoscale 3D Architected Material Designs via Nanoparticle Assembly by Pointwise Spatial Printing: *Md Sadeq Saleh*¹; Chunshan Hu²; Rahul Panat¹; ¹Carnegie Mellon University; ²Washington State University

9:40 AM

Design of Functionally Graded Microstructures with Manufacturability: *Jaejong Park*¹; Alok Sutradhar¹; Jami J. Shah¹; ¹Ohio State University

10:10 AM Break

10:30 AM

Design for Discovery: Integrated Computational Design & Additive Manufacturing of Mechanical Metastructures with a Parametric Levelset Based Approach: *Shikui Chen*¹; ¹State University of New York at Stony Brook

11:00 AM

Efficient Microstructural Design: A Topological Sensitivity Approach: Krishnan Suresh¹; ¹University of Wisconsin, Madison

11:30 AM

Topology Optimization for Sliding Abrasive Wear of Bi-material Composites: *Xiu Jia*¹; Natasha Vermaak¹; ¹Lehigh University

Dynamic Behavior of Materials VIII – Dynamic Response of BCC Materials

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Saryu Fensin, Los Alamos National Laboratory; George Gray, Los Alamos National Laboratory; Naresh Thadhani, Georgia Institute of Technology; Kenneth Vecchio, University of California, San Diego; Marc Meyers, University of California, San Diego

Tuesday AM March 13, 2018 Room: 127B Location: Phoenix Convention Center

Session Chair: To Be Announced

8:30 AM Invited

Orientation Dependence of the Shock Response and Spall Fracture of Tantalum: *David Jones*¹; Saryu Fensin¹; Carl Trujillo¹; George Gray¹; ¹Los Alamos National Laboratory

8:50 AM

The Influence of Grain Boundary Orientation on the Strength and Failure of Tantalum: *Eric Hahn*¹; Saryu Fensin¹; Tim Germann¹; ¹Los Alamos National Laboratory

9:10 AM

Improving High Strain-rate Strength Models of Tantalum Using Atomistic Simulations: Alexander Moore¹; Hojun Lim¹; Justin Brown¹; J. Matthew Lane¹; ¹Sandia National Laboratories

9:30 AM Invited

Taylor Impact Tests of Single- and Polycrystalline Tantalum: *Hojun Lim*¹; Jay Carroll¹; Corbett Battaile¹; Hyuk Jong Bong²; Shuh-Rong Chen³; Matthew Lane¹; ¹Sandia National Laboratories; ²Pacific Northwest National Laboratory; ³Los Alamos National Laboratory

10:10 AM Break

10:30 AM Invited

Using Taylor Cylinder Impact Experiments to Investigate Dynamic Behaviors of Materials: *Shuh Rong Chen*¹; Daniel Martinez¹; Carl Trujillo¹; George (Rusty) Gray¹; ¹Los Alamos National Laboratory

11:10 AM

Shear Response of High-purity Tantalum during Quasi-static and Dynamic Loading: *Thomas Nizolek*¹; James Valdez¹; Cheng Liu¹; George Gray¹; ¹Los Alamos National Laboratory

11:30 AM

Quantifying the Role of Grain Boundaries in the Dynamic Mechanical Performance of Additively Manufactured Pure Tantalum through Micropillar Compression and Spherical Nanoindentation Experiments: Jordan Weaver¹; David Jones¹; Nan Li¹; Saryu Fensin¹; G.T. Gray¹; Nathan Mara¹; ¹Los Alamos National Laboratory

Electrode Technology Symposium for Aluminum Production – Joint Session with Aluminum Reduction

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xianan Liao, Elkem Carbon

Tuesday AM March 13, 2018

Room: 222C Location: Phoenix Convention Center

Session Chair: Egil Skybakmoen, Sintef

8:30 AM Introductory Comments

8:35 AM

Formation of Aluminium Carbide in Hall-Héroult Electrolysis Cell Environments: Bronislav Novak¹; *Arne Ratvik*²; Zhaohui Wang²; Tor Grande¹; ¹Norwegian University of Science and Technology; ²SINTEF

9:00 AM

The Research and Trial of the Aluminum Electrolysis Cells with Current Out from the Bottom: *Dongfang Zhou*¹; Yafeng Liu¹; Shaohu Tao¹; ¹Shenyang Aluminum & Magnesium Engineering & Research Institute Co.Ltd

9:25 AM

Laboratory Study of the Impact of Cathode Grade on the Formation of Deposits on the Aluminium Cathode Interface in Hall-Héroult Cells: Jean-René Landry¹; Mojtaba Fallah Fini¹; *Gervais Soucy*¹; Martin Desilets¹; Patrick Pelletier²; Loig Rivoaland³; Didier Lombard²; ¹Université de Sherbrooke; ²Rio Tinto; ³Carbone Savoie

9:50 AM

Understanding the Anode Porosity as a Means for Improved Aluminium Smelting: *Epma Putri*¹; Geoffrey Brooks¹; Graeme Snook²; Stein Rørvik³; Lorentz Petter Lossius⁴; Ingo Eick⁵; ¹Swinburne University of Technology; ²CSIRO, Mineral Resources; ³SINTEF Materials & Chemistry; ⁴Hydro Aluminium AS; ⁵Hydro Aluminium Deutschland GmbH

10:15 AM Break

10:30 AM

TUESDAY AM

Effect of Changes in Anode Top Cover Composition on Anode Butt Quality: *Ali Jassim*¹; Edouard Mofor¹; Jamil Wazir Eddin¹; Shane Polle¹; Daniel Whitfield¹; ¹Emirates Global Aluminium

10:55 AM

Inert Anodes – The Blind Alley to Environmental Friendliness?: Asbjorn Solheim¹; ¹SINTEF

11:20 AM

Role of the Porosity of Carbon Anodes in the Nucleation and Growth of Gas Bubbles: *Sandor Poncsak*¹; Laszlo Kiss¹; ¹University of Quebec at Chicoutimi

Energy Technologies and CO2 Management Symposium – Novel Energy Technologies

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Ziqi Sun, Queensland University of Technology; Cong Wang, Northeastern University; Donna Guillen, Idaho National Laboratory; Tao Wang, Nucor Steel; Neale Neelameggham, Ind LLC; John Howarter, Purdue University

Tuesday AM	Room: 224B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Xiaobo Chen, RMIT, Australia; Jian Li Kang, Tianjin Polytechnic University

8:30 AM Invited

Failure Behavior of Electrode Materials: *Cheng Yan*¹; Hansinee Sitinamaluwa¹; ¹Queensland University of Technology

8:50 AM Invited

Flexible and Hierarchical Nano-porous Catalyst with Efficient for Hydrogen Evolution Reaction: *Jianli Kang*¹; Guoliang Zhang¹; Zhijia Zhang¹; Qin Huang¹; ¹Tianjin Polytechnic University

9:10 AM Invited

Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces: Gustavo Doubek¹; ¹University of Campinas

9:30 AM Invited

Stifling Magnesium Corrosion via a Novel Anodic Coating: *Xiaobo Chen*¹; ¹RMIT

9:50 AM Break

10:10 AM

2D Metal Oxide Nanosheets for Sustainable Applications: *Ziqi Sun*¹; ¹Queensland University of Technology

10:30 AM

Vertically Aligned Ferroelectric KNbO3 Nanowire Arrays for Solar Energy Conversion: *Shun Li*¹; Boping Zhang²; Federico Rosei³; ¹Southern University of Science and Technology; ²University of Science & Technology Beijing; ³INRS

10:50 AM

Flow Characteristic of Two-phase Bubble Reactor for Slag Waste Heat Recovery: *Wenjun Duan*¹; ¹Northeastern University

11:10 AM

Two-dimensional Metal Oxide-based Nanomaterials for Energy Storage Devices: Jun Mei¹; Yuanwen Zhang¹; Ziqi Sun¹; ¹Queensland University of Technology

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention – Multi-mechanical Interactions During Extreme Environment Fatigue Loadings

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee *Program Organizers:* Ashley Spear, University of Utah; Jean-Briac le Graverend, Texas A&M University; Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky

Tuesday AMRoom: 125BMarch 13, 2018Location: Phoenix Convention Center

Session Chair: Jean-Briac le Graverend, Texas A&M University

8:30 AM

Investigation of Slip Transfer across Phase Boundaries with Application to Cold Dwell Facet Fatigue: Zebang Zheng¹; Daniel Balint¹; Fionn Dunne¹; ¹Imperial College London

8:50 AM

Temperature and Microstructural Dependence of Dwell Fatigue in Dualphase Titanium Alloys: *Michelle Harr*¹; Samantha Daly²; Adam Pilchak³; ¹University of Michigan; ²University of California Santa Barbara; ³Air Force Research Laboratory

9:10 AM

The Effect of Dwell on Fatigue Crack Growth in a Ti-6Al-2Sn-4Zr-6Mo Alloy: *Georgia Mills*¹; Hangyue Li²; S. Williams³; P. Bowen¹; ¹University of Birmingham; ²The University of Birmingham; ³Rolls-Royce plc

9:30 AM

Characterization of Creep-fatigue Deformation in 9Cr-1MoV Steel and Weldments: *Harrison Whitt*¹; Tyler Payton¹; Wei Zhang¹; Michael Mills¹; ¹The Ohio State University

9:50 AM Break

10:10 AM

Modeling of Creep-fatigue Crack Growth in Steels for High Temperature Structural Applications: Jose J. Ramirez¹; *Gabriel P. Potirniche*¹; Harrison Pugesek¹; Martin Taylor¹; Robert Stephens¹; Indrajit Charit¹; ¹University of Idaho

10:30 AM

Thermal Fatigue Behavior of High Cr Roller Steel: *Goran Kugler*¹; David Bombac²; Milan Tercelj¹; ¹University of Ljubljana, NTF-OMM; ²University of Cambridge

Fracture: 65 Years after the Weibull Distribution and the Williams Singularity – Session III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Brad Boyce, Sandia National Laboratories; Ellen Cerreta, Los Alamos National Laboratory; Jacob Hochhalter, NASA LaRC; Jonathan Zimmerman, Sandia National Laboratories

Tuesday AM	Room: 128B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Jacob Hochhalter, NASA; Ashley Spear, University of Utah

8:30 AM Invited

Trends in Microstructure-sensitive Computational Approaches to Fatigue Cracking: David McDowell¹; ¹Georgia Institute of Technology

9:00 AM Invited

A Data-driven Approach to Predict Microstructurally Small Crack Evolution: Kyle Pierson¹; Jacob Hochhalter²; P. Thomas Fletcher¹; *Ashley Spear*¹; ¹University of Utah; ²NASA Langley Research Center

9:30 AM Invited

Composite Overwrapped Pressure Vessel (COPV) Life Test: *Richard Russell*¹; David Dawicke²; Jacob Hochhalter¹; ¹NASA; ²Analytical Services and Materials, Inc.

10:00 AM Break

10:20 AM Invited

Forward Propagation of Random Microstructural Features for Reliability Estimates of Engineering Structures: *John Emery*¹; Peter Coffin¹; Brian Robbins¹; Samuel Bowie²; Jay Carroll¹; ¹Sandia National Laboratories; ²Georgia Tech

10:50 AM

Grain and Sub-grain Level Strains ahead of an Evolving Fatigue Short Crack as Measured by X-ray Techniques: *Diwakar Naragani*¹; Michael Sangid¹; Paul Shade²; Peter Kenesei³; Hemant Sharma³; ¹Purdue University; ²Air Force Research Laboratory; ³Argonne National Laboratory

11:10 AM Invited

Using R-curves to Predict Fatigue Behavior in Crack Bridging Toughened Ceramics: Jamie Kruzic¹; ¹UNSW Australia

Frontiers in Advanced Functional Thin Films and Nanostructured Materials – Session III

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Army Research Office; Srinivasa Rao Singamaneni, The University of Texas at El Paso; Haiyan Wang, Purdue University; Nuggehalli Ravindra, New Jersey Institute of Technology; Raj Singh, Oklahoma State University; Amit Pandey, LG Fuel Cell Systems Inc.

Tuesday AM	Room: 103A
March 13, 2018	Location: Phoenix Convention Center

Funding support provided by: Quantum Design and Radiant Technologies

Session Chairs: Amit Pandey, LG-Fuel Cell Systems; R. Singh, Oklahoma State University

8:30 AM Invited

Stabilization of Nanocrystalline Grain Size at Elevated Temperatures: Theory and Experiment: Carl Koch¹; ¹North Carolina State University

8:55AM Invited

Nanoscience and Nanotechnology Using Energetic Ion Beams/Gamma Radiation/Lasers: Anand Pathak¹; S. V. S. Rao¹; V. S. Vendamani¹; M. Dhanunjaya¹; S. Rao¹; ¹University of Hyderabad

9:15AM

Hydrogen Plasma Annealing of E-Beam Evaporated SiO2 Tunnel Barriers: *Matthew Filmer*¹; Gregory Snider¹; Alexei Orlov¹; ¹University of Notre Dame

9:35 AM Invited

Thin Film and Coatings for Biomaterials Applications: *Adele Carradò*¹; ¹Université de Strasbourg IPCMS

10:00 AM Break

10:15 AM Invited

Structures and Mechanical Behavior of Metal-metal Nitride Nanolayered Films: *Amit Misra*¹; ¹University of Michigan

10:40 AM

Engineering Elastic Strain Gradients to Tune the Electrical Properties of Semiconductors for Thermoelectric Applications: *Eric Yao*¹; Gyuseok Kim²; Brian Piccione²; Jungho Shin²; Daniel Gianola¹; ¹University of California, Santa Barbara; ²University of Pennsylvania

11:00 AM

An Investigation of the Relationship between Mechanical and Optical Properties of Transparent Metal Oxide Multilayers: Chelsea Appleget¹; Andrea Hodge¹; ¹University of Southern California

11:20 AM

Unravelling Defects in Hybrid Perovskite Solar Cell Structures: C. Saiz¹; L. M. Martinez¹; Srinivasa Rao Singamaneni¹; ¹The University of Texas at El Paso

High Entropy Alloys VI – Structures and Mechanical Properties I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Tuesday AM March 13, 2018 Room: 121B Location: Phoenix Convention Center

Session Chairs: Dan Miracle, AF Research Laboratory; Carl Lundin, The University of Tennessee, Knoxville

8:30 AM Invited

Influence of Crystal Defects upon Phase Stability of High Entropy Alloys: Mingwei Chen¹; ¹Johns Hopkins University

8:50 AM Invited

Mechanical Properties and Strengthening Mechanisms of Concentrated Solid Solution and High Entropy Alloys: *Hongbin Bei*¹; Zhenggang Wu¹; Yanfei Gao²; ¹Oak Ridge National Laboratory; ²Oak Ridge National Laboratory and The University of Tennessee

9:10 AM Keynote

High Entropy Alloys, High throughput Experiments and High Temperature Materials: *Dan Miracle*¹; ¹AF Research Laboratory, Materials and Manufacturing Directorate

9:30 AM Invited

Solid Solution Softening of an Equiatomic Ternary Refractory Alloy by Additional Alloying with a Fourth Element: Oleg Senkov¹; Satish Rao¹; Christopher Woodward¹; Adam Pilchak¹; S. Semiatin¹; ¹Air Force Research Laboratory

9:50 AM Invited

Effects of Chemical Disorder on Radiation Response in Mediumand High-entropy Alloys: Yanwen Zhang¹; Gihan Velisa¹; Shijun Zhao¹; Mohammad Ullah¹; Ke Jin¹; Chenyang Lu²; Fuxiang Zhang¹; Hongbin Bei¹; Lumin wang2; William Weber3; 1Oak Ridge National Laboratory; 2University of Michigan; 3University of Tennessee

10:10 AM Break

10:25 AM Invited

Continued and Expanded Studies on Fusion Welds in High Entropy Alloys: Carl Lundin¹; John Bohling¹; Joshua Burgess²; Cameron Hale¹; Maneel Bharadwaj³; Peter Liaw¹; ¹University of Tennessee; ²GE Power; ³John Deere

10:45 AM Invited

Evolution of Microstructure, Texture and Strength during Severe Plastic Deformation of CrMnFeCoNi High-entropy Alloy: Werner Skrotzki¹; Aurimas Pukenas¹; Bertalan Joni²; Eva Odor²; Tamas Ungar²; Anton Hohenwarter³; Reihard Pippan³; Easo George⁴; ¹Dresden University of Technology; ²Eötvös University Budapest; ³Montanuniversität Leoben; ⁴Oak Ridge National Laboratory

11:05 AM

Orientation Dependence of the Mechanical Response and Microstructural Evolution of NiCoCr Single Crystal Medium Entropy Alloys: Benay Uzer¹; Sezer Picak²; Jun Liu²; Demircan Canadinc¹; Yuri I. Chumlyakov³; Ibrahim Karaman²; ¹Koc University; ²Texas A&M University; ³Tomsk State University

11:25 AM Invited

Processing, Structure and Tensile Behavior of a Nano-lamellar Eutectic AlCoCrFeNi2.1 High Entropy Alloy: Pinaki Bhattacharjee1; Irfan Wani1; Tilak Bhattacharjee²; Saad Sheikh³; Sheng Guo³; Nobuhiro Tsuji²; ¹IIT hyderabad; ²Kyoto University; ³Chalmers University

11:45 AM Invited

Carbon and Nitrogen Co-doping in an Equiatomic High-entropy Alloy: Zhiming Li¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung

12:05 PM Invited

Effect of Cellular Structure on Mechanical Property in None-equal Molar AlCoCrFeNiTi High Entropy Alloy: Che-Wei Tsai¹; Chia-Ming Kuo¹; ¹National Tsing Hua University

Hume-Rothery Award Symposium: Computational Thermodynamics and Its Implications to Kinetics, Properties, and Materials Design – CALPHAD Methods

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Suveen Mathaudhu, University of California, Riverside; Michael Gao, National Energy Technology Lab; Chelsey Hargather, New Mexico Institute of Mining and Technology; Richard Hennig, University of Florida; James Saal, QuesTek Innovations; Dongwon Shin, Oak Ridge National Laboratory

Tuesday AM	Room: 127C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Michael Gao, National Energy Technology Lab; Carelyn Campbell, National Institute of Standards and Technology

8:30 AM Invited

Software Tools for High-throughput CALPHAD from First-principles Data: Axel van de Walle¹; Ruoshi Sun¹; Qijun Hong¹; Sara Kadkhodaei¹; ¹Brown University

9:00 AM Invited

Computational Design of High Entropy Alloys: CALPHAD and Atomistic Simulation: Won-Mi Choi¹; Byeong-Joo Lee¹; ¹Pohang University of Science and Technology

9:30 AM Invited

CALPHAD, Are We There Yet?: Ursula Kattner1; 1National Institute of Standards and Technology

10:00 AM Break

10:20 AM Invited

Computational Thermodynamics in the Y-Si-C-H-O System: Hans Seifert¹; ¹Karlsruhe Institute of Technology (KIT)

10:50 AM Invited

Thermodynamic and Kinetic Modeling of Solidification and Precipitation Microstructure in Magnesium Allovs: Jiashi Miao1; Chuan Zhang2; Weihua Sun¹; Andrew Klarner¹; Fan Zhang²; Alan Luo¹; ¹The Ohio State University; ²CompuTherm LLC

11:20 AM Invited

Accurate Energetics beyond the Semilocal Density Functional Theory: Focusing on Transition Metal Disulfides and Cu2ZnSnS4-related Sulfides: Shun-Li Shang¹; Yi Wang¹; Tim Anderson²; Zi-Kui Liu¹; ¹Pennsylvania State University; 2University of Florida

11:50 AM Invited

Serving up CALPHAD Data to Build Better Databases and Design New Materials: Carelyn Campbell¹; ¹National Institute of Standards and Technology

Integrative Materials Design III: Performance and Sustainability – Advanced Materials Characterization & Multi-scale Computational Modeling for Integrative **Design and Reliability**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee Program Organizers: Diana A. Lados, Worcester Polytechnic Institute; Brad Boyce, Sandia National Laboratories; Corbett Battaile, Sandia National Laboratories; Anastasios Gavras, Riley Power

Tuesday AM March 13, 2018

Room: 132A Location: Phoenix Convention Center

Session Chairs: Corbett Battaile, Sandia National Laboratories; Tiantian Zhang, Worcester Polytechnic Institute

8:30 AM Invited

The Hierarchy of Microstructure Parameters Affecting Tensile Ductility in Cast and Forged Ti-834 Alloy during High Temperature Exposure: Soran Birosca1; 1Swansea University

8:50 AM

Plasticity in Textured Ti-6Al-4V under Tensile and Dwell-fatigue Loading: Tiantian Zhang¹; Diana Lados¹; ¹Worcester Polytechnic Institute

9:10 AM Invited

3D Tomography for Graphite Morphology Characterizations in Cast Irons Using High-energy X-rays: Dileep Singh¹; Chih-Pin Chuang¹; John Hryn1; Jonathan Almer1; Peter Kenesei1; 1Argonne National Laboratory

9.30 AM

In Situ Study of Strain Partitioning and Damage in Carbide Free Bainitic Steels Using Micro Digital Image Correlation: Ankit Kumar¹; Aniruddha Dutta2; Roumen Petrov3; Jilt Sietsma1; 1Delft University of Technology; 2Max-Planck-Institut für Eisenforschung GmbH; 3Ghent University

9:50 AM

Experimental and Computational Studies of Fatigue Crack Propagation in Cast Al-Si Alloys Containing Secondary Phases: Tiantian Zhang¹; Anthony Spangenberger¹; Diana Lados¹; ¹Worcester Polytechnic Institute

10:10 AM Break

10:25 AM Invited

Constitutive Model Development and Validation via Mesoscale X-ray Diffraction Data: *Joel Bernier*¹; Paul Shade²; Todd Turner²; Darren Pagan³; David Menasche⁴; ¹Lawrence Livermore National Laboratory; ²Air Force Research Laboratory (WPAFB); ³Cornell High Energy Synchrotron Source; ⁴Hamiltonian Group, LLC

10:45 AM Invited

Insights into Multiscale Deformation Phenomena from In Situ TEM Nanomechnical Testing: Andrew Minor¹; ¹University of California, Berkeley & LBL

11:05 AM Invited

Deformation Twinning as a Design Parameter for Magnesium Alloys: *Antonios Kontsos*¹; ¹Drexel University

11:25 AM Invited

Heterogeneous Deformation in High Purity Niobium: *Thomas Bieler*¹; Mingmin Wang¹; Di Kang¹; Derek Baars¹; Aboozar Mapar¹; Eureka Pai¹; Tias Maiti¹; Pulkit Garg²; Philip Eisenlohr¹; Farhang Pourboghrat³; Kiran Solanki²; ¹Michigan State University; ²Arizona State University; ³The Ohio State University

11:45 AM

A Multi-scale Model for Plasticity in BCC Metals: *Corbett Battaile*¹; Hojun Lim¹; Christopher Weinberger²; ¹Sandia National Laboratories; ²Colorado State University

Looking through the Kaleidoscope: Discovering Your Path to Leadership – Morning Session

Program Organizers: Emily Bautista, Virginia Tech; Mackenzie Jones, Virginia Tech; Thomas Maulbeck, Virginia Tech; Rose Roberts, Virginia Tech

Tuesday AM	Room: 124B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Emily Bautista, Virginia Tech; Mackenzie Jones, Virginia Tech; Thomas Maulbeck, Virginia Tech; Rose Roberts, Virginia Tech

8:30 AM Invited

Materials Entrepreneurship as a Young Scientist: Michael Gibson¹; ¹Desktop Metal

8:50 AM Invited

When to Step Up: Amanda Krause1; 1Lehigh University; GrainBound, Inc.

9:10 AM Invited

Leadership within Different Spheres: David Williams¹; ¹The Ohio State University

9:30 AM

Student Leadership: Igniting the Spark within Yourself and at Your University: *Emily Bautista*¹; ¹Virginia Tech

9:50 AM Panel Discussion

10:10 AM Break

10:30 AM Invited

Technical Leadership: Risk vs Comfort: *Christopher O'Brien*¹; ¹ATI Specialty Materials

10:50 AM Invited

Materials Design: Leading by Example: *Greg Olson*¹; ¹Northwestern University

11:10 AM

Overcoming Challenges for Minorities in Leadership: *Michele Manuel*¹; Martin Thuo²; ¹University of Florida; ²Iowa State University

11:30 AM Panel Discussion

Magnesium Alloy Development: An LMD Symposium in Honor of Karl Kainer – Cast Alloys

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Norbert Hort, Helmholtz-Zentrum Geesthacht; Alan Luo, The Ohio State University

Tuesday AM March 13, 2018 Room: 223 Location: Phoenix Convention Center

Session Chairs: Norbert Hort, Helmholtz-Zentrum Geesthacht; Alan Luo, The Ohio State University

8:30 AM Introductory Comments

8:35 AM Keynote

Solutions for Next Generation Automotive Lightweight Concepts Based on Material Selection and Functional Integration: *Horst Friedrich*¹; Elmar Beeh¹; Carmen Roider¹; ¹Institute of Vehicle Concepts, German Aerospace Centre (DLR)

9:05 AM Keynote

Recent Developments in the Application of the Interdependence Model of Grain Formation and Refinement: David St.John¹; ¹University of Queensland

9:35 AM Invited

Development of Magnesium-Rare Earth Die-casting Alloys: *Mark Easton*¹; Mark Gibson²; Suming Zhu¹; Trevor Abbott³; Jian-Feng Nie⁴; Colleen Bettles⁴; Gary Savage²; ¹Royal Melbourne Institute of Technology University; ²CSIRO; ³Magontec; ⁴Monash University

9:55 AM Break

10:10 AM Keynote

Magnesium Pistons in Engines: Fiction or Fact?: Norbert Hort¹; Hajo Dieringa¹; Karl Kainer¹; ¹Helmholtz-Zentrum Geesthacht

10:40 AM

Thermodynamics of Phase Formation in Mg–Al–C Alloys Applied to Grain Refinement: *Guillaume Deffrennes*¹; Bruno Gardiola¹; Marc Lomello²; Jérôme Andrieux¹; Olivier Dezellus¹; Rainer Schmid-Fetzer³; ¹Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces; ²Université Savoie Mont Blanc, SYMME; ³Institute of Metallurgy, Clausthal University of Technology

11:00 AM

Creep Resistant Mg-Mn Based Alloys for Automotive Powertrain Applications: Mert Celikin¹; Mihriban Pekguleryuz¹; ¹McGill University

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Fuels II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Tuesda	ay A	M
March	13,	2018

Room: 104B Location: Phoenix Convention Center

Session Chairs: Yongho Sohn, University of Central Florida; Isabella van Rooyen, Idaho National Laboratory

8:30 AM Invited

Experimental Studies on Microstructure and Mechanical Properties of High Burnup Urania: *Kurt Terrani*¹; Chad Parish¹; Mehdi Balooch¹; Tyler Gerczak¹; Philip Edmondson¹; ¹Oak Ridge National Laboratory

8:50 AM

Advanced Characterization of Irradiated UO2 Fuel: *Lingfeng He*¹; David Shuh²; Xianming Bai³; Michael Moorehead¹; Brandon Miller¹; Claude Degueldre⁴; Jason Harp¹; ¹Idaho National Laboratory; ²Lawrence Berkeley National Laboratory; ³Virginia Polytechnic Institute and State University; ⁴Lancaster University

9:10 AM

In-situ Elevated Temperature Micro-cantilever Testing of UO₂: David Frazer¹; Benjamin Shaffer²; Pedro Peralta²; Peter Hosemann¹; ¹University of California, Berkeley; ²Arizona State University

9:30 AM

Microstructural Characterization of Plutonium Based Fuels: Assel Aitkaliyeva¹; Cynthia Papesch²; ¹University of Florida; ²Idaho National Laboratory

9:50 AM

Phase Verification and Thermophysical Properties of Pu-Zr Alloys: *Cynthia Papesch*¹; Assel Aitkaliyeva²; ¹Idaho National Laboratory; ²University of Florida

10:10 AM Break

10:30 AM

Electron Microscopy Analysis of TRISO Fuel Particles with Failed SiC Layers from the AGR-2 Irradiation: *Tyler Gerczak*¹; John Hunn¹; ¹Oak Ridge National Laboratory

10:50 AM

Chemical and Microstructural Analysis of Irradiated Mixed Oxide Fuels: *Riley Parrish*¹; Jason Harp²; Assel Aitkaliyeva³; ¹University of Florida; ²Idaho National Laboratory; ³University of Florida, Idaho National Laboratory

11:10 AM

Improvements and Applications of the FAST Fuel Model to Thoriumbased and Mixed Oxide Fuels: Andrew Prudil¹; *John Bell*²; Evan Thomas³; Michael Welland¹; Paul Chan²; ¹Canadian Nuclear Laboratories; ²Royal Military College of Canada; ³McMaster University

11:30 AM

Non-destructive 3D Neutron Imaging of Composition in Nuclear Fuels: *Adrian Losko*¹; Sven Vogel¹; Mark Bourke¹; Kenneth McClellan¹; Andy Nelson¹; Darrin Byler¹; Michael Mocko¹; ¹Los Alamos National Laboratory

Materials for Energy Conversion and Storage – Solid Oxide Fuel Cells II

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee *Program Organizers:* Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Tuesday AM	Room: 229B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Soumendra N. Basu, Boston University; Uday Pal, Boston University

8:30 AM Invited

Active Sites for Surface Exchange Reaction on Dual-phae-type Mixed Conductors: Takuya Hatakeyama¹; Itaru Oikawa¹; *Hitoshi Takamura*¹; ¹Tohoku University

8:55 AM Invited

Nano-tailoring of Infiltrated Catalysts for Solid Oxide Regenerative Fuel Cells: *Kyung Joong Yoon*¹; ¹Korea Institute of Science and Technology

9:20 AM

Phase-field Modeling of Microstructure Evolution in SOFC Electrodes: Yinkai Lei¹; Tianle Cheng¹; *Youhai Wen*¹; ¹National Energy Technology Laboratory

9:40 AM Invited

Unravelling the Mystery of Interlayers and their Role on SOFC Durability: *Xiao-Dong Zhou*¹; Emir Dogdibegovic²; ¹University of Louisiana at Lafayette; ²University of South Carolina

10:05 AM Break

10:20 AM Invited

Rare Earth Nickelate Cathodes for SOFCs for Enhanced Oxygen Partial Pressure Operation: Jane Banner¹; Srikanth Gopalan¹; ¹Boston University

10:45 AM

Direct Performance Simulation Based on the Microstructure of SOFC Electrodes: A Phase Field Approach: Yinkai Lei¹; Tian-Le Cheng¹; You-Hai Wen¹; ¹National Energy Technology Laboratory

11:05 AM

Solid Oxide Fuel Cell-battery Hybrid Electrochemical System for Electricity Grid Stability: *Xiaofei Guan*¹; Jun Jiang¹; Shriram Ramanathan²; ¹Harvard University; ²Purdue University

11:25 AM Invited

Infiltration of SOFC Anodes with Stable Nano-catalysts for Performance Improvement: Yanchen Lu¹; Paul Gasper¹; Boshan Mo¹; Uday Pal¹; Srikanth Gopalan¹; *Soumendra Basu*¹; ¹Boston University

11:50 AM Invited

Scalable Nano-electrocatalyst Engineering Technique for Activation and Stabilization of SOFC Cathode: *Shiwoo Lee*¹; Navjot Sandhu²; Thomas Kalapos¹; Kirk Gerdes²; Gregory Hackett²; ¹AECOM / National Energy Technology Laboratory; ²National Energy Technology Laboratory

Materials Innovation Keynote – Big Data and Machine Learning for Materials

Program Organizers: Čarelyn Campbell, National Institute of Standards and Technology; Katsuyo Thornton, University of Michigan

Tuesday AM March 13, 2018 Room: 129B Location: Phoenix Convention Center

Session Chairs: Carelyn Campbell, National Institute of Standards and Technology; Katsuyo Thornton, University of Michigan

8:30 AM Introductory Comments

8:35 AM Keynote

Big Data for Materials R&D, Deployment, and Lifecycle: *Jed Pitera*¹; ¹IBM Research - Almaden

9:15 AM Keynote

How Materials Science Can Capitalize on Advances in Computer Science through Data Science and Machine Learning: *Elizabeth Holm*¹; ¹Carnegie Mellon University

9:55 AM Question and Answer Period

10:15 AM Break

10:30 AM Keynote

Perspectives on Data Intensive Science from the DOE Office of Science: *Laura Biven*¹; ¹US Department of Energy

11:10 AM Keynote

Going Smart and Deep on Materials: *Ian Foster*¹; ¹University of Chicago and Argonne National Laboratory

11:50 AM Question and Answer Period

Materials Processing Fundamentals – Multiphysics - Process Modeling and Sensing

Sponsored by: TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Guillaume Lambotte, Boston Electromet; Antoine Allanore, Massachusetts Institute of Technology; Jonghyun Lee, Iowa State University; Samuel Wagstaff, Novelis

Tuesday AM	Room: 228A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Jonghyun Lee, Iowa State University; Samuel Wagstaff, Novelis

8:30 AM

Convection-Diffusion Model of Lithium-Bismuth Liquid Metal Batteries: *Rakan Ashour*¹; Douglas Kelley¹; ¹University of Rochester

8:50 AM

Electrovortex Flow in Metal Melts: Experiment and Simulation: *Douglas Kelley*¹; Rakan Ashour¹; Alejandro Salas²; Norbert Weber²; Tom Weier²; ¹University of Rochester; ²Helmholtz-Zentrum Dresden-Rossendorf

9:10 AM

Surface Tension and Viscosity of Gamma-TiAl Alloys and Ti6Al4V Measured in Containerless Electromagnetic Processing under Reduced Gravity Conditions: *Rainer Wunderlich*¹; Ulrike Hecht²; Hans-Jörg Fecht¹; ¹Ulm University; ²ACCESS eV

9:30 AM

Interface Fields Affecting Solidification Microstructure: Martin Glicksman¹; Kumar Ankit²; ¹Florida Institute of Technology; ²Arizona State University

9:50 AM

Chalcogenide Melts Study for High Temperature Thermoelectricity: Youyang Zhao¹; *Antoine Allanore*¹; ¹Massachusetts Institute of Technology

10:10 AM Break

10:30 AM

Ultrasound for Next-generation Alloy Casting: *Bitong Wang*¹; Andrew Caldwell²; Antoine Allanore²; Douglas Kelley¹; ¹University of Rochester; ²Massachusetts Institute of Technology

10:50 AM

The Internet of Things (IoT) for Casting with 3D Printed Sand Molds: Jason Walker¹; Brian Vuksanovich¹; Brett Conner¹; Guha Manogharan¹; Rich Lonardo¹; Gerard Thiel¹; Kirk Rogers¹; Eric MacDonald¹; ¹Youngstown State University

11:10 AM

Study on Emulsion Phenomena and Field Flow Pattern in Side-blown Copper Smelting Process: *Xiaolong Li*¹; Zhang Ting'an¹; Yan Liu¹; Dongxing Wang¹; ¹Northeastern University

11:30 AM

Study on Minimum Starting Energy of Self-stirring Reactor Driven by Pressure Energy: Zimu Zhang¹; Qiuyue Zhao¹; Maoyuan Li¹; Xuhuan Guo¹; Dianhua Zhang¹; Zhang Ting'an¹; ¹Northeastern University

11:50 AM

Spatio-temporal Evolution Modeling of the Laser Helical Drilling with Femtosecond Pulses: Xiaoji Li¹; *Yiwei Dong*¹; Qi Zhao¹; Ertai Wang¹; ¹Xiamen University

Mechanical Behavior at the Nanoscale IV – Nanolayers and Nanocomposites

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Tuesday AM March 13, 2018 Room: 101C Location: Phoenix Convention Center

Session Chairs: Tim Rupert, UCI; Mao Scott, University of Plttsburgh

8:30 AM Invited

Small-scale Mechanical Testing of Hierarchical Nanostructured Materials: *Timothy Rupert*¹; ¹University of California, Irvine

9:00 AM

Fracture of Cu-Nb Multilayer Films on Polyimide: Megan Cordill¹; David Economy²; Marian Kennedy²; ¹Erich Schmid Institute of Materials Science; ²Clemson University

9:20 AM

A Multiscale Investigation of Core-shell Nanostructures Using the Coupled Atomistic and Discrete Dislocation Method: Scott Muller¹; Arun Nair¹; ¹University of Arkansas

9:40 AM

Thickness Dependent Strain Rate Sensitivity in Metallic Nanolayers: *Yue Liu*¹; Jennifer Hay²; Engang Fu³; Xinghang Zhang⁴; ¹Shanghai Jiao Tong University; ²Nanomechanics, Inc.; ³Peking University; ⁴Purdue University

10:00 AM Break

10:20 AM

Mechanical Properties of Ni Nanocomposites Embedded with Carbyne Chains: Scott Muller¹; Arun Nair¹; ¹University of Arkansas

10:40 AM

Atomistic Modeling of the Mechanical Properties of Nanoglass-metallic Glass Nanolaminates: *Paulo Branicio*¹; Z. Sha²; ¹University of Southern California; ²Xi²an Jiaotong University

11:00 AM

Interface Driven Mechanical Behavior of Mg/Nb Nano-layered Composites: *Milan Ardeljan*¹; Irene Beyerlein²; Siddhartha Pathak³; Marko Knezevic¹; ¹University of New Hampshire; ²University of California, Santa Barbara; ³University of Nevada

11:20 AM

Atomistic Investigation into the Mechanical Response of Ferrite-cementite Interfaces in Pearlite: *Matthew Guziewski*¹; Shawn Coleman²; Christopher Weinberger¹; ¹Colorado State University; ²Army Research Laboratory

11:40 AM

Microstructure, Residual Stress, and Intermolecular Force Distribution of Graphene/Polymer Hybrid Composites: Nanoscale Morphologypromoted Synergistic Effects: Sanju Gupta¹; ¹Western Kentucky University

Mechanical Characteristics and Application Properties of Metals and Non-metals for Technology: An EPD Symposium in Honor of Donato Firrao – Corrosion and Fatique

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Jiann-Yang Hwang, Michigan Technological University; Bowen Li, Michigan Technological University; Pasquale Russo Spena, Free University of Bozen-Bolzano

Tuesday AMRoom: 123March 13, 2018Location: Phoe

Location: Phoenix Convention Center

Session Chairs: Amit Shyam, Oak Ridge National Laboratory; Bowen Li, Michigan Technological University

8:30 AM Invited

Fatigue Behavior of Metastable Austenitic Stainless Steel AISI 304 under Different Test Frequencies: *Davi Pessoa*¹; Gunter Kirchhoff²; Martina Zimmermann¹; ¹Technische Universität Dresden; ²Fraunhofer-Institut für Werkstoff -und Strahltechnik

9:10 AM

Corrosion Micro-scale Features and Alloy Microstructure Effects on Fatigue Initiation of AA7050-T7451: *Noelle Easter Co*¹; James Burns¹; ¹University of Virginia

9:30 AM

Creep-oxidation-small Fatigue Crack Interaction in Grade 91 Steel: Sumit Bahl¹; Sebastien Dryepondt²; Lawrence Allard²; Satyam Suwas²; *Amit Shyam*²; ¹Indian Institute of Science; ²Oak Ridge National Laboratory

9:50 AM

Influence of Surface and Near Surface Defects Caused by Laser Beam Cutting on the Fatigue Behavior of Plate-like Shaped Parts Made of Metastable Austenitic Stainless Steel AISI 304: Davi Pessoa¹; Patrick Herwig²; Martina Zimmermann¹; ¹Technische Universität Dresden; ²Fraunhofer-Institut für Werkstoff -und Strahltechnik IWS

Metal-Matrix Composites Innovations, Advances and Applications: An SMD Symposium in Honor of William C. Harrigan, Jr. – Basic History and Advances in Metal Matrix Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Srivatsan Tirumalai, The University of Akron; Yuzheng Zhang, Gamma Alloys, LLC; William Harrigan, Gamma Technology, LLC

Tuesday AM March 13, 2018 Room: 121A Location: Phoenix Convention Center

Session Chairs: John Lewandowski, Case Western Reserve University; Dan Miracle, AF Research Laboratory

8:30 AM Invited

Metal Matrix Composites – from Science to Technological Significance: *Dan Miracle*¹; ¹AF Research Laboratory

9:00 AM Invited

Microstructure and Mechanical Behavior of Cryomilled Al-Mg Composites Reinforced with Nanometric Yttria Partially Stabilized Zirconia: Julie Schoenung¹; ¹University of California, Irvine

9:30 AM

TECHNICAL PROGRAM

Hierarchically Engineered MMC's, a History of MMC Research at Powdermet Inc.: Andrew Sherman¹; ¹Powdermet Inc

9:50 AM Break

10:10 AM Invited

Fracture and Fatigue of Particulate Composites, Nano-composites, and Toughening Mechanisms: John Lewandowski¹; ¹Case Western Reserve University

10:40 AM

Designing New Self-healing Metallic Materials and Self-healing Metal Matrix Composites: Volkan Kilicli¹; Marjan Nezafati²; Nathan Salowitz²; *Pradeep Rohatgi*²; ¹Gazi University; ²University of Wisconsin Milwaukee

11:00 AM

Fatigue Crack Growth Resistance of Titanium Metal Matrix Composites: Hannah Stanley¹; ¹University of Birmingham

11:20 AM

Experimental Optimization of Dry Sliding Wear Behavior of Titanium Matrix Composites Using Taguchi Methods: *Koutarou Hattori*¹; Shogen Hirami¹; Yoshiko Hasegawa²; Hiroshi Izui¹; Yoshiki Komiya¹; ¹Nihon University; ²Hasegawa Professional Engineer Office

11:40 AM

Model-based Algorithm for Damage Detection in Piezoelectric Fiberbased Composites: Khalid Shalan¹; Mohamed AbdelMeguid¹; *Tarek Hatem*¹; Hesham Hegazi²; Yehia Bahei-El-Din¹; ¹British University in Egypt; ²Cairo University

Multi-material Additive Manufacturing: Processing and Materials Design – Functionally Graded Metals and Composites

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Hang Yu, Virginia Tech; Nanci Hardwick, Aeroprobe Corporation; Steven Boles, Hong Kong Polytechnic University; Blake Barnett, Army Research Laboratory; Michael Gibson, Desktop Metal

Tuesday AMRoom: 232CMarch 13, 2018Location: Phoenix Convention Center

Session Chair: To Be Announced

8:30 AM Invited

Developing Functionally Graded Metals through Additive Manufacturing: Progress, Challenges, and Future Vision for a Unique Technology: *Douglas Hofmann*¹; Scott Roberts¹; Robert Dillon¹; Richard Otis¹; Samad Firdosy¹; ¹NASA JPL/Caltech

9:00 AM Invited

Experimental-computational Approach toward Design of Additively Manufactured Functionally Graded Metallic Materials: *Allison Beese*¹; Zi-Kui Liu¹; ¹Pennsylvania State University

9:30 AM

Hybrid Manufacturing of Functionally Graded M300 and 316L Steels: Tim Daughtery¹; Brian Vuksanovich¹; Jason Walker¹; Pedro Cortes¹; *Brett Conner*¹; ¹Youngstown State University

9:50 AM

Additively Manufactured Functionally Graded Steels through a Novel Approach to Path Finding: *Olga Eliseeva*¹; Tanner Kirk¹; Ji Ma¹; Raymundo Arroyave¹; Ibrahim Karaman¹; ¹Texas A&M

10:10 AM Break

10:30 AM Invited

Additive Manufacturing of Periodic Metal-metal Composites: Zachary Cordero¹; Matthew French¹; Alexander Pawlowski²; Derek Splitter²; Amit Shyam²; ¹Rice University; ²Oak Ridge National Laboratory

11:00 AM

Development of High-performance 316L Stainless Steel Nanocomposites by Additive Manufacturing: *Bandar AlMangour*¹; Dariusz Grzesiak²; ¹Harvard University; ²West Pomeranian University of Technology

11:20 AM

Additive Manufacturing of Inconel 718 – Ti6Al4V Bimetallic Structures Using LENSTM: Bonny Onuike¹; Amit Bandyopadhyay¹; ¹School of Mechanical and Material Engineering

11:40 AM

Bimetallic Bonding via Two Methods of Direct Metal Deposition Additive Manufacturing: Ryan Anderson¹; Timothy Hill¹; Judy Schneider¹; ¹University of Alabama at Huntsville

Nanocomposites V: Structure-Property Relationships in Nanostructured Materials – Nanocarbon/Metal Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee Program Organizers: Meisha Shofner, Georgia Institute of

Technology; Nikhilesh Chawla, Arizona State University

Tuesday AM	Room: 102C
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Nikhilesh Chawla, Arizona State University

8:30 AM

Predicting the Failure Mechanisms in Ni-graphene Nanocomposites for Different Loading, Crack Orientations and Graphene Structure: Scott Muller¹; Arun Nair¹; ¹University of Arkansas

8:50 AM

Development of Nanocarbon-infused Metals: A New Class of Covetic Materials: U. (Balu) Balachandran¹; ¹Argonne National Laboratory

9:10 AM

Synthesis, Characterization, and Properties of Graphene Reinforced Metal-matrix Nano Composites Using Powder Metallurgy: Meysam Tabandeh-Khorshid¹; Ajay Kumar P.¹; Emad Omrani¹; *Pradeep Rohatgi*¹; ¹University of Wisconsin Milwaukee

9:30 AM

Intragranular Dispersion of Carbon Nanotubes Comprehensively Improves Aluminum Alloys: *Kang Pyo So*¹; Akihiro Kushima¹; Jong Gil Park²; Xiaohui Liu³; Dong Hoon Keum²; Hye Yun Jeong²; Soo Hyun Joo⁴; Hyoung Seop Kim⁴; Hwanuk Kim⁵; Ju Li¹; Young Hee Lee²; ¹Massachusetts Institute of Technology; ²Sungkyunkwan University; ³Shanghai Jiao Tong University; ⁴Pohang University of Science and Technology; ⁵Korea Basic Science Institute

9:50 AM Break

10:10 AM

Investigation of Mechanical Properties of Cu-MWCNT Nanocomposites Synthesized by Wet Chemical Reduction Route: *Shakti Mishra*¹; Sambedan Jena¹; Siddhartha Das¹; Karabi Das¹; ¹IIT Kharagpur

10:30 AM

Carbon Nanotubes Reinforced Nanostructured WC-Co Hard Alloys: *Guolong Tan*¹; Chenglong Li²; Xijun Wu³; ¹Wuhan University of Technology; ²Nostan Company; ³Zhejiang University

Non-equilibrium Features of Grain Boundaries – Mechanical Responses of Non-equilibrium Grain Boundaries - Part I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan, Ann Arbor; Josh Kacher, Georgia Tech; Elizabeth Holm, Carnegie Mellon University; Irene Beyerlein, University of California, Santa Barbara; Shigenobu Ogata, Osaka University

Tuesday AM March 13, 2018 Room: 125A Location: Phoenix Convention Center

Session Chair: To Be Announced

8:30 AM Invited

Atomic-scale Study of Twin Growth in Zirconium: Olivier MacKain¹; Emmanuel Clouet¹; David Rodney²; ¹CEA Saclay; ²Université de Lyon

9:00 AM Invited

Effect of Neutron Irradiation on Deformation Homogeneity in Polycrystalline Materials: *Meimei Li*¹; Xuan Zhang¹; Jonathan Almer¹; Jun-Sang Park¹; Hemant Sharma¹; Peter Kenesei¹; ¹Argonne National Lab

9:30 AM

An Atomistic Survey of Grain Boundary – Dislocation Interactions in FCC Nickel: *Devin Adams*¹; Eric Homer¹; David Fullwood¹; Robert Wagoner²; Landon Hansen¹; HyukJong Bong²; ¹Brigham Young University; ²Ohio State University

9:50 AM Break

10:10 AM Invited

Grain Boundary Factors Related to Void Formation: *Curt Bronkhorst*¹; Sabine Zentgraf²; Veronica Livescu¹; Marcy Peter¹; Scott Vander Wiel¹; George Gray¹; Hashem Mourad¹; Brandon Runnels²; ¹Los Alamos National Laboratory; ²University of Colorado - Colorado Springs

10:40 AM Invited

Understating the Deformation and Fracture Behaviors of Heterogeneous Lamella Structures: *Caizhi Zhou*¹; Sixie Huang¹; Rui Yuan¹; ¹Missouri University of Science and Technology

11:10 AM

Mechanical Behavior of (Ni,Fe)Cr₂O₄ Spinel Grain Boundaries Studied by Molecular Dynamics Simulations: *Laurent Van Brutzel*¹; Alain Chartier¹; Maxime Sauzay¹; ¹CEA

11:30 AM

Dislocation Nucleation from Grain Boundary: A Comparison between Conventional MD and Accelerated MD: *Jun-Ping Du*¹; Yun-Jiang Wang²; Yu-Chieh Lo³; Liang Wan⁴; Shigenobu Ogata⁴; ¹Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University; ²State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences; ³Department of Materials Science and Engineering, National Chiao Tung University; ⁴Department of Mechanical Science and Bioengineering, Osaka University

Phase Transformation Across Multiscale Material Interfaces – Nanoscale Interfaces, Grain Boundaries and Coatings

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Computational Materials Science and Engineering Committee Program Organizers: Soumya Nag, GE Global Research;

Program Organizers: Soumya Nag, GE Global Research; Sudarsanam Babu, The University of Tennessee, Knoxville; Gregory Thompson, University of Alabama; Mohsen Asle Zaeem, Missouri University of Science and Technology; Niyanth Sridharan, Oak Ridge National Laboratory

Tuesday AM	Room: 126C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Pradeep Gokuldoss, Max Planck Institute for Iron Research GmbH; Mitra Taheri, Drexel University; Diana Farkas, Virginia Tech.

8:30 AM Invited

Morphological Evolution and Mechanical Behavior of Co-sputtered Cu-Mo Thin Films: *Amit Misra*¹; ¹University of Michigan

9:00 AM Invited

Structure and Mechanical Response of Highly Defective Grain Boundaries: Diana Farkas¹; ¹Virginia Tech

9:30 AM Invited

Grain Boundary Microstates under Irradiation: Which Came First?: *Mitra Taheri*¹; Osman El-Atwani²; Asher Leff¹; Khalid Hattar³; James Nathaniel¹; Blas Uberuaga²; ¹Drexel University; ²Los Alamos National Laboratory; ³Sandia National Laboratories

10:00 AM Break

10:20 AM Invited

Nanoscale Interfacial Phase Structures in Roll-bonded Metallic Glass Composite Materials: Sina Shahrezaei¹; Suveen Mathaudhu¹; ¹University of California, Riverside

10:50 AM

Atom Probe Tomography Study of Interface Diffusion Assisted Selfhealing Behaviour of Cr2Al(Si)C MAX Phase Coatings: Pradeep Konda Gokuldoss¹; ¹Max Planck Institute for Iron Research GmbH

11:10 AM

The Effect of Diffusion on the Microstructure and Properties of a NiAlbased Anchor Phase Coating for CMSX-4: *Megan McGregor*¹; Matthew Hancock²; Lloyd Pallett²; William Clegg¹; ¹University of Cambridge; ²Rolls-Royce plc.

Phase Transformations and Microstructural Evolution – Phase Transformations in Non-ferrous Systems I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Tuesday AM March 13, 2018 Room: 129A Location: Phoenix Convention Center

Session Chairs: Hao Chen, Tsinghua University; Peeyush Nandwana, ORNL

8:30 AM

Precipitation of Dispersoids in Multicomponent Al-Mg-Si-Mn-Fe Alloys: *Warren Poole*¹; Chenglu Liu¹; Qiang Du²; Nick Parson³; ¹The University of British Columbia; ²SINTEF M&K; ³Rio Tinto Aluminium

8:50 AM

Quantitative Transmission Electron Microscopy of Microstructure Evolution in Al-Cu Alloys during Laser-induced Rapid Thermal Transients Characteristic of Additive Manufacturing: *Jorg Wiezorek*¹; Kai Zweiacker²; Can Liu¹; Joseph McKeown³; Geoffrey Campbell³; ¹University of Pittsburgh; ²EMPA; ³LLNL

9:10 AM

Precipitation Kinetics and Strengthening: Beyond the Textbook Description: *Alexis Deschamps*¹; Frederic De Geuser¹; ¹Grenoble Institute of Technology

9:30 AM

In Situ TEM Investigation of Microstructural Evolution in Gas Atomized Al-6061 Powder Particles: Sriram Vijayan¹; Benjamin Bedard¹; Mark Aindow¹; ¹University of Connecticut

9:50 AM Break

10:10 AM

Long-term Thermal Stability of Nickel-base Superalloys: *Alison Wilson*¹; Mark Hardy²; Howard Stone¹; ¹University of Cambridge; ²Rolls-Royce plc

10:30 AM

Microstructural Evolution of Nickel during Multiple Annealing Stages from Three-dimensional X-ray Microscopy: *Aditi Bhattacharya*¹; C.M. Hefferan²; S.F. Li³; J. Lind⁴; Yufeng Shen¹; R.M. Suter¹; G.S. Rohrer¹; ¹Carnegie Mellon University; ²R. J. Lee Group; ³Ditto Inc.; ⁴Lawence Livermore National Laboratory

10:50 AM

Modifying the Microstructure in Polycrystalline Nickel Base Superalloys Using a Stepped Cooling Rate: *Bader Alabbad*¹; Sammy Tin¹; ¹Illinois Institute of Technology

11:10 AM

Coherent DO22 Superlattice in an Aged Ni-Cr-W-Ti Superalloy with High Strength: *Gao Xiangyu*¹; Hu Rui¹; ¹Northwestern Polytechnical University

TECHNICAL PROGRAM

TUESDAY AM

Powder Metallurgy of Light, Reactive and Other Nonferrous Metals – Metal Powder Production

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee Program Organizers: Ma Qian, RMIT University (Royal Melbourne

Program Organizers: Ma Qian, RMIT University (Royal Melbourne Institute of Technology); Zak Fang, University of Utah; Bowen Li, Michigan Technological University

Tuesday AM	Room: 225A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Yafeng Yang, Chinese Academy of Sciences ; Stefan Gulizia, CSIRO, Australia

8:30 AM

A Review of the Preparation Methods of WC Powders: *Yijie Wu*¹; Jie Dang¹; Zepeng Lv¹; Shengfu Zhang¹; Xuewei Lv¹; Chenguang Bai¹; ¹Chongqing University

8:50 AM Invited

Advanced Melt-less Powder Manufacturing Technologies: *Stefan Gulizia*¹; Christian Doblin¹; Peter King¹; Robert Wilson¹; Anselm Oh¹; Leon Prentice¹; ¹CSIRO

9:20 AM Keynote

Development of Gas Atomization for Generating Reactive Metal Powders for Additive Manufacturing and Powder Processing: *Iver Anderson*¹; Emma White¹; Tim Prost¹; Jordan Tiarks¹; Trevor Riedemann¹; David Byrd¹; Ross Anderson¹; ¹Ames Laboratory

10:00 AM Break

10:20 AM

Numerical Modeling of Gas-atomized Metal Powders: Powder Size Distribution: *Taher Abu-Lebdeh*¹; Joseph Pinkney¹; Vincent Lamberti²; Sameer Hamoush¹; Roland Seals²; ¹North Carolina A&T State University; ²Y-12 National Security Complex

10:40 AM Keynote

The Fabrication of Core-shell Special Powders and their Potential Applications: *Yafeng Yang*¹; ¹Institute of Processing Engineering, Chinese Academy of Science

11:20 AM

Technologies for the Processing of Sieve Residues: A Novel Approach for Cost-effective Production of 3D Printing Powders: *Ivan Mikhailov*¹; ¹LMTI / UC RUSAL

Rare Metal Extraction & Processing – Base and Rare Metals

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Hojong Kim, The Pennsylvania State University; Bradford Wesstrom, Freeport-McMoRan Copper & Gold; Shafiq Alam, University of Saskatchewan; Takanari Ouchi, The University of Tokyo; Gisele Azimi, University of Toronto; Neale Neelameggham, Ind LLC; Shijie Wang, Rio Tinto Kennecott Utah Copper; Xiaofei Guan, ShanghaiTech University

Tuesday AM	Room: 227C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Shafiq Alam, University of Saskatchewan; Xiaofei Guan, ShanghaiTech University

8:30 AM

Thermodynamic Study of Ga Extraction for Trace Element Analysis by ICP-MS: *Kyungjean Min*¹; David Johnson¹; Kevin Trumble¹; ¹Purdue University

8:55 AM

Electrodeposition of γ-MnO2 from Manganese Nodule Leach Liquor: Surface Modification and Electrochemical Applications: A. Baral¹; B.C. Tripathy¹; *M.K. Ghosh*¹; ¹CSIR-Institute of Minerals and Materials Technology

9:20 AM

Recovery of Manganese from Scrap Batteries of Mobile Phones: *Deblina Dutta*¹; Rekha Panda²; Manis Kumar Jha²; Sudha Goel¹; ¹Indian Institute of Technology (IIT), Kharagpur; ²CSIR-National Metallurgical Laboratory

9:45 AM

The Management of Lead Concentrate Acquisition in "Trepca": *Ahmet Haxhiaj*¹; Bajram Haxhiaj¹; ¹University of Pristina

10:10 AM Break

10:30 AM

Study of the Mechanochemical Calcification for Mixed Rare Earth Concentrate: Jiang Liu¹; Zhang Ting'an¹; Zhihe Dou¹; Yukun Huang¹; ¹Northeastern University

10:55 AM

Recovery of Lithium from Brine with MnO₂ Nanowire Ion Sieve Composite: *Rajashekhar Marthi*¹; York Smith¹; ¹University of Utah

11:20 AM

FEM Simulation of Nodulation in Copper Electrorefining: *Ken Adachi*¹; Yuya Nakai¹; Atsushi Kitada¹; Kazuhiro Fukami¹; Kuniaki Murase¹; ¹KyotoUniversity

11:45 AM

Microfluidic Solvent Extraction of Zinc from Low Concentration Sulfate Solution Using D2EHPA: *Feng Jiang*¹; Libo Zhang¹; Jian Jian¹; Hongying Xia¹; Shaohua Ju¹; Jinhui Peng¹; ¹Kunming University of Science and Technology

Recent Developments in Biological, Structural and Functional Thin Films & Coatings – Functional Coatings for Green Technology and Sustainability Sponsored by: TMS Functional Materials Division, TMS: Thin Films

and Interfaces Committee

Program Organizers: Adele Carradò, Université de Strasbourg IPCMS; Nancy Michael, University of Texas at Arlington; Ramana Chintalapalle, University of Texas - El Paso; Heinz Palkowski, Clausthal University of Technology; Nuggehalli Ravindra, New Jersey Institute of Technology; Vikas Tomar, Purdue University; Gerald Ferblantier, Strasbourg University - ICube Laboratory

Tuesday AMRoom: 226AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Heinz Palkowski, TU Clausthal; Nancy Michael, University of Texas at Arlington

8:30 AM

Electro-deposited Cr Coating Layer to Hinder Fuel Cladding Chemical Interaction in Sodium Fast Reactor (SFR): Sunghwan Yeo¹; Junhwan Kim¹; ¹Korea Atomic Energy Research Institute

8:50 AM

Corrosion Studies of Martensitic Stainless Steel Blades: *Dhruv Kothari*¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

9:10 AM Keynote

Applications for Multifunctional Systems: Balancing Industrial Need, Cost, Complexity and Sustainability: Vannessa Goodship¹; ¹University of Warwick

9:50 AM Break

10:10 AM

Extending the Scope of Application of Thermal Sprayed Coatings by Using their Magnetic Properties: *Gian Luigi Angrisani*¹; Piriya Taptimthong¹; Marc Christopher Wurz¹; Kai Möhwald¹; ¹Leibniz Universität Hannover

10:30 AM

Grain Boundary Engineering of Corrosion Resistant Aluminum Alloys: *Joel Bahena*¹; Andrea Hodge¹; ¹University of Southern California

10:50 AM

Formation & Characterization of Black Silicon by Reactive Ion Etching: Sita Rajyalaxmi Marthi¹; Asahel Banobre¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

Scandium Extraction and Use in Aluminum Alloys – Aluminium Scandium Alloys

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizers: John Grandfield, Grandfield Technology Pty Ltd; Aleksandr Krokhin, Rusal GM; Dmitry Eskin, Brunel University London; Antoine Allanore, Massachusetts Institute of Technology; Nigel Ricketts, Scandium International Mining Corp

Tuesday AM	Room: 222B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Dmitry Eskin, Brunel University; Greg Hilderman, Performance Power Materials

8:30 AM Introductory Comments

8:35 AM

TUESDAY AM

Sc Applications in Aluminum Alloys: Overview of Russian Research in the 20th Century: *Dmitry Eskin*¹; ¹Brunel University

9:05 AM

Effect of Treatment Parameters on Structure, Mechanical and Corrosion Properties of Al-Mg-Sc Alloy Forgings with Reduced Concentration of Scandium: *Aleksandr Krokhin*¹; Viktor Mann¹; Dmitry Ryabov¹; Nikolay Babitskiy²; ¹UC RUSAL; ²RUSAL ETC LLC

9:25 AM

Novel Heat Treatments for Scandium Containing Al-Si Alloys (Including 6xxx Series Alloys): *Timothy Langan*¹; Mahendra Ramajayam²; Thomas Dorin²; ¹Clean TeQ; ²Deakin University

9:45 AM

Scandium-enriched Nano-precipitates in Aluminum Provide Enhanced Coarsening and Creep Resistance: *David Dunand*¹; David Seidman¹; 'Northwestern University

10:05 AM Break

10:20 AM

The Effect of Scandium and Zirconium on the Microstructure, Mechanical Properties and Formability of a Model Al-Cu Alloy: *Thomas Dorin*¹; Mahendra Ramajayam¹; Timothy Langan²; ¹Deakin University; ²CleanTeQ

10:40 AM

Influence of the Al3(Sc,Zr) Dispersoids and the Stretching on the Natural Ageing Behavior of a Binary Al-4wt%Cu Alloys: *Baptiste Rouxel*¹; Thomas Dorin¹; ¹Institut of Frontier Material - Deakin University

11:00 AM

An Examination of the Effect of Solidification Processing upon the Strengthening of AlMgSc Alloys: Vahid Fallah¹; Andrew Howells¹; *Mark Gallerneault*¹; ¹Alcereco Inc.

11:20 AM

The Effect of Scandium on the Electrical Conductivity and Mechanical Properties of Al-Sc Alloys: *Tao Ying*¹; Lidong Gu¹; Xiaoqin Zeng¹; ¹Shanghai Jiao Tong University

11:40 AM

Design and Processing Conditions of Hypoeutectic Al-Cu-Sc Alloys for Maximum Benefit of Scandium: *Abdoul-Aziz Bogno*¹; Jonas Valloton¹; Hani Henein¹; Douglas Ivey¹; A. Locock¹; M. Gallerneault²; ¹University of Alberta; ²Alcereco Inc.

Surface Engineering for Improved Corrosion Resistance – Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Rajeev Gupta, The University of Akron; Sandip Harimkar, Oklahoma State University; Carlos Schvezov, Institute of Materials of Misiones; Arvind Agarwal, Florida International University

Tuesday AM	Room: 227A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Sandip Harimkar, Oklahoma State University; Krista Limmer, US Army Research Laboratory

8:30 AM Invited

Nanostructured Al-alloy Coatings for Corrosion Protection of Highstrength Al and Mg Alloys: *Rose Roy*¹; Joshua Abbott¹; Robert Hilty¹; ¹Xtalic Corporation

8:50 AM

Passivity of Al-transition Metal Alloys and Al-inhibitor Composites: Javier Esquivel¹; Mohammad Umar Farooq Khan¹; *Rajeev Gupta*¹; ¹The University of Akron

9:10 AM

Advanced Surface Mechanical Treatments and Grain Boundary Engineering for Improved Resistance to Corrosion and Stress Corrosion Resistance of FCC Alloys: Abhishek Telang¹; Qin Yang²; Richard Chiang²; Sebastien Teysseyre³; Seetha Mannava²; Dong Qian⁴; *Vijay Vasudevan²*; ¹Integer; ²University of Cincinnati; ³Idaho National Laboratory; ⁴University of Texas at Dallas

9:30 AM Invited

Predict Corrosion Phenomena and Surface Properties of Al-based Alloys: Lan Li¹; Thiago da Silva¹; Mike Hurley¹; ¹Boise State University

9:50 AM

Oxidation and Corrosion Phenomena in Powder-processed Icosahedralphase-strengthened Aluminum Alloys: Sarshad Rommel¹; Hannah Leonard¹; Thomas Watson²; Venkat Vedula³; Mark Aindow¹; ¹University of Connecticut; ²Pratt & Whitney; ³UTC Aerospace Systems

10:10 AM Break

10:30 AM

Corrosion Behavior of CP-copper with CG and UFG Grain Size after Irradiation by High Current Pulsed Electron Beam: *Yue Zhang*¹; Fuyang Yu¹; Fuyu Dong¹; Shengzhi Hao²; Jingtao Wang³; Chuang Dong²; ¹Shenyang University of Technology; ²Dalian University of Technology; ³Nanjing University of Science & Technology

10:50 AM

Aqueous Corrosion Behaviour of Pulse Electrodeposited Nanocrystalline Ni-W and Ni-W/SiC Nanocomposite Coatings: Sundararajan Govindan¹; Nitin Wasekar²; Vamsi M.V.N³; ¹Indian Institute of Technology Madras; ²ARCI; ³McGill University

11:10 AM

Corrosion Behavior of Laser Surface Melted Inconel 718 Superalloy: *Sumit Sharma*¹; Koushik Biswas¹; A Nath¹; Jyotsna Dutta Majumdar¹; ¹Indian Institute of Technology Kharagpur Thermo-mechanical Response of Materials with Special Emphasis on In-situ Techniques – High Temperature Mechanical Properties of Materials I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee, TMS: Chemistry and Physics of Materials Committee *Program Organizers:* Amit Pandey, LG Fuel Cell Systems Inc.; Sanjit Bhowmick, Bruker Nano Surfaces; Jeff Wheeler, ETH Zurich; María Teresa Pérez Prado, IMDEA Materials Institute; Dongchan Jang, Korea Advanced Institute of Science and Technology; Robert Wheeler, MicroTesting Solutions LLC; Josh Kacher, Georgia Tech

Tuesday AMRoom: 101AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Sanjit Bhowmick, Bruker Nano Surfaces; Josh Kacher, Georgia Tech

8:30 AM Introductory Comments

8:35 AM Keynote

Real Time 3-D X-ray Computed Micro-tomography Study of the Strength and Toughness of Nuclear Graphite between 25° and 1000°C: *Dong Liu*¹; Bernd Gludovatz²; Harold Barnard³; Martin Kuball⁴; Robert Ritchie⁵; ¹Oxford University; ²University of New South Wales; ³Lawrence Berkeley National Laboratory; ⁴University of Bristol; ⁵University of California, Berkeley

9:10 AM

Local Dislocation Configurations and their Contribution to Early Stage Globularization in Alpha Beta Titanium Alloys: *Victoria Miller*¹; Adam Pilchak²; Jordan Moering³; ¹University of California, Santa Barbara; ²Air Force Research Laboratory; ³Protochips

9:30 AM

An Analysis of Thermo-mechanical Fatigue Crack Growth in the Titanium Alloy Ti-6246: *Jennie Palmer*¹; Jonathan Jones¹; Mark Whittaker¹; Steve Williams²; ¹Swansea University; ²Rolls-Royce plc

9:50 AM

Design and Fabrication of MEMS-based Symmetric Structure for Insitu Nanomechanical Tensile Experiments: *Minsoo Kim*¹; Dongchan Jang¹; Hansuek Lee¹; Daegon Kim¹; ¹KAIST(Korea Advanced Institute of Science and Technology)

10:10 AM Break

10:30 AM Invited

In-situ Deformation and Characterisation of Carbon Controlled Steels: Jim Hickey¹; *T Ben Britton*¹; ¹Department of Materials, Imperial College

11:00 AM

Developing Thermo-mechanical Fatigue Crack Growth Techniques: Jonathan Jones¹; Mark Whittaker¹; Robert Lancaster¹; Svjetlana Stekovic²; Daniel Leidermark²; Daniel Child³; Stephen Pattison³; Christopher Hyde⁴; James Rouse⁴; Stephen Williams³; ¹Swansea University; ²Linkoping University; ³Rolls-Royce plc; ⁴Nottingham University

11:20 AM

Rationalization of Heterogeneous Creep Deformation Behavior of Dissimilar Metal Welds: *Mohan Subramanian*¹; Sudarsanam Suresh Babu¹; Jonathan Galler¹; John DuPont¹; Zhili Feng¹; Xinghua Yu¹; ¹University of Tennessee

Ultrafine-grained Materials X – Temperature Effects and Thermal Stability

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Tuesday AMRoom: 103BMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Janelle Wharry, Purdue University; Avinash Dongare, University of Connecticut

8:30 AM Invited

The Impact of Severe Plastic Deformation and Subsequent Annealing on Elevated Temperature Deformation Behavior of Al-Mg Alloys: Chenlu Meng¹; Stefanie Sandloebes¹; Sandra Korte-Kerzel¹; *Günter Gottstein*¹; ¹RWTH Aachen University

9:00 AM Invited

Are Selected Laser-melted (SLM) Alloys UFG?: Sean Agnew¹; Md Shamsujjoha¹; James Fitz-Gerald¹; ¹University of Virginia

9:30 AM

Mechanical Behavior of UFG Titanium at Elevated Temperatures: *G. Guven Yapici*¹; S.V. Sajadifar¹; T. Niendorf²; H.J. Maier³; ¹Ozyegin University; ²Kassel University; ³Hannover University

9:50 AM

Severe Deformation at Elevated Temperatures - the Key to Extremely Elongated Nanostructures: *Oliver Renk*¹; Pradipta Ghosh¹; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

10:10 AM Break

10:30 AM Invited

Anomalous Deformation Behavior of Thermally Stable Nanocrystalline Immiscible Alloys: *Kiran Solanki*¹; Kris Darling²; ¹Arizona State University; ²Army Research Laboratory

11:00 AM Invited

Development of Al and Mg-based Nanostructured Alloys: *Aashish Rohatgi*¹; Nicole Overman¹; Scott Whalen¹; Suveen Mathaudhu²; ¹Pacific Northwest National Laboratory; ²University of California, Riverside

11:30 AM

Oxygen and Zirconium Clustering in Nanocrystalline Fe-Zr Alloys and its Impact on Microstructural Stability and High Temperature Mechanical Properties: *Yuzeng Chen*¹; Guibin Shan¹; Anna Ceguerra²; Simon Ringer²; Feng Liu¹; ¹Northwestern Polytechnical University; ²Chongqing University

11:50 AM

Bulk Nanocrystalline Metals Cast under Slow Cooling: *Chezheng Cao*¹; Gongcheng Yao¹; Abdolreza Javadi¹; Xiaochun Li¹; ¹University of California, Los Angeles

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials – Design and Synthesis of 2D Materials

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Stephen McDonnell, University of Virginia; Chang-Yong Nam, Brookhaven National Laboratory; Lanxia Cheng, University of Texas Dallas; Dong Lin, Kansas State University; Wenda Tan, University of Utah

Tuesday PM	Room: 101B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Stephen McDonnell, University fo Virginia; Wenda Tan, University of Utah

2:00 PM Invited

Functional Interfacial, Electromechanical, and Phase Change Properties of a Spectrum of 2D Materials: Gowoon Cheon¹; Yao Zhou¹; Daniel Rehn¹; Austin Sendek¹; *Evan Reed*¹; ¹Stanford University

2:30 PM Invited

Noncovalent Interactions in Functional Nanomaterials: *KC Santosh*¹; Valentino Cooper¹; 'Oak Ridge National Laboratory

3:00 PM

Data-driven Discovery of New Two- and One-dimensional Materials and Lattice-commensurate Heterostructures: *Gowoon Cheon*¹; Karel-Alexander Duerloo²; Austin Sendek¹; Chase Porter¹; Yuan Chen¹; Evan Reed¹; ¹Stanford University; ²Boston Consulting Group

3:20 PM Break

3:40 PM Invited

Silicene, Graphene and Nanospheres: Nanomaterials Investigations with Surface Science Approaches: *Petra Reinke*¹; ¹University of Virginia

4:10 PM

Atomic Level Point Defect Identification in Graphene Materials: Srinivasa Rao Singamaneni¹; ¹The University of Texas at El Paso

4:30 PM

Metal-2D Contact Engineering: Keren Freedy¹, Peter Litwin¹; Hans Olson¹; Ashutosh Giri¹; Patrick Hopkins¹; Stephen McDonnell¹; ¹University of Virginia

4:50 PM Invited

Synthesis and Application of Large-area 2D Materials: *Eric Vogel*¹; ¹Georgia Institute of Technology

9th International Symposium on High Temperature Metallurgical Processing – Fundamental Research on High Temperature Metallurgical Processing

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Tuesday PMRoom: 227BMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Jerome Downey, Montana Tech of the University of Montana; Chenguang Bai, Chongqing University

2:00 PM Introductory Comments

2:05 PM

TECHNICAL PROGRAM

Dissolution Rate of Carbon in Molten Iron-manganese Alloys: *Hamideh Kaffash*¹; Merete Tangstad¹; ¹NTNU

2:25 PM

Irreversibilities in Copper Matte Smelting and Settling: *Paul Mather*¹; Matthew Krane¹; ¹Purdue University

2:45 PM

Degradation Mechanisms of Refractories in a Bottom Blown Copper Smelting Furnace: *Mao Chen*¹; Zhixiang Cui²; Chuandong Wei²; Baojun Zhao¹; ¹University of Queensland; ²Dongying Fangyuan Nonferrous Metals Co. Ltd

3:05 PM

The Dissolution Behavior of MgO into Molten High Titanium Slag: *Gangqiang Fan*¹; Xuewei Lv¹; Jian Wang¹; Shengping Li¹; Wei Lv¹; Kai Hu¹; Chenguang Bai¹; ¹Chongqing University

3:25 PM Break

3:45 PM

Refractory Wear in a High Carbon Ferromanganese Smelting Furnace: *Dean Gregurek*¹; Karl Budna¹; Daniel Kreuzer¹; Alfred Spanring¹; ¹RHI AG

4:05 PM

High Temperature Dielectric Property Measurement System: *Liu Chenhui*¹; Libo Zhang²; Jiyun Gao¹; Jinhui Peng²; ¹Yunnan Minzu University; ²Kunming University of Science and Technology

4:25 PM

Reaction Routes of CaO-Fe₂O₃-TiO₂ and Calcium Ferrite-TiO₂ System in Continuous Heating Process: *Chengyi Ding*¹; Xuewei Lv¹; Gang Li¹; Chenguang Bai¹; Senwei Xuan¹; Kai Tang¹; Yang Xu¹; ¹Chongqing University

4:45 PM

Thermodynamic Calculations on Electric Furnace Smelting Separation of Chromium-bearing Vanadium Titanium Magnetite: *Wenchao He*¹; Xuewei Lv¹; Yu Zhang¹; Xueqin Li¹; ¹Chongqing University

5:05 PM

Preparation for High Activity Degree Lime and Effect on Desulfurization of Hot Metal Pretreatment: *Su-ju Hao*¹; Jiann-Yang Hwang¹; Wu-feng Jiang²; Yu-zhu Zhang²; ¹Michigan Technological University; ²North China University of Science and Technology

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling – Ceramics and Nuclear Fuels

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California, Berkeley; Julie Tucker, Oregon State University; Elaine West, Knolls Atomic Power Laboratory

Tuesday PM March 13, 2018 Room: 102A Location: Phoenix Convention Center

Session Chairs: Micah Hackett, TerraPower; Assel Aitkaliyeva, University of Florida

2:00 PM

Dislocation Loop Formation in Proton Irradiated Pure Zirconium: *Hattie Xu*¹; Michael Preuss¹; Philipp Frankel¹; Tamás Ungár¹; ¹University of Manchester

2:25 PM

Enhanced Dynamic Recovery of Radiation Damage in Silicon Carbide under Accelerated Testing Using Ion Beams: *William Weber*¹; Eva Zarkadoula²; Haizhou Xue¹; Yanwen Zhang²; ¹University of Tennessee; ²Oak Ridge National Laboratory

2:50 PM

Self-Organization of Gas Bubble Superlattices: *David Sprouster*¹; K Hattar²; C Sun³; Y Gao³; C Jiang³; L He³; Y Zhang³; J Gan³; L Ecker¹; ¹Brookhaven National Laboratory; ²Sandia National Laboratories; ³Idaho National Laboratory

3:15 PM

Microstructural Characterization of the Processes, Stability, and Endof-range Effects in Heavily Irradiated Pyrochlores: *Terry Holesinger*¹; James Valdez¹; Cortney Kreller¹; Matthew Janish¹; Yongqiang Wang¹; Blas Uberuaga¹; ¹Los Alamos National Laboratory

3:40 PM Break

4:00 PM Invited

Microstructural and Nanoindentation Properties of a Lanthanumcontaining Nanostructured Ferritic Steel Irradiated by High Dose Iron Ions: *Somayeh Pasebani*¹; Indrajit Charit²; Yaqiao Wu³; Jatuporn Burns⁴; Darryl Butt⁵; James Cole⁶; Lin Shao⁷; ¹Oregon State University; ²University of Idaho; ³Boise State University; ⁴Center for Advanced Energy Studies ; ⁵University of Utah; ⁶Idaho National Laboratory; ⁷Texas A&M

4:30 PM

Irradiation Temperature Influence on Nanolayered Response in Select MAX Phase Ceramics to High Fluence Self-ion Irradiation: *William Hanson*¹; William Weber¹; Yanwen Zhang²; ¹The University of Tennessee; ²Oak Ridge National Lab

4:55 PM

3D Study of Neutron-irradiated Fe-9Cr Alloy and 316 Stainless Steel Using Far-field and Near-field High-energy X-ray Diffraction Microscopy: *Xuan Zhang*¹; Chi Xu²; Yiren Chen¹; Meimei Li¹; Jun-Sang Park¹; Peter Kenesei¹; Hemant Sharma¹; Jonathan Almer¹; ¹Argonne National Lab; ²University of Florida

Accident Tolerant Fuels for Light Water Reactor – Structural Materials

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Lingfeng He, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory; Kumar Sridharan, University of Wisconsin; Peng Xu, Westinghouse Electric Company

Tuesday PM	Room: 104A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Yukinori Yamamoto, Oak Ridge National Laboratory; Kevin Field, Oak Ridge National Laboratory

2:00 PM Invited

Ex-situ and In-situ Determination of α' Phase Formation/Dissolution in High-Cr Ferritic Alloys Using Small-angle Neutron Scattering: *Kevin Field*¹; Kenneth Littrell¹; Samuel Briggs²; ¹Oak Ridge National Laboratory; ²Sandia National Laboratory

2:30 PM

Quantitative Characterization of Y and Ti Inclusions in a 14Cr-YWTi Nanostructured Ferritic Alloy and their Effect on High Temperature Fracture: Soupitak Pal¹; MD Alam¹; G Odette¹; ¹University of California, Santa Barbara

2:50 PM

Relationship Between Reactive Element Particle Dispersions and Irradiation-induced Defects in Neutron Irradiated Commercial APMT Alloy: *Dalong Zhang*¹; Samuel Briggs²; Richard Howard¹; Kevin Field¹; ¹Oak Ridge National Laboratory; ²Sandia National Laboratories

3:10 PM

Effects of Ce Addition on the Microstructure and Mechanical Properties of Accident-tolerance Fe-Cr-Al Fuel Cladding Materials: *Naimeng Liu*¹; ZhongWu Zhang¹; Yang Zhang¹; Ye Cui¹; Dan Chen¹; Yu Zhao¹; SongSong Xu¹; Hao Guo¹; ¹Harbin Engineering University

3:30 PM Break

3:50 PM

Quality Optimization of Seamless Thin-wall Tube Production of ATF Wrought FeCrAl Alloys: *Yukinori Yamamoto*¹; Zhiqian Sun¹; Maxim Gussev¹; Kevin Field¹; Bruce Pint¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory

4:10 PM

Impact Toughness of Model and Commercial FeCrAl Alloys: Zhiqian Sun¹; Yukinori Yamamoto¹; ¹Oak Ridge National Laboratory

4:30 PM

ODS FeCrAl Fabrication Methodology for Optimizing Ductility and Sink Strength: *Caleb Massey*¹; Sebastien Dryepondt²; Philip Edmondson²; Kurt Terrani²; Steven Zinkle¹; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory

4:50 PM

Effect of Dynamic Strain Aging on Mechanical Properties of Zircaloy-4: *Nilesh Kumar*¹; Abdullah Alomari¹; Korukonda Murty¹; ¹NC State University

5:10 PM

Thermal Aging Embrittlement in a Friction Stir Processed Al-bearing, High-Cr Stainless Steel: *Anumat Sittiho*¹; Vedavyas Tungala²; Aniket Dutt²; Peyman Samimi³; Somayeh Pasebani³; Indrajit Charit¹; Rajiv Mishra²; ¹University of Idaho; ²University of North Texas; ³Oregon State University

5:30 PM

Development of Alumina-forming Duplex Stainless Steels as Potential ATF Cladding Materials: Preliminary Assessments of High Temperature Steam Corrosion Behavior and Tensile Property: *Hyunmyung Kim*¹; Gokul Obulan Subramanian¹; Chaewon Kim¹; Changheui Jang¹; ¹KAIST

Acta Materialia Symposium – Acta Materialia Award Session

Program Organizer: Carolyn Hansson, University of Waterloo

Tuesday PMRoom: 129BMarch 13, 2018Location: Phoenix Convention Center

3:15 PM Introductory Comments

3:25 PM Invited

Acta Materialia Gold Medal Lecture: Formation of Deformation Twins in Metallic Crystals: Subhash Mahajan¹; ¹University of California

3:45 PM Question and Answer Period

3:55 PM Invited

Acta Materialia Silver Medal Lecture: 4D Materials Science: Probing Microstructural Evolution of Metallic Materials in Real-Time: Nikhilesh Chawla¹; ¹Arizona State University

4:15 PM Question and Answer Period

4:25 PM Invited

Acta Materialia Hollomon Award for Materials and Society Lecture: Makers and Material Makers: Materials Science & Engineering in the Era of Additive Manufacturing: *Julie Christodoulou*¹; ¹Office of Naval Research

4:45 PM Question and Answer Period

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – High Temperature Alloys and Properties

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Tuesday PMRoom: 231ABMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Chantal Sudbrack, QuesTek Innovations, LLC; Clay Houser, QuesTek Innovations

2:00 PM Invited

Electron Beam Melting of High-gamma Prime Ni-base Superalloys: Michael Kirka¹; Duncan Greeley¹; Manuel Villalpando¹; Matthew Ireland²; Alex Plotkowski¹; Andrew Scopel²; Yousub Lee¹; Charles Hawkins¹; Peeyush Nandwana¹; Ryan Dehoff¹; ¹Oak Ridge National Laboratory; ²University of Maine

2:30 PM

Direct Metal Laser Melting of Gamma Prime Strengthened Superalloys; An Assessment of Microstructure Response through Additive Manufacturing and Heat Treatment: *Laura Dial*¹; Ian Spinelli¹; Michael Larsen¹; Daniel Ruscitto¹; ¹GE Global Research

2:50 PM

Heterogeneous Microstructure and Indentation Hardness of SLE-Deposited Rene80 Superalloy: *Andriy Dotsenko*¹; Suman Das¹; Ranadip Acharya¹; ¹Georgia Tech

3:10 PM

Microstructure Investigation of Powder Bed Fusion Processed Rene 65: Andrew Wessman¹; Behrang Poorganji¹; Mahdi Jamshidinia¹; ¹GE Additive

3:30 PM Break

3:50 PM

Location-specific Microstructure and the Effect of Heat Treatment on Electron-beam Melted Ni-based Superalloy LSHR: *Chantal Sudbrack*¹; Michael Kirka², S. Lee Semiatin³; Timothy Gabb¹; ¹NASA Glenn Research Center; ²Oak Ridge National Laboratory; ³Air Force Research Laboratory

4:10 PM

Laser Additive Manufacturing of Titanium Aluminides: *Silja-Katharina Rittinghaus*¹; Andreas Vogelpoth¹; ¹Fraunhofer ILT (Institute for Laser Technology)

4:30 PM

Relations between Microstructure and Oxidation Resistance of an Additive Manufactured Nickel-based Superalloy: Zhenyu Liu¹; Satia Soltanattar¹; Brian Gleeson¹; *Guofeng Wang*¹; ¹University of Pittsburgh

4:50 PM

Potential Contributors to Creep Resistance in DMLS Processed IN718 Revealed through Modeling of Creep Test Data: Blake Rogers¹; Amaneh Tasooji¹; ¹ASU

5:10 PM

Flow Stress Asymmetry Dependance on Post-processing Parameters and Deformation Conditions of a Selective Laser Melting Additive Manufactured Inconel 718: *Omar Rodriguez*¹; Sharniece Holland²; Omar Mireles¹; Lin Li²; Paul Allison²; ¹NASA MSFC; ²The University of Alamaba

Additive Manufacturing of Metals: Fatigue and Fracture – Session III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International; John Lewandowski, Case Western Reserve University

Tuesday PMRoom: 232AMarch 13, 2018Location: Phoenix Convention Center

Session Chair: Nima Shamsaei, Auburn University

2:00 PM Invited

Accounting for Thermal Process Induced Residual Stress in Additive Manufacturing Based Laser Cladding Repair of High-strength AerMet®100 Steel: Kevin Walker¹; Stephen Sun²; Milan Brandt²; Adrian DeWald³; Michael Hill³; ¹Defence Science and Technology Group; ²RMIT University; ³Hill Engineering

2:30 PM

The Influence of Build Orientation on the Thermal Fatigue Behavior of Additively Manufactured AlSi10Mg Coupons: *Joy Forsmark*¹; Wei-Jen Lai¹; Carlos Engler-Pinto¹; John Cornell¹; Mark Madin¹; Wolfram Buschhaus¹; ¹Ford Motor Company

2:50 PM

Strength, Fatigue, Fracture, and Microstructure of Additively Manufactured Austenitic Stainless Steel: *Chris San Marchi*¹; Thale Smith¹; Julie Schoenung²; Joshua Sugar¹; ¹Sandia National Laboratories; ²University of California, Irvine

3:10 PM

Evaluation of the Cyclic Stress-strain Behavior of Additively Manufactured AlSi10Mg: *Matilde Scurria*¹; Benjamin Möller²; Rainer Wagener²; Tobias Melz¹; ¹Technische Universität Darmstadt, Research Group of System Reliability, Adaptive Structures and Machine Acoustics SAM; ²Fraunhofer Institute for Structural Durability and System Reliability LBF

3:30 PM Break

3:50 PM Invited

Fatigue Behavior of DMLS IN718 and Ti-6Al-4V through Coupled Modeling and In Situ Experiments: *Michael Sangid*¹; ¹Purdue University

4:20 PM

Study on Dominant factors on Fatigue Strength of Additive Manufactured Ti-6Al-4V Alloy: *Junichi Ozaki*¹; Takehisa Yamada¹; Masahiro Takanashi¹; Ryoji Kakiuchi¹; Akihiro Sato¹; ¹IHI Corporation

4:40 PM

Fatigue Crack Growth Anisotropy in Selective Laser Melting Produced Alloy 718 at Ambient and Elevated Temperatures: Halsey Ostergaard¹; Jamie Kruzic¹; ¹University of New South Wales

Additive Manufacturing: Building the Pathway towards Process and Material Qualification – Modeling in Additive Manufacturing

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Additive Manufacturing Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas - Austin; Christian Leinenbach, Empa-Swiss Federal Laboratories for Materials Science and Technology; James Sears, Carpenter Technology Coporporation; Christopher Tuck, University of Nottingham

Tuesday PMRoom: 230March 13, 2018Location: Phoenix Convention Center

Session Chairs: Wayne King, LLNL; Peter Collins, Iowa State University

2:00 PM Invited

Accelerating Qualification of Additively Manufactured Metal Parts: *Wayne King*¹; Andrew Anderson¹; Robert Ferencz¹; Neil Hodge¹; Saad Khairallah¹; Manyalibo Matthews¹; Alexander Rubenchik¹; Otis Walton¹; Morris Wang¹; ¹Lawrence Livermore National Laboratory

2:30 PM

Online Monitoring of Powder Bed Fusion Processes and Validation of Numerically Predicted Heating and Cooling Rates - Implications on Asbuilt Work Piece: *Mustafa Megahed*¹; Christoph Beetz¹; Narcisse N'Dri¹; Hans-Wilfried Mindt¹; Mark Cola²; Lars Jaquemetton²; James Craig³; Thomas Wakeman³; Peralta Alonso⁴; James Neumann⁴; ¹ESI Group; ²Sigma Labs, Inc.; ³Stratonics Inc; ⁴Honeywell Aerospace

2:50 PM

Predicting Deformation and Cracking as a Function of Additive Manufacturing Process Parameters: *Richard Otis*¹; Cornelia Altenbuchner¹; Andrew Shapiro¹; ¹Jet Propulsion Laboratory

3:10 PM

Validation of Laser Powder Bed Fusion Finite Element Model: *Li Ma*¹; Kevontrez Jones²; Jarred Heigel¹; Brandon Lane¹; Richard Ricker¹; Greta Lindwall¹; Carelyn Campbell¹; Lyle Levine¹; ¹National Institute of Standards and Technology; ²Northwestern University

3:30 PM Break

3:50 PM Invited

(Some of) The ICME Building Blocks to Qualify the Process and Materials of Additive Manufacturing: *Peter Collins*¹; ¹Iowa State University

4:20 PM

Automated Material, Geometry and Process Qualification in Metal Melting Based Additive Manufacturing Technologies Using Experimentally Validated Simulation Tools: *Deepankar Pal*¹; Javed Akram¹; Pradeep Chalavadi¹; Abdul Khan¹; Chong Teng¹; Brent Stucker¹; ¹³DSIM

4:40 PM

Modeling the Life Cycle of High throughput Tensile Specimens Produced by Laser Powder Bed Fusion: From Fabrication to Performance: *Kyle Johnson*¹; Bradley Jared¹; John Emery¹; Jonathan Madison¹; Carl Jacques¹; Burke Kernen¹; Kurtis Ford¹; Joseph Bishop¹; ¹Sandia National Laboratories

5:00 PM

Finite Element Modelling of the Laser Metal Directed Energy Deposition Process: *Edison Bonifaz*¹; ¹Universidad San Francisco de Quito

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Dislocations and Planar Faults

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Tuesday PM March 13, 2018 Room: 122B Location: Phoenix Convention Center

Session Chairs: Irene Beyerlein, University of California, Santa Barbara; Thomas Bieler, Michigan State University

2:00 PM

Analyzing Subsurface Dislocation Content of Ti-5Al-2.5Sn Alloy Using Micro-Laue Diffraction Based Streak Anlaysis and Transmission Electron Microscopy: *Chen Zhang*¹; Shanoob Nair¹; Hongmei Li¹; Philip Eisenlohr¹; Martin Crimp¹; Carl Boehlert¹; Ruqing Xu²; Thomas Bieler¹; ¹Michigan State University; ²Argonne National Lab

2:20 PM

Electron Microscopy Image Simulation Using Atomistic Simulation Data: *Joseph Tessmer*¹; Saransh Singh¹; Marc De Graef¹; ¹Carnegie Mellon University

2:40 PM

3D Dislocation Crystallography: *Zongqiang Feng*¹; Chengwei Lin¹; Guilin Wu¹; Xiaoxu Huang¹; ¹Chongqing University

3:00 PM

Three-dimensional X-ray Diffraction Imaging of Dislocations in Polycrystalline Metals Under Tensile Loading: *Mathew Cherukara*¹; Reeju Pokharel²; Timothy S'O.Leary²; Kevin Baldwin²; Evan Maxey¹; Wonsuk Cha¹; Jorg Maser¹; Ross Harder¹; Saryu Fensin²; Richard Sandberg²; ¹Argonne National Lab; ²Los Alamos National Laboratory

3:20 PM Break

3:40 PM Invited

Atomic Scale Modeling and Experimental Observations of Deformation Mechanisms in Ni Base Superalloys: You Rao¹; T. M. Smith¹; M. J. Mills¹; *Maryam Ghazisaeidi*¹; ¹Ohio State University

4:10 PM

Analysis of Dislocation Slip Across Boundaries in Tantalum Using ECCI and CC-EBSD: Bret Dunlap¹; Martin Crimp¹; ¹Michigan State University

4:30 PM

TEM 3D Visualization Using Two Micrographs: *Benjamin Eftink*¹; Kaan Unal¹; George Gray¹; Stuart Maloy¹; ¹Los Alamos National Laboratory

4:50 PM

Evolution of Stacking Faults during Thermomechanical Processing of Biomedical Co-Cr-Mo Alloys Studied by X-ray Diffraction Line-profile Analysis: *Kenta Yamanaka*¹; Mmanami Mori²; Kazuo Yoshida¹; Shigeo Sato³; Akihiko Chiba¹; ¹Tohoku University; ²National Institute of Technology, Sendai College; ³Ibaraki University

5:10 PM

Detection of the Onset of Plasticity in Micro-crystals: In-situ Deformation of InSb Micro-pillars under Synchrotron Coherent X-ray Nanobeam: *Ludovic Thilly*¹; Vincent Jacques²; Christoph Kirchlechner³; ¹Pprime Institute - University of Poitiers; ²LPS-Orsay; ³MPIE Düsseldorf

Advanced High-strength Steels – Medium Mn Steels Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Tuesday PMRoom: 121CMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Young-Kook Lee, Yonsei University; Cem Tasan, Massachusetts Institute of Technology

2:00 PM Invited

Tensile Properties of Tempered-martensitic Medium Mn Lightweight Steel: Sukjin Lee¹; Seok-Hyeon Kang¹; Jae-Hoon Nam¹; Sang-Min Lee¹; *Young-Kook Lee*¹; ¹Yonsei University

2:25 PM

Strengthening Mechanism of a Medium Mn Steel with a Yield Strength of 2.2 GPa and Uniform Elongation of 16%: *M.X. Huang*¹; Binbin He¹; ¹The University of Hong Kong

2:45 PM

In Situ μ-DIC Measurements of Strain Partitioning in Medium Mn Steel: *Aniruddha Dutta*¹; Dirk Ponge¹; Stefanie Sandlöbes²; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Institut für Metallkunde und Metallphysik, RWTH Aachen

3:05 PM

The Impact of Aluminum on the Microstructure and Deformation Behavior in Medium-Mn TRIP Steels: Devesh Misra¹; *Bing Yu*¹; Yashwanth Injeti¹; ¹University of Texas at El Paso

3:25 PM

Comparison of the Hot-stamped Boron-alloyed Steel and the Warmstamped Medium-Mn Steel on Microstructure and Mechanical Properties: *Ying Chang*¹; Cunyu Wang²; Xiaodong Li¹; Guojun Zheng¹; Han Dong²; ¹Dalian University of Technology; ²Central Iron & Steel Research Institute

3:45 PM Break

4:00 PM

Effects of Annealing Time and Strain Rate on Alloy Partitioning and Mechanical Properties of a Medium-Mn Steel: *Jake Benzing*¹; Aniruddha Dutta²; Lutz Morsdorf²; Alisson Kwiatkowski da Silva²; Dirk Ponge²; Jeongho Han³; Whitney Poling⁴; Bill Luecke⁴; Dierk Raabe²; Jim Wittig¹; ¹Vanderbilt University; ²Max-Planck-Institut für Eisenforschung; ³Chungnam National University; ⁴National Institute of Standards and Technology

4:20 PM

Investigation on Sheared Edge Crack Susceptibility of the Thirdgeneration Automobile Medium-Mn Steel: *Xiaodong Li*¹; Shuo Han¹; Cunyu Wang²; Ying Chang¹; Han Dong²; ¹Dalian University of Technology; ²Central Iron & Steel Research Institute

4:40 PM

Enhanced Formability of Duplex Light-weight Steels by Warm-rolling: Yongmoon Lee¹; Chong Soo Lee¹; ¹Postech

5:00 PM

Development, Characterization and Mechanical Property Evaluation of a Medium Mn High Si Multicomponent Steel for Automotive Applications: *Nicky Kisku*¹; Sumantra Mandal¹; K.K Ray¹; ¹Indian Institute of Technology, Kharagpur

5:20 PM

Resetting Microstructures and Properties in TRIP-assisted Advanced High Strength Steels: *Menglei Jiang*¹; C. Cem Tasan¹; ¹MIT

Advanced Magnetic Materials for Energy and Power Conversion Applications – Alloy Development and Application of Magneto-thermal Materials

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Tuesday PM	Room: 229A
March 13, 2018	Location: Phoenix Convention Center

Session Chair: TV (Jay) Jayaraman, University of Michigan

2:00 PM Introductory Comments

2:05 PM Invited

Methods for Characterizing the Hysteresis of Magnetocaloric Materials: *Victorino Franco*¹; Jia Yan Law¹; Luis M. Moreno-Ramírez¹; Alejandro Conde¹; ¹Sevilla University

2:35 PM Invited

Efficient Energy-conversion Near Room-temperature with Transition Metal Based Magnetic Materials: *Ekkes Brück*¹; ¹Delft University of Technology

3:05 PM Invited

Optimisation of Magnetically Hard Pyromagnets: *Karl Sandeman*¹; Dominique Givord²; Laurent Ranno²; Nora Dempsey²; ¹City University of New York, USA; ²Université Grenoble Alpes, CNRS, Institut Néel

3:35 PM Break

3:55 PM Invited

Spin Seebeck Effect and Anisotropy in Magnetic Oxides: Vijaysankar Kalappattil¹; Raja Das¹; Manh-Huong Phan¹; *Hariharan Srikanth*¹; ¹University of South Florida

4:25 PM

Magnetocaloric Effect and Local Structure in B/In-substituted Gd-Co-Al Metallic Glasses: Jason Douglas¹; Eric Lass¹; Robert Shull¹; ¹National Institute of Standards and Technology

4:45 PM

Severe Plastic Deformation as a Tool for Production Advanced Magnetic Materials: *Sergey Taskaev*¹; Konstantin Skokov²; Vladimir Khovaylo³; Oliver Gutfleisch²; ¹Chelyabinsk State University; ²TU Darmstadt; ³NITU MISIS

5:05 PM

Influence of Co-doping on the Crystal Structure, Magnetocaloric Properties and Elastic Moduli of the La(Fe,Si)13 Compound: *Dan Huang*¹; Ronghui Kou¹; Jianrong Gao¹; Jiaqiang Yan²; Veerle Keppens²; David Mandrus²; Yang Ren³; ¹Northeastern University; ²University of Tennessee; ³Argonne National Laboratory

5:25 PM

Magnetocaloric Properties of (Fe,Mn)3Al Based Alloys under Hydrostatic Pressure: Vinay Sharma¹; *Raju Ramanujan*¹; ¹Nanyang Technological University

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder – Quality and Reliability of Advanced Microelectronic Packaging II

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee *Program Organizers:* Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Tuesday PM	Room: 226C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Kwang-Lung Lin, National Cheng Kung University; C. Robert Kao, National Taiwan University

2:00 PM

Multi Axis Loading Impact in Via-in Pad Plated Over (VIPPO) Board Design on Thermal Cycling Performance: *Tae-Kyu Lee*¹; Mohamed Sheikh¹; Andy Hsiao¹; Weidong Xie²; Steven Perng²; ¹Portland State University; ²Cisco Systems

2:20 PM

Characterization of X-ray Impact on Memory Retention Time for External In-package DRAM: *George Vakanas*¹; Jaeho Lee²; Purushotham Kaushik Muthur Srinath¹; Mahesh Deshmane¹; Gunnar Zimmermann¹; Elah Bozorg-Grayeli¹; Leslie Lau¹; Shereen Elhalawaty¹; Jiraporn Seangatith¹; Prasad Ramanathan¹; Wonyong Choi²; Oungsic Cho²; Yeongkee Chang²; Saikumar Jayaraman¹; ¹INTEL Corporation; ²SK Hynix

2:40 PM

The Effect of Bump Metallurgy on First Level Interconnect Solder Bump Integrity: *Shereen Elhalawaty*¹; George Vakanas¹; Jiraporn Seangatith¹; Prasad Ramanathan¹; Elah Bozorg-Grayeli¹; Bharat Penmecha¹; Pilin Liu¹; Charles Zhang¹; ¹Intel Corporation

3:00 PM

Resistance Changes of Pd-coated Cu and Ag Bonding Wires in High Temperature Storage: *Stevan Hunter*¹; Michael Hook²; Michael Mayer²; ¹ON Semiconductor; ²University of Waterloo

3:20 PM

Understand the Corrosion-induced Disappearance of Cu9Al4 from the Cu-Al Ball Bond Interface: Yuelin Wu¹; Andre Lee¹; ¹Michigan State University

3:40 PM Break

4:00 PM

A Study of Ag Alloy Wire with Flash Au after Sulfidation Test: Yu-Hsien Wu¹; Fei-Yi Hung¹; Truan-Sheng Lui¹; ¹National Cheng Kung University

4:20 PM

Thermal Cycling Reliability of Solder and NiSn Solid-liquid Interdiffusion Joints with Thermal Coefficient Mismatch: Influence of Mechanical Properties of Joint Materials: *Hirofumi Ito*¹; Makoto Kuwahara¹; Masanori Usui¹; ¹Toyota Central R&D Labs., Inc.

4:40 PM

Observations of Microstructure Evolution and Damage during Creep Testing and Thermal Loading of SAC 305 Solder Alloys: *Tianhong Gu*¹; Grey Chen¹; Chris Gourlay¹; Ben Britton¹; ¹Imperial College London

5:00 PM

In Situ X-ray Microtomography of Thermal and Power Cycling of Silverbased Thermal Interface Materials: *Irene Lujan Regalado*¹; Jason Williams¹; Yanghe Liu²; Shailesh Joshi²; Nikhilesh Chawla¹; ¹Arizona State University; ²Toyota Research Institute of North America

5:20 PM

Corrosion Resistance of Surface Finishes for High Reliability Devices: *Tsan-Hsien Tseng*¹; Albert T. Wu¹; ¹National Central University

Advances in Additive Manufacturing of Titanium and Titanium Based Alloys – Solidification and Microstructure I

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Peter Collins, Iowa State University; Leon Prentice, CSIRO; Andrew Baker, The Boeing Company; Craig Brice, Lockheed Martin Space Systems Company

Tuesday PM March 13, 2018 Room: 231C Location: Phoenix Convention Center

Session Chairs: Michael Bermingham, The University of Queensland; Rajarshi Banerjee, University of North Texas; Brady Butler, US Army Research Lab

2:00 PM Invited

Modeling the Effects of Alloying on Microstructure Formation under Additive Manufacturing Conditions: *Richard LeSar*¹; Matthew Rolchigo¹; Michael Mendoza¹; Peter Collins¹; ¹Iowa State University

2:30 PM Invited

The Effect of Boron on the Grain Size and Texture in Additively Manufactured β-Ti Alloys: Srinivas Aditya Mantri¹; Talukder Alam¹; Deep Choudhuri¹; Christopher Yannetta¹; Calvin Mikler¹; Peter Collins²; *Rajarshi Banerjee*¹; ¹University of North Texas; ²Iowa State University

3:00 PM

Predicting the Solidification Microstructure of Pulsed-LPBF Ti-6Al-4V Alloy Using Phase-field Modelling: Dany Rasmussen¹; Nikolas Provatas¹; Mathieu Brochu¹; ¹McGill University

3:20 PM Break

3:35 PM Invited

Microstructure Characterisation and Mechanical Properties of Ti-6Al-4V with Grain Refinement Made by Direct Laser Fabrication: Kai Zhang¹; Tom Jarvis¹; Sheng Cao¹; Xinhua Wu¹; ¹Monash University

4:05 PM Invited

Tuning Microstructural Evolution in Additively Manufactured Ti Alloys Using High throughput Experimental Approaches: Brian Welk¹; Kevin Chaput²; Samuel Kuhr¹; *Hamish Fraser*¹; ¹The Ohio State University; ²AFRL/ RX

4:35 PM

Effect of Scan Patterns on Microstructure Evolution of Ti6Al4V Alloy: *Javed Akram*¹; Deepankar Pal¹; Pradeep Chalavadi¹; Brent Stucker¹; ¹3DSIM, LLC

4:55 PM

Titanium Based Metal-matrix Composites via In-situ Nitridation: Microstructure and Tribological Properties: *Tushar Borkar*¹; Thomas Scharf²; Rajarshi Banerjee²; ¹Cleveland State University; ²University of North Texas

Algorithm Development in Materials Science and Engineering – DFT and Atomistic Algorithms for Study and Design of Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Mark Tschopp, Army Research Laboratory; Jonathan Zimmerman, Sandia National Laboratories; Ebrahim Asadi, University of Memphis; Mark Horstemeyer, Mississippi State University

> Room: 130 Location: Phoenix Convention Center

Session Chair: Douglas Spearot, University of Florida

2:00 PM Invited

Tuesday PM

March 13, 2018

An Explicit Methodology for Hierarchical Bridging between Ab Initio and Atomistic Scales: Mark Horstemever1; Christopher Barrett1; Ric Carino1; Imran Aslam¹; Doyl Dickel¹; Michael Baskes¹; ¹Mississippi State University

2:30 PM

Large-scale Real-space Electronic Structure Calculations: Bikash Kanungo1; Phani Motamarri1; Vikram Gavini1; 1University of Michigan

2:50 PM

Parallel Algorithms for Hyperdynamics in LAMMPS: Steve Plimpton¹; Danny Perez²; Art Voter²; ¹Sandia National Laboratories; ²Los Alamos National Laboratory

3:10 PM

Accelerated Quantum Molecular Dynamics: Enrique Martinez Saez¹; Christian Negre1; Danny Perez1; Marc Cawkwell1; Arthur Voter1; Anders Niklasson1; 1Los Alamos National Laboratory

3:30 PM Break

3:50 PM Invited

Computational Phonon Manipulation: Peter Chung¹; Francis VanGessel¹; Jie Peng¹; Rose Gallagher¹; ¹University of Maryland in College Park

4:20 PM

Computing the Lattice Green Function in Complex Materials: Anne Marie *Tan*¹; Dallas Trinkle¹; ¹University of Illinois, Urbana-Champaign

4:40 PM

Automated Calculation of First-principles Based Diffusion Coefficients in Non-dilute Alloys: Brian Puchala1; Sanjeev Kolli2; John Goiri2; Naga Sri Harsha Gunda²; Julija Vinckeviciute²; John Thomas²; Anton Van der Ven²; ¹University of Michigan, Ann Arbor; ²University of California, Santa Barbara

5:00 PM

Transition State Redox during Dynamical Processes in Semiconductors and Insulators: Guangfu Luo1; Thomas Kuech1; Dane Morgan1; 1University of Wisconsin-Madison

Alloys and Compounds for Thermoelectric and Solar Cell Applications VI – Session IV

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Ensicaen University of Caen; Soon-Jik Hong, Kongju National University and Institute for Rare Metals; Philippe Jund, Université Montpellier 2; Lan Li, Boise State University; Takao Mori, National Institute for Materials Science (NIMS) ; Hsin-jay Wu, National Sun Yat-sen University; Tiejun Zhu, Zhejiang University

Tuesday PM	Room: 226B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Takao Mori, National Institute for Materials Science; Philippe Jund, Université de Montpellier

2:00 PM Invited

Effect of Oxygen on the Doping Mechanisms of Thermoelectric Materials via Ab Initio Simulations: Application to ZnSb and NiTiSn.: Philippe Jund1; Alexandre Berche1; 1Université Montpellier 2 - ICGM

2:20 PM Invited

Ni-interstials Making Strong Influence on Thermoelectric Properties of TiNiSn Half Heuslers: Yinglu Tang1; Xiaoshuang Li1; Lukas Martin2; Christian Leinenbach¹; Toni Ivas¹; Shashwat Anand³; Jeffrey Snyder³; Corsin Battaglia1; 1EMPA; 2ETH; 3Northwestern University

2:40 PM

Effect of Magnetic Ion Doping on the Thermoelectric Properties of Zintl Phase Materials: Gabin Guélou1; Takao Mori1; 1National Institute for Materials Science

3:00 PM Invited

Phonon Scattering and Propagation Considerations for Thermoelectrics: Yanzhong Pei1; 1Tongji University

3:20 PM Invited

Anisotropic Thermal Expansion and Bond Softening in Thermoelectric Materials: Alexandra Zevalkink1; 1Michigan State University

3:40 PM Break

4:00 PM Invited

Tailoring Thermoelectric Properties of Telluride-based Materials from Bulk to Thin Films: Li-Chyong Chen1; Deniz Wong2; Kuei-Kuan Wu2; Kuei-Hsien Chen2; 1National Taiwan University; 2Academia Sinica

4:20 PM Invited

Thermoelectric Borides and Sulfides; Role of Magnetism and Disorder: Takao Mori¹; ¹National Institute for Materials Science (NIMS)

4:40 PM Invited

Suppressing Bipolar Effects by Deep Defect State for High Thermoelectric Efficiency: Qian Zhang¹; ¹Harbin Institute of Technology (Shenzhen)

5:00 PM

Enhancement of Thermoelectric Performance Through Optimization of Hot-pressing Parameters in the Gas Atomized Bi0.5Sb1.5Te3 Alloys: Peyala Dharmaiah¹; D.W Shin¹; M Babu¹; C.H. Lee¹; Soon-Jik Hong¹; ¹Kongju National University

Aluminum Alloys, Processing and Characterization – Aluminum Alloy Development

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Tuesday PMRoom: 221BMarch 13, 2018Location: Phoenix Convention Center

Session Chair: Hiromi Nagaumi, Soochow University

2:00 PM Invited

A Study of Sensitization in Naturally Aged 5xxx Alloys: *William Golumbfskie*¹; Emily Holcombe¹; Mitra Taheri²; ¹Naval Surface Warfare Center, Carderock Division; ²Drexel University

2:30 PM Invited

Phase Formation of Monotectic Al-In and Al-Ga-In Alloys and Implications Thereof: Xiaoming Wang¹; Xingtao Liu¹; ¹Purdue University

2:50 PM

Effect of Ultrasonic Melt Treatment, Mn and Cooling Rate on the Formation of Fe-containing Intermetallics in Hypereutectic Al-Si Alloy: *Carmelo Todaro*¹; Mark Easton¹; Dong Qiu¹; Ma Qian¹; ¹RMIT University

3:10 PM

Investigations on Pb-free 6000 Series Aluminum Alloy for Machining Applications: *Saikat Adhikari*¹; Anirban Giri¹; V Siva Raman²; Pramod Koparde³; Sachin Gupta³; L Vijayaraghavan²; S Sankaran²; ¹Aditya Birla Science and Technology Company Pvt. Ltd.; ²Indian Institute of Technology, Madras; ³Hindalco Industries Ltd.

3:30 PM Break

3:50 PM

Optimization in Novel Partial-solid High Pressure Aluminum Die Casting by Taguchi Method: *Yekta Suslu*¹; Mehmet Acar²; Mithat Senol²; Muammer Mutlu²; Ozgul Keles¹; ¹Istanbul Technical University; ²Mita Kalip ve Dokum Sanayii A.S.

4:10 PM

New Aluminum Alloys for High Pressure Casting: *Alexander Alabin*¹; Viktor Mann¹; Anton Frolov¹; Aleksandr Krokhin¹; ¹UC RUSAL

4:30 PM

Application of the Hot Stamping Process to Aluminum Alloy Structural Components: *Ehab Samuel*¹; ¹National Research Council Canada

Aluminum Reduction Technology – Joint Session: Alumina Quality

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Abdalla Zarouni, Emirates Global Aluminium

Tuesday PM	Room: 221C
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Claude Fradet, Rio Tinto Aluminium

2:00 PM Introductory Comments

2:05 PM Keynote

Understanding and Defining Alumina Quality for Smelting: James Metson¹; ¹University of Auckland

2:40 PM Keynote

Alumina Dissolution - A Critical Step in Aluminum Electrolysis: Laszlo Kiss¹; ¹University of Quebec in Chicoutimi

3:15 PM Panel Discussion Led by Claude Fradet, Panel members include Jim Metson, Lazlo Kiss, and Alessio Scarsella

3:45 PM Break

4:00 PM

Discussion on Alumina Dissolution and Diffusion in Commercial Aluminum Reduction Cell: *Youjian Yang*¹; Bingliang Gao¹; Zhaowen Wang¹; Zhongning Shi¹; Xianwei Hu¹; Wenju Tao¹; Fengguo Liu¹; ¹Northeastern University

4:25 PM

Investigation of Alumina Concentration Gradients within Hall-Héroult Electrolytic Bath: *Jayson Tessier*¹; Katie Cantin¹; Davíð Þór Magnússon¹; ¹Alcoa

4:50 PM

Study of Alumina Dissolution in Cryolitic Bath to the Vertical Soderberg (VSS) Aluminum Production Process: *Diego Marinho*¹; Marcelo Mourão²; ¹Votorantim Metais CBA; ²Universidade de São Paulo (USP)

5:15 PM

Impacts of Sodium on Alumina Quality and Consequences for Current Efficiency: *Grant McIntosh*¹; Hasini Wijayaratne¹; Gordon Agbenyegah¹; Margaret Hyland¹; James Metson¹; ¹Light Metal Research Centre

Application of Solidification Fundamentals to Challenges in Metal Additive Manufacturing – Solidification Modeling

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Alex Plotkowski, University of Tennessee -Knoxville; Kevin Chaput, Materials and Manufacturing Directorate; Lang Yuan, GE Global Research

Tuesday PM March 13, 2018 Room: 232B Location: Phoenix Convention Center

Session Chair: Lang Yuan, GE Global Research

2:00 PM Invited

Phase-field Modeling of Solidification Microstructures during Additive Manufacturing: Yanzhou Ji¹; Feng-Yi Yu¹; Huiliang Wei¹; Yanhong Wei²; Tarasankar Debroy¹; *Long Qing Chen*¹; ¹Penn State University; ²Nanjing University of Aeronautics & Astronautics

2:30 PM

Simulating Grain Formation during Metal Additive Manufacturing (AM): Potential Pathways for Producing Equiaxed Grain Structures: David StJohn¹; Arvind Prasad¹; Lang Yuan²; Peter Lee³; ¹University of Queensland; ²GE Global Research; ³University of Manchester

2:50 PM

Microstructural Modeling of the Solidification of Alloys in Additive Manufacture: Alojz Ivankovic¹; Denis Dowling¹; *David Browne*¹; ¹University College Dublin

3:10 PM

Phase-field Modeling of Solidification under SLM Conditions: *Guillaume Boussinot*¹; Jonas Zielinski²; Markus Apel¹; ¹Access e.V.; ²Fraunhofer Institut fuer Lasertechnik

3:30 PM Break

3:50 PM

Fluid Dynamics Effects on Microstructure Prediction in the Laser Additive Manufacturing Process: *Adrian Sabau*¹; Lang Yuan²; Srdjan Simunovic¹; John Turner¹; Neil Carlson³; ¹Oak Ridge National Laboratory; ²GE Global Research; ³Los Alamos National Laboratory

4:10 PM

Heat Transfer and Fluid Flow during Fabrication of Overhang Structure in Laser-powder Bed Fusion Additive Manufacturing: *Yi Li*¹; Yousub Lee²; Wei Zhang¹; ¹The Ohio State University; ²Oak Ridge National Laboratory **TUESDAY PM**

4:30 PM

Dynamics of Melting and Resolidification: Application to the Interlayer Band Microstructure in Laser Metal Deposition: *Guillaume Boussinot*¹; Ulrike Hecht¹; Markus Apel¹; Silja-Katharina Rittinghaus²; Oleg Stryzhyboroda¹; ¹Access e.V.; ²Fraunhofer-Institut fuer Lasertechnik

4:50 PM

FUESDAY PM

Experimental and Simulation Study of Solidification and Micro-structural Evolution of Liquid Metal Alloys for Additive Manufacturing Process Simulation and Materials Design: *Jonathan Raush*¹; Sanjeev Tulasigeri¹; Boliang Zhang²; Shengmin Guo²; Wenjin Meng²; ¹University of Louisiana at Lafayette; ²Louisiana State University

Atom Probe Tomography for Advanced Characterization of Metals, Minerals and Materials – Novel Applications and Modelling

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee *Program Organizers:* Haiming Wen, Missouri University of Science and Technology; Simon Ringer, The University of Sydney; Gregory Thompson, University of Alabama; Arun Devaraj, Pacific Northwest National Laboratory; Keith Knipling, U.S. Naval Research Laboratory; Gang Sha, Nanjing University of Science and Technology; David Seidman, Northwestern University; Chantal Sudbrack, QuesTek Innovations, LLC

Tuesday PMRoom: 124AMarch 13, 2018Location: Phoenix Convention Center

Funding support provided by: CAMECA Instruments, Inc.

Session Chairs: Dieter Isheim, Northwestern University; Gregory Thompson, University of Alabama

2:00 PM Invited

New Experimental APT Methods for the Analysis of Nanoparticles: *Peter Felfer*¹; Jan Joosten¹; Chandra Macaulay¹; Taulant Sinani¹; ¹FAU Erlangen-Nürnberg

2:35 PM Invited

Studying the Distribution of Trace Elements in Zircon: Deformation and Standards: *Julie Cairney*¹; Alexandre La Fontaine¹; Florant Exertier¹; Sandra Piazolo²; Patrick Trimby³; Limei Yang¹; ¹The University of Sydney; ²The University of Leeds; ³Oxford Instruments Nanoanalysis

3:10 PM Invited

Chemical Imaging of Interfaces and Interphases in Tooth Biominerals: *Derk Joester*¹; 'Northwestern University

3:45 PM Break

4:05 PM

Advanced APT Simulations by Combining Electrostatics with Molecular Dynamics: *Christian Oberdorfer*¹; Travis Withrow¹; Emmanuelle Marquis²; Wolfgang Windl¹; ¹The Ohio State University; ²University of Michigan

4:25 PM

Non-diffusive Drag Effect in APT of AlCu Alloy: Travis Withrow¹; Christian Oberdorfer¹; Emmanuelle Marquis²; *Wolfgang Windl*¹; ¹The Ohio State University; ²University of Michigan

4:45 PM Invited

Modeling Atom Probe Tomography: A Path for Diagnosis and Treatment of Reconstruction Artifacts Symptoms: *François Vurpillot*¹; Benoit Gervais²; Constantinos Hatzoglou¹; Stefan Parviainen¹; ¹GPM UMR 6634; ²CIMAP UMR 6252

Biological Materials Science – Bones, Teeth, and Dental Materials

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee Program Organizers: Steven Naleway, University of Utah; Vinoy Thomas, University of Alabama at Birmingham; Holly Martin, Youngstown State University; Jing Du, Pennsylvania State University

Tuesday PM	Room: 225B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Vinoy Thomas, University of Alabama, Birmingham; Dwyane Arola, University of Washignton

2:00 PM Invited

Tooth Enamel: Imaging a Highly Graded Structure at the Nanoscale: *Derk Joester*¹; ¹Northwestern University

2:30 PM

Spatial Variations in Aging of Teeth about the Arch: Weishi Yan¹; Marit Oilo²; Avina Paranjpe¹; Hai Zhang¹; *Dwayne Arola*¹; ¹University of Washington; ²University of Bergen

2:50 PM

Finite Element Simulations and 3D-printed Models of Bone as an Interpenetrating Composite: *Frances Su*¹; Fereshteh Sabet²; Rachel Hsiong¹; Justin Salim¹; Iwona Jasiuk²; Joanna McKittrick¹; ¹University of California, San Diego; ²University of Illinois at Urbana-Champaign

3:10 PM

The Influence of Plastic Deformation Mechanisms on the Adhesion Behavior and Collagen Formation in Osteoblast Cells: Benay Uzer¹; Felipe Monte²; Kamal Awad³; Pranesh Aswath²; Venu G. Varanasi⁴; Demircan Canadinc¹; ¹Koc University; ²University of Texas at Arlington; ³University of Texas at Arlington, National Research Centre, Giza, Egypt; ⁴Texas A&M University

3:30 PM Break

3:50 PM Invited

Damage Tolerance in Dental Restorative Materials: Jamie Kruzic¹; Carina Tanaka¹; ¹UNSW Sydney

4:20 PM

Osteoblast Functions on Bioactive 3D Printed Porous Ti-6Al-4V Scaffolds: *Krishna Chaitanya Nune*¹; Devesh Misra¹; SJ Li²; Yl Hao²; W Zhang²; ¹University of Texas at El Paso; ²Chinese Academy of Sciences

4:40 PM

Reduction of Osteoporosis by Means of Hydrogels and Nanohydroxyapatite with Integration of Magnesium: *Gerardo Presbitero*¹; Laura Peña²; Cristina Piña¹; M. A. L. Hernandez-Rodríguez³; ¹National Autonomous University of Mexico; ²Universidad de Monterrey; ³Universidad Autónoma de Nuevo León

5:00 PM

Synthesis and Evaluation of Polypyrrole-hydroxyapatite Composite Developed through Electro-deposition for Use as Bio-compatible Coating over Metallic Orthopaedic Implant Surfaces: *Rajib Chakraborty*¹; Partha Saha¹; ¹Indian Institute of Technology- Kharagpur

TUESDAY PM

Bulk Metallic Glasses XV – Structures and Mechanical Properties I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Tuesday PMRoom: 122AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Takeshi Egami, The University of Tennessee, Knoxville; Koichi Tsuchiya, NIMS

2:00 PM Keynote

Ductility of Metallic Glasses: Takeshi Egami1; 1University of Tennessee

2:30 PM Invited

Elastic Heterogeneities in Bulk Metallic Glasses: Peter Tsai¹; Kelly Kranje¹; *Katharine Flores*¹; ¹Washington University

2:50 PM Invited

Mechanically-induced Structural Rejuvenation by HPT Deformation in Zr-Cu-Al Bulk Metallic Glass: *Koichi Tsuchiya*¹; Jian Qiang²; ¹NIMS; ²University of Tsukuba

3:10 PM Invited

Spatio-temporal Correlation in Rheology of Metallic Glasses: Shuangxi Song¹; *Mingwei Chen*²; ¹Shanghai Jiao Tong University; ²Johns Hopkins University

3:30 PM Break

3:50 PM Invited

Research on the Deformation Behaviors and Shear Band Multiplication of Bulk Metallic Glasses: *Ke-Fu Yao*¹; Guan-Nan Yang¹; Yang Shao¹; ¹Tsinghua University

4:10 PM

Linking Macroscopic Rejuvenation to Nano-elastic Fluctuations in a Metallic Glass: Perry Ross¹; Stefan Kuechemann¹; Peter Derlet²; Haibin Yu³; Walter Arnold⁴; Peter Liaw⁵; Konrad Samwer⁶; *Robert Maass*¹; ¹University of Illinois at Urbana-Champaign; ²Paul Scherrer Institute; ³Huazhong University of Science and Technology; ⁴Saarland University; ⁵University of Tennessee; ⁶University of Göttingen

4:30 PM Invited

High Pressure Quenched Metallic Glasses: *Wojciech Dmowski*¹; Stanislaw Gierlotka²; Yoshihiko Yokoyama³; Takeshi Egami¹; ¹University of Tennessee; ²Institute of High Pressure Physics; ³Tohoku University

4:50 PM Invited

Ductile Fracture in Notched Bulk Metallic Glasses: *Jie Pan*¹; Yi Li¹; ¹Institute of Metal Research, Chinese Academy of Sciences

5:10 PM Invited

Cluster Connectivity in Metallic Glass: Xiaoya Wei¹; Si Lan¹; *Xun-Li Wang*¹; ¹City University of Hong Kong

Cast Shop Technology: Recycling and Sustainability Joint Session – Cast Shop Technology: Recycling and Sustainability Joint Session

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Aluminum Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Mark Badowski, Hydro Aluminium; Elsa Olivetti, Massachusetts Institute of Technology

Tuesday PM	Room: 222A
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Elsa Olivetti, Massachusetts Institute of Technology

2:00 PM Introductory Comments

2:05 PM

Recycling of Oxide from Dross into Aluminum Electrolysis Cells: *Martin Syvertsen*¹; Bjarte Øye¹; ¹SINTEF Materials and Chemistry

2:30 PM

Behavior of Mg-Si-rich Phases in Aluminum Can Sheets and Their Impact on Metal Oxidation during Industrial Thermal Pre-treatment: Jan Steglich¹; Christiane Matthies¹; Marcel Rosefort¹; Bernd Friedrich²; ¹TRIMET Aluminium SE; ²RWTH Aachen University

2:55 PM

Potential for Handheld Analyzer to Address Emerging Positive Material Identification (PMI) Challenges: *Leslie Brooks*¹; Gabrielle Gaustad¹; ¹Rochester Institute of Technology

3:20 PM

Dissipative Use of Critical Metals in the Aluminum Industry: *Ayo Arowosola*¹; Alexandra Leader¹; Leslie Brooks¹; Gabrielle Gaustad¹; ¹Rochester Institute of Technology

3:45 PM Break

4:00 PM

In-situ Observation of Dross Formation during Melting of Al-Mg Alloy: *Takehito Hiraki*¹; Hitomi Noguchi²; Nobuhiro Maruoka³; Tetsuya Nagasaka¹; ¹Graduate School of Engineering, Tohoku University; ²Institute for Materials Research, Tohoku University; ³Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

4:25 PM

The Implementation of a Comprehensive Dross Management Program at Constellium Ravenswood: *James Herbert*¹; Steve Tua²; ¹ALTEK LLC; ²Constellium Ravenswood

4:50 PM

Environmental Impacts of Aluminum Dross after Metal Extraction: Mohamed Hassan¹; Nour Attia¹; Kareem Hassan¹; ¹Masdar Institute of Science and Technology

CFD Modeling and Simulation in Materials Processing – Processing II

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee *Program Organizers:* Laurentiu Nastac, The University of Alabama; Koulis Pericleous, University of Greenwich; Adrian Sabau, Oak Ridge National Laboratory; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, Colorado School of Mines

Tuesday PM	Room: 228B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Konstantin Redkin, Whemco; Adrian Sabau, Oak Ridge National Laboratory

2:00 PM Invited

Recent Development and Applications of CFD Simulation for Friction Stir Welding: Gaoqiang Chen¹; Qingyu Shi¹; Shuai Zhang¹; ¹Tsinghua University

2:30 PM

TUESDAY PM

Modeling of Argon Gas Behavior in Continuous Casting of Steel: *Hyunjin Yang*¹; Surya Vanka¹; Brian Thomas¹; ¹University of Illinois at Urbana Champaign

2:50 PM

CFD Modeling of Transport Phenomena and Inclusion Removal in a Gasstirred Ladle: *Qing Cao*¹; Laurentiu Nastac¹; ¹The University of Alabama

3:10 PM

An Innovative Modeling Approach for Predicting the Desulfurization Kinetics in an Argon-stirred Ladle Furnace: *Qing Cao*¹; Laurentiu Nastac¹; ¹The University of Alabama

3:30 PM Break

3:50 PM

Simulation of Non-metallic Inclusion Deposition and Clogging of Nozzle: Hadi Barati¹; Menghuai Wu²; *Tobias Holzmann*²; Abdellah Kharicha²; Andreas Ludwig²; ¹K1-MET GmbH; ²Montanuniversitaet Leoben

4:10 PM

Research on the Flow Properties and Erosion Characteristics in Combined Blown Converter at Steelmaking Temperature: *Shaoyan Hu*¹; Rong Zhu¹; Runzao Liu¹; Kai Dong¹; ¹University of Science and Technology Beijing China

4:30 PM

Effect of Shrouding Nozzles Arrangement on Flow Field and Stirring Ability of Coherent Jet in EAF Steelmaking Process: Fuhai Liu¹; Rong Zhu¹; ¹University of Science & Technology Beijing

Characterization of Minerals, Metals, and Materials – Characterization of Polymer and Composite Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, AI Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Tuesday PM	Room: 122C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Sergio Monteiro, Military Institute of Engineering; Mingming Zhang, ArcelorMittal

2:00 PM Introductory Comments

2:05 PM

Development and Performance of the Polycarbonate Composites Containing High Amount of Sisal Fiber: Noan Simonassi¹; Flavio Ramos¹; *Sergio Monteiro*¹; Édio Lima Junior¹; Dayana Rodrigues²; ¹Militar Institute of Engineering; ²Universidade Federal do Rio de Janeiro

2:25 PM

Dynamic-mechanical Analysis of Epoxy Composites Reinforced with PALF Fibers: *Gabriel Glória*¹; Maria Carolina Teles¹; Felipe Lopes¹; Carlos Maurício Vieira¹; Frederico Margem²; Sérgio Monteiro³; Maycon Gomes⁴; ¹State University of the Northern Rio de Janeiro; ²Faculdade Redentor; ³Instituto Militar de Engenharia, IME; ⁴Instituto Federal Fluminense, IFF

2:45 PM

Characterization of PCBs from Obsolete Computers Aiming the Recovery of Precious Metals: Mariana Carvalho¹; Marcos Paulo Caldas¹; *Jorge Tenório*¹; Denise Espinosa¹; ¹University of São Paulo

3:05 PM

IZOD Impact Test Comparative Analyzis of Epoxy and Polyester Matrix Composites Reinforced with Hemp Fibers: Dhyemila Mantovani¹; Janaina Vieira¹; Lucas Pontes¹; Lázaro Rohen¹; Anna Carolina Neves¹; *Carlos Maurício Vieira*¹; Frederico Margem¹; Sergio Monteiro¹; ¹Universidade Estadual do Norte Fluminense

3:25 PM Break

3:40 PM

Synthesis of Polymeric Hydrogel Loaded with Antibiotic Drug for Wound Healing Applications: *Angélica Zafalon*¹; Vinicius Santos¹; Ademar Lugao¹; Duclerc Parra¹; Vijaya Rangari²; ¹Nuclear and Energetic Research Institute; ²Tuskegee University

4:00 PM

Comparative Mechanical Analysis of Epoxy Composite Reinforced with Malva/Jute Hybrid Fabric by Izod and Charpy Impact Test: Janaina da Silva Vieira¹; Ygor Macabú de Moraes¹; Felipe Perissé Duarte Lopes¹; Sergio Neves Monteiro²; Frederico Muylaert Margem³; Djalma Souza¹; Jean Igor Margem⁴; ¹State University of the Northern Rio de Janeiro; ²Military Institute of Engineering; ³UniREDENTOR; ⁴Institutos Superiores de Ensino do CENSA

4:20 PM

Comparison Between Epoxy Matrix Composites Reinforced with Ramie Fabric under Pressure and Vacuum: Caroline Gomes de Oliveira¹; Janine Feitosa de Deus¹; Felipe Perissé Duarte Lopes¹; Lucas de Almeida Pontes¹; Sérgio Neves Monteiro²; Frederico Muylaert Margem³; ¹UENF - Universidade Estadual do Norte Fluminense; ²Military Institute of Technology - IME; ³Faculdade Redentor

4:40 PM

Charpy Impact Test in Polyester Matrix Composites Reinforced With Hybrid Blanket of the Jute and Malva Fibers: *Jean Margem*¹; Ygor Moraes²; Frederico Margem²; Sergio Monteiro³; Marina Margem⁴; ¹Isecensa Institute for High Education of the Censa; ²Uenf; ³Ime Military institute of Engineering; ⁴UFF - Universidade Federal Fluminense

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Methodology and Chemistry of Materials

Sponsored by: Chinese Society for Metals Program Organizers: Dallas Trinkle, University of Illinois, Urbana-

Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Tuesday PMRoom: 131AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Zhimin Ao, Guangdong University of Technology; Susan Sinnott, Penn State University

2:00 PM Invited

Advances in Atomic-scale Methods for Materials Chemistry: Susan Sinnott¹; ¹Penn State University

2:30 PM

High-throughput Computational Studies of Structural, Electrical, Phonon and Thermal Properties of Two-dimensional Materials: *Lan Li*¹; ¹Boise State University

2:50 PM Invited

DFT Calculations on Carbon Materials for Gas Monitoring and Organic Pollutants Degradation: Zhimin Ao¹; ¹Guangdong University of Technology

3:20 PM Break

3:40 PM

Dispersion Corrected Density Functional Theory Study of \946-PVDF/ Ionic Liquid Complexes: Ranjini Sarkar¹; Tarun Kundu¹; ¹Indian Institute of Technology, Kharagpur

4:00 PM

Cluster Variation Method Applied to Phase Transformations: *Tetsuo Mohri*¹; ¹Tohoku University

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Multiscale Modeling

Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Tuesday PM	Room: 131B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: David Fullwood , Brigham Young University; Thien Duong, Texas A&M University

2:00 PM Invited

Multiscale Simulations of Plastic Deformation in Polycrystalline Metals Using Databases: *Surya Kalidindi*¹; Marat Latypov²; David Montes de Oca Zapiain¹; Evdokia Popova¹; ¹Georgia Institute of Technology; ²University of Lorraine

2:30 PM

Multi-scale Modelling of a Material Performance in a Cutting Edge of a Mining Bucket Loader: *Matti Lindroos*¹; Anssi Laukkanen¹; Tom Andersson¹; Tatu Pinomaa¹; Tuukka Verho¹; ¹VTT Research Center of Finland

2:50 PM

Scale-parity Preserving Multiscale Models for Investigating the Mechanical Properties of Geopolymers: Mohammad Sadat¹; Sourav Gur¹; *Krishna Muralidharan*¹; George Frantziskonis¹; Lianyang Zhang¹; ¹University of Arizona

3:10 PM Invited

Macro and Meso-scale Performance of a Super-dislocation Model for Tracking Dislocation Evolution and Interactions: David Fullwood¹; Landon Hansen¹; Hyuk Jong Bong²; Eric Homer¹; Robert Wagoner²; ¹Brigham Young University; ²Ohio State University

3:40 PM Break

4:00 PM

From Process to Performance: A Scale Bridging Numerical Framework for Addressing Joint Formation and Electromigration in Cu/Sn/Cu Interconnections: *Vahid Attari*¹; Thien Doung¹; Raymundo Arroyave¹; Zachary Morgan²; Yongmei Jin²; ¹Texas A&M University; ²Michigan Technological University

4:20 PM

Effect of Porosity on the Stress-strain Response and Hysteretic Energy Dissipation Capacity of NiTi Shape Memory Alloys: George Frantziskonis¹; Sourav Gur¹; Krishna Muralidharan¹; ¹University of Arizona

Computational Design and Simulation of Materials (CDSM 2018): Computational Design of Materials – Computational Design of Materials: Machine Learning

Sponsored by: Chinese Society for Metals

Program Organizers: Alan Luo, The Ohio State University; Suveen Mathaudhu, University of California, Riverside; Yong Du, Central South University; Raymundo Arroyave, Texas A & M University; Dianzhong Li, Institute of Metal Research, Chinese Academy of Sciences; Zi-Kui Liu, The Pennsylvania State University

Tuesday PM	Room: 131C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Bryce Meredig, Citrine Informatics; Dongwon Shin, Oak Ridge National Laboratory

2:00 PM Invited

Computational Thermodynamic and Machine Learning Approach to Accelerate the Design of High-temperature Alloys: *Dongwon Shin*¹; Sangkeun Lee¹; Yukinori Yamamoto¹; Michael Brady¹; ¹Oak Ridge National Laboratory

2:30 PM Invited

Atomate: A High-level Interface to Generate, Execute, and Analyze Computational Materials Science Workflows: *Kiran Mathew*¹; Joseph Montoya¹; Zi-Kui Liu²; Jeffrey Neaton¹; Shyue Ping Ong³; Kristin Persson¹; Anubhav Jain¹; ¹Lawrence Berkeley Lab; ²The Pennsylvania State University; ³University of California San Diego

3:00 PM

Alloy Design Strategy to Accelerate Nitriding of Fe alloys : A Combined DFT and CALPHAD Study: *Hyuck Mo Lee*¹; Ku Kang¹; Changsoo Lee¹; ¹KAIST

3:20 PM

The Fundamental Thermodynamic Investigation on the Grade 91 Alloy: *Andrew Smith*¹; Yu Zhong¹; ¹Florida International University

3:40 PM Break

4:00 PM Invited

Machine Learning as the "I" in ICME: Integrating Experiment, Simulation, and Theory for Alloy Design: *Bryce Meredig*¹; ¹Citrine Informatics

4:30 PM

A Path Planning Algorithm for Functionally Graded Materials Design: *Tanner Kirk*¹; Edgar Galvan¹; Richard Malak¹; Raymundo Arroyave¹; ¹Texas A&M University

4:50 PM

On the Fly Efficient Global Optimization Techniques to Accelerate Materials Design: *Anjana Talapatra*¹; Shahin Boluki¹; Thien Duong¹; Raymundo Arroyave¹; Xiaoning Qian¹; Edward Dougherty¹; ¹Texas A&M University

5:10 PM

TUESDAY PM

Multiscale Modeling for Systematic Design of Metallic Microstructures to Provide Resistance to Fatigue and Wear: Anssi Laukkanen¹; Tom Andersson¹; Matti Lindroos¹; Tatu Pinomaa¹; ¹VTT

Computational Materials Discovery and Optimization – Materials for Energy Technologies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers:* Richard Hennig, University of Florida; Houlong Zhuang, Arizona State University; Arunima Singh, Lawrence Berkeley National Laboratory; Eric Homer, Brigham Young University; Francesca Tavazza, National Institute of Standards and Technology

Tuesday PM	Room: 132B
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Richard Hennig, University of Florida

2:00 PM Invited

Software Tools for High-throughput Materials Data Generation and Data Mining: *Anubhav Jain*¹; ¹LBNL

2:30 PM

Structure-property Linkages for Porous Membranes Using the Materials Knowledge Systems Framework: *Yuksel Yabansu*¹; Patrick Altschuh²; Johannes Hötzer²; Britta Nestler²; Surya Kalidindi¹; ¹Georgia Institute of Technology; ²Karlsruhe Institute Of Technology

2:50 PM Invited

Light-metal Complex Hydrides: Computational Structure Prediction and Interaction with Functionalized Nanoporous Hosts: Eric Majzoub¹; ¹University of Missouri - St. Louis

3:20 PM Break

3:40 PM Invited

Holistic Computational Structure Screening of More than 12 000 Candidates for Solid Lithium-ion Conductor Materials: Austin Sendek¹; Qian Yang¹; Ekin Cubuk¹; Karel-Alexander Duerloo¹; Yi Cui¹; *Evan Reed*¹; ¹Stanford University

4:10 PM

Improving the Ductility of Boron Carbide from Computational Design: *Qi An*¹; William Goddard III²; ¹University of Nevada, Reno; ²California Institute of Technology

4:30 PM

Fabricating Optimized Crystallographic Textures through Heterogeneous Templated Grain Growth: *Dallin Frandsen*¹; Oliver Johnson¹; ¹Brigham Young University

Computational Materials Science and Engineering for Nuclear Energy – Structural Materials II

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Haixuan Xu, University of Tennessee; Michael Tonks, Pennsylvania State University; Blas Uberuaga, Los Alamos National Laboratory; James Morris, Oak Ridge National Laboratory

Tuesday PM	Room: 102B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Malcolm Stocks, Oak Ridge National Laboratory; Nigel Marks, Curtin University

2:00 PM Invited

Atomistic Modeling of Primary Damage in Fe-based Ferritic Alloys: Yaxuan Zhang¹; Daniel Schwen²; *Xian-Ming Bai*¹; ¹Virginia Tech; ²Idaho National Laboratory

2:30 PM

Sink Density Effect on Radiation-induced Segregation and Precipitation in Fe-Cr Alloys: *Enrique Martinez Saez*¹; Oriane Senninger²; Alfredo Caro¹; Frédéric Soisson²; Maylise Nastar²; Blas Uberuaga¹; ¹Los Alamos National Laboratory; ²Commissariat a l'Energie Atomique

2:50 PM

Dislocation Loop Bias in BCC Fe: *Andrew Ervin*¹; Luis Casillas-Trujillo¹; Haixuan Xu¹; ¹University of Tennessee

3:10 PM

Density Functional Theory Study of the Magnetic Moment of Solute Mn in BCC Fe: *Daniel King*¹; Thomas Whiting¹; Simon Middleburgh²; Patrick Burr³; Paul Fossati¹; Yi Cui¹; Mark Wenman¹; ¹Imperial College London; ²Westinghouse Electric; ³University of New South Wales

3:30 PM Break

3:50 PM

Discrete Dislocation Sinks in Spatially Resolved Cluster Dynamics Simulations: *Aaron Kohnert*¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

4:10 PM

Kinetics of Point Defect Absorption by Sinks: Effect of Point Defect Properties and Surrounding Microstructure: Denise Carpentier¹; Thomas Jourdan¹; Yann Le Bouar²; Mihai-Cosmin Marinica¹; ¹CEA Saclay; ²LEM CNRS/ONERA

4:30 PM

Breaking the Power Law: Multiscale Simulations of Self-ion Irradiated Tungsten: *Miaomiao Jin*¹; Michael Short¹; Cody Permann²; ¹Massachusetts Institute of Technology; ²Idaho National Laboratory

4:50 PM Invited

Flux Effect on RIS in a Fe3%Ni Model Alloy: CD Modelling of the T Shift: Lisa Belkacémi¹; *Estelle Meslin*¹; Brigitte Décamps²; Bertrand Radiguet³; Jean Henry¹; ¹CEA; ²CSNSM-Université Paris Saclay; ³GPM-Université de Rouen

Coupling Advanced Characterization and Modeling Tools for Understanding Fundamental Phase Transformation Mechanisms: An MPMD Symposium in Honor of Hamish Fraser - Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Integrated **Computational Materials Engineering Committee** Program Organizers: Gregory Thompson, University of Alabama; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; Soumya Nag, GE Global Research; Rajarshi Banerjee, University of North Texas

Tuesday PM Room: 127A March 13, 2018 Location: Phoenix Convention Center

Session Chair: Peter Collins, Iowa State University

2:00 PM Invited

The ß to a Transformation in Titanium Alloys: Dipankar Banerjee1; 1Indian Institute of Science

2:30 PM Invited

Computational Investigation of Omega Phase Evolution in Ti-Mo and Ti-V Systems: Deep Choudhuri¹; S Banerjee¹; R Banerjee¹; Srinivasan Srivilliputhur1; 1University of North Texas

3:00 PM Invited

Evolution of Microstructure and Transformation Texture in Titanium Alloys: Rongpei Shi¹; Dong Wang²; Yufeng Zheng¹; Rajarshi Banerjee³; Hamish Fraser¹; Yunzhi Wang¹; ¹The Ohio State University; ²Xi'an Jiaotong University; 3University of North Texas

3:30 PM Break

3:50 PM Invited

New Techniques for Interrogation of Structure in Additively Manufactured Materials: Andrew Polonsky¹; Marie-Agathe Charpagne¹; Brent Goodlet¹; Tresa Pollock1; 1University of California, Santa Barbara

4:20 PM Invited

Qualification of Topology Optimized Titanium Parts Made by Additive Manufacturing through In-situ Process Monitoring: Sudarsanam Babu¹; Sean Yoder1; Ryan Dehoff2; Peeyush Nandwana2; Vincent Paquit2; Michael Kirka2; 1The University of Tennessee, Knoxville; 2Oak Ridge National Laboratory

Coupling Experiments and Modeling to Understand Plasticity and Failure – Dislocation Scale Plasticity

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Sangid, Purdue University; Philip Eisenlohr, Michigan State University; Matthew Miller, Cornell University; Paul Shade, Air Force Research Laboratory

Tuesday PM	Room: 126B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Philip Eisenlohr, Michigan State University; Maryam Ghazisaeidi, Ohio State University

2.00 PM Invited

New Observations of Phase Transformations during Deformation in Superalloys and High Entropy Alloys: Experiments: Michael Mills¹; Jiashi Miao¹; Tim Smith²; Connor Slone¹; Maryam Ghazisaeidi¹; ¹The Ohio State University; 2NASA Glenn Research Center

2:25 PM Invited

New Observations of Phase Transformations during Deformation in Superalloys and High Entropy Alloys: Modeling: Changning Niu1; Carlyn LaRosa1; You Rao1; T. M. Smith1; Jiashi Miao1; M. J. Mills1; Maryam Ghazisaeidi1; 1Ohio State University

2:50 PM

A Direct Connection between In-situ TEM and Dislocation Simulations: Stefan Sandfeld¹; Daniel Kiener²; Rachel Derby¹; Dominik Steinberger¹; ¹TU Freiberg; ²University of Leoben

3:10 PM

Continuum Dislocation Dynamics at Finite Deformation and the Path toward Localization and Failure in Metals: Anter El-Azab1; 1Purdue University

3:30 PM Break

3:50 PM Invited

Concurrent Multi-scale Modeling: Towards a Procedure to Test Modeling Hypothesis at the Mesoscale: Laurent Capolungo¹; Hi Vo¹; John Graham²; Richard Lesar2; 1Los Alamos National Laboratory; 2Iowa State University

4:15 PM

Experimental and Computational Analysis of Deformation in Solid Solution and Precipitation Strengthened Ni-Cr-Co Alloys: Connor Slone¹; Supriyo Chakraborty¹; Stephen Niezgoda¹; Michael Mills¹; ¹The Ohio State University

4:35 PM

Mechanical Behavior of Polycrystalline Microscale Silver Pillars: Md Sadeq Saleh¹; Mehdi Hamid²; Hussein Zbib²; Rahul Panat¹; ¹Carnegie Mellon University; ²Washington State University

4:55 PM

Plasticity of BCC Metals at Low Temperatures - Coupling Theory with Experiments: Roman Gröger¹; Zdenek Chlup¹; Ivo Kubena¹; Tomas Kruml¹; ¹Academy of Sciences of the Czech Republic

5:15 PM

Improved Understanding of the Portevin-Le Châtelier Effect though Modelling Using Discrete Diffusion Coupled with Discrete Dislocation Dynamics: William White1; Daniel Balint1; Ben Britton1; 1Imperial College

Deformation and Damage Mechanisms in High Temperature Ni, Co and Fe-based Superalloys – 4A: Characterization of Creep Deformation & Damage in Ni-based Superalloys. 4B: Characterization of Creep or Fatigue Deformation & Damage in Ni-based Superalloys

Sponsored by: TMS Structural Materials Division, TMS: High **Temperature Alloys Committee**

Program Organizers: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials; Chantal Sudbrack, QuesTek Innovations, LLC; Michael Titus, Purdue University; Kinga Unocic, Oak Ridge National Laboratory; Yukinori Yamamoto, Oak Ridge National Laboratory

Tuesday PM March 13, 2018 Room: 126A Location: Phoenix Convention Center

Session Chairs: Michael Titus, Purdue University; Mark Hardy, Rolls-Royce plc

2:00 PM Invited

Are Ni-based SX Superalloys Always Stronger in Creep?: Louis Thébaud1; Patrick Villechaise²; Jonathan Cormier²; Coraline Crozet¹; Alexandre Devaux¹; Denis Béchet¹; Jean-Michel Franchet³; Anne-Laure Rouffié³; Mike Mills⁴; ¹Aubert et Duval; ²ENSMA / Institut Pprime - UPR CNRS 3346; ³SAFRAN Tech; 4Ohio State University

TECHNICAL PROGRAM

2:30 PM

Integrated Modeling of Creep in Ni-base Superalloys: *Pengyang Zhao*¹; Chen Shen²; Michael Mills¹; Yunzhi Wang¹; Stephen Niezgoda¹; ¹The Ohio State University; ²GE Global Research

2:50 PM

A Physics-oriented Creep Damage Model for Single Crystal Superalloys: *Jean-Briac le Graverend*¹; ¹Texas A&M University

3:10 PM

Assessment of the Remaining Creep Life for DZ125 Superalloy Based on Microstructural Degradation: *Chao Fu*¹; Yadong Chen¹; Qiang Feng¹; ¹University of Science and Technology Beijing

3:30 PM Break

3:50 PM

Microstructural Damage Evolution during High-temperature Creep in Nickel-based Single Crystal Superalloys: A Phase Field Study: *Harikrishnan Rajendran*¹; Jean-Briac le Graverend¹; ¹Texas A&M University

4:10 PM

TUESDAY PM

Effects of Ageing on Microstructure, Elemental Distribution and Low Cycle Fatigue Behavior and Corresponding Deformation Mechanisms of Haynes-282 at Elevated Temperatures: *Shreya Mukherjee*¹; Sujoy Kar¹; Soumitra Tarafder²; S. Sivaprasad²; Puspendu Sahu³; ¹Indian Institute of Technology Kharagpur, India; ²CSIR- National Metallurgical Laboratory, Jamshedpur, India; ³Jadavpur University, Jadavpur, India

4:30 PM

The Effects of Aging Heat Treatments on the Mechanical Performance of an Inconel 740 Casting: *Kyle Rozman*¹; Martin Detrois¹; Paul Jablonski¹; Jeffrey Hawk¹; ¹NETL

4:50 PM

Oxidation Impact on Fatigue Mechanisms of DS200+Hf Alloy: *Lorena Mataveli Suave*¹; Jonathan Cormier²; Guillaume Benoit²; Denis Bertheau²; Patrick Villechaise²; ¹Safran; ²Institut Pprime

5:10 PM

The Performance of a New γ' Bond Coating on Single Crystal Ren\233; N5 in Sustained Peak Low-cycle Fatigue: Marissa Lafata¹; David Jorgensen²; Akane Suzuki³; Don Lipkin³; Tresa Pollock¹; ¹University of California, Santa Barbara; ²Honeywell Aerospace; ³GE Global Research

Design for Mechanical Behavior of Architectured Materials via Topology Optimization – Recent Advancements and Material Applications of Topology Optimization (TO)

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Natasha Vermaak, Lehigh University; Andrew Gaynor, U.S. Army Research Laboratory

Tuesday PM	Room: 132C
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Natasha Vermaak, Lehigh University

2:00 PM Invited

Topology Optimization of Architected Materials with Application-specific Tailored Properties: *James Guest*¹; ¹Johns Hopkins University

2:40 PM

Topology Optimization with RVE Lattice Structures Subject to Additive Manufacturing and Stress Design Constraints: David Weinberg¹; Nam-Ho Kim¹; ¹Autodesk, Inc.

3:10 PM

Topology Optimization of Multi-material Truss Lattice Structures via Geometry Projection: *Hesaneh Kazemi*¹; Julián Norato¹; Ashkan Vaziri²; ¹University of Connecticut; ²Northeastern University

3:40 PM Break

3:55 PM Invited

A Level Set Based Topology Optimization Framework to Design Extreme Thermos-elastic Microstructure: Influence of Graded Interfaces and Multi-materials: Alexis Faure¹; *Rafael Estevez*¹; Georgios Michailidis¹; Guillaume Parry¹; Natasha Vermaak²; ¹Universite Grenoble Alpes; ²Lehigh University

4:35 PM

A Panel Discussion for the Design of Materials via Topology Optimization: *Natasha Vermaak*¹; Andrew Gaynor²; ¹Lehigh University; ²U.S. Army Research Laboratory

Dynamic Behavior of Materials VIII – Effect of Microstructure of Dynamic Response II

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee Program Organizers: Saryu Fensin, Los Alamos National Laboratory;

George Gray, Los Alamos National Laboratory; Naresh Thadhani, Georgia Institute of Technology; Kenneth Vecchio, University of California, San Diego; Marc Meyers, University of California, San Diego

Tuesday PM	Room: 127B
March 13, 2018	Location: Phoenix Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Experimental and Computational Spectroscopy for Deciphering Amorphization in Boron Carbide due to Dynamic Loading: *Ghatu Subhash*¹; ¹University of Florida

2:40 PM

Non-equilibrium Simulations of Shock-induced Horizontal Defects and Amorphization in 4H Silicon Carbide: *Rachel Flanagan*¹; Shiteng Zhao¹; Eric Hahn²; Carlos Ruestes³; Chris Wehrenberg⁴; Bruce Remington⁴; Marc Meyers¹; ¹UCSD; ²Los Alamos National Laboratories; ³National University of Cuyo, Mendoza; ⁴Lawrence Livermore National Laboratories

3:00 PM

Shock-wave Energy Dissipation in Metal-organic Frameworks and Network Forming Ionic Liquids: *Karthik Guda Vishnu*¹; Kiettipong Banlusan¹; Alejandro Strachan¹; ¹Purdue University

3:20 PM Invited

Powerful Laser-driven Shock Induced Amorphization: *Shiteng Zhao*¹; Bimal Kad¹; Eric Hahn²; Bruce Remington³; Christopher Wehrenberg³; Jerry Lasalvia⁴; Karren More⁵; Marc Meyers¹; ¹University of California, San Diego; ²Los Alamos National Lab; ³Lawrence Livermore National Lab; ⁴Army Reserach Lab; ⁵Oak Ridge National Laboratory

3:40 PM Break

4:00 PM

Effects of Microstructure and Strain Rate on the Dynamic Deformation and Fracture Mechanisms in Dual Phase Steels: Sukanya M. Sharma¹; Shrikant P. Bhat²; Arun Gokhale¹; Naresh Thadhani¹; ¹Georgia Tech; ²ArcelorMittal

4:20 PM Invited

The Effect of Plastic Deformation and Transformed Martensite on the Mechanical Response of Lean Duplex Stainless Steel 2101: Ali Ameri¹; *J.P. Escobedo-Diaz*¹; M. Ashraf¹; Z. Quadir²; ¹University of New South Wales-Canberra; ²Curtin University

4:40 PM

Mechanical Properties and Shear Localization of High Entropy Alloy CoCrFeMnNi Prepared by Powder Metallurgy: *Bingfeng Wang*¹; Xiaoxia Huang¹; Yong Liu¹; Bin Liu¹; ¹Central South University, China

5:00 PM

Investigation of Dynamic Mechanical Response in Al0.1CoCrFeNi High Entropy Alloy: *Sindhura Gangireddy*¹; Deep Choudhuri¹; Daniel Whitaker¹; Whitley Green¹; Rajiv Mishra¹; ¹University of North Texas

Electrode Technology Symposium for Aluminum Production – Anode Materials and Properties

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xianan Liao, Elkem Carbon

Tuesday PMRoom: 222CMarch 13, 2018Location: Phoenix Convention Center

Session Chair: Jianhong Yang, Jiangsu University

2:00 PM Introductory Comments

2:05 PM

Challenges and Successes of Conducting Trials for Anode Design Modification: *David Molenaar*¹; Beverley Pillay²; Yusuke Tsuji³; Yutong Zhu¹; ¹CSIRO; ²South32; ³Mitsubishi

2:30 PM

Study on Optimization of Anode Structure for Aluminum Reduction Cell: *Jing Liu*¹; Hui Dong²; Yu Mao²; Jihong Mao²; Yungang Ban²; ¹School of Mechanical Engineering and Automation Northeastern University; Northeastern University Engineering & Research Institute Co., Ltd.; ²Northeastern University Engineering & Research Institute Co., Ltd.

2:55 PM

Interaction between Anode Aggregate and Binder in the Sessile Drop Wetting Test: *Bruno Rausch*¹; Juraj Chmelar¹; Hogne Linga¹; Lorentz Petter Lossius¹; Rebecca Thorne²; Viktorija Tomkute¹; ¹Hydro Aluminium AS; ²NILU

3:20 PM

Development and Application of Large-scale Shaft Kilns: Guanghui Lang¹; Rui Liu¹; Yujing Jiang¹; Yan Li¹; *Ronald Logan*¹; ¹Sunstone

3:45 PM Break

4:00 PM

Study on the Property and Desulfurization Mechanisms of Petroleum Cokes with Different Sulfur Contents from 1200°C to 2800°C: *Shoulei Gao*¹; Jilai Xue¹; Guanghui Lang¹; Rui Liu¹; Chongai Bao¹; Zhiguo Wang¹; Fali Zhang¹; ¹Sunstone Development Co., Ltd

4:25 PM

The Current Status and Development Trend of the Prebaked Anode Market in China: Zhang Shuchao¹; *Dong Wei*²; ¹Elkem Carbon (China) Co.,LTD; ²Elkem Carbon (China) Co.,LTD

Energy Technologies and CO2 Management Symposium – Technologies for Energy Efficiency

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Ziqi Sun, Queensland University of Technology; Cong Wang, Northeastern University; Donna Guillen, Idaho National Laboratory; Tao Wang, Nucor Steel; Neale Neelameggham, Ind LLC; John Howarter, Purdue University

Tuesday PM	Room: 224B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Chang Liu, IMR-CAS, China; Yulin Zhong, Griffith University

2:00 PM Invited

Modeling Key Atomic Processes in Titanium Alloys for Energy Efficiency: *Hao Wang*¹; ¹Institute of Metal Research, Chinese Academy of Sciences

2:20 PM

Improving Energy Efficiency in Direct Method for Continuous Casting of Lead Sheets: Arun Prabhakar¹; Joanna Mielnicka¹; Mark Jolly¹; Konstantinos Salonitis¹; ¹Cranfield University

2:40 PM

Research on High Efficiency Energy Conversion Technology for Modern Hot Blast Stove: *Fuming Zhang*¹; Xin Li¹; Zurui Hu¹; ¹Shougang Group

3:00 PM

Effect of Heat Input on the Microstructure of EH36 Shipbuilding Steel: *Xiaodong Zou*¹; Cong Wang¹; ¹Northeastern University

3:20 PM Break

3:40 PM

An Exergy Study of Cowper Stove Operations with an Iron Blast Furnace: *Patrick Krane*¹; Matthew Krane¹; ¹Purdue University

4:00 PM

Simulation Based Method for Analyzing Energy-utilization Feature in Steelmaking-continuous Casting Process: *Zhaojun Xu*¹; Zhong Zheng¹; Xiaoqiang Gao²; Jipeng Fan¹; ¹College of Materials Science and Engineering, Chongqing University; ²College of Economics and Business Administration, Chongqing University

4:20 PM

Waste Heat Recovery from Aluminum Production: *Miao Yu*¹; Maria Gudjonsdottir²; Pall Valdimarsson²; Gudrun Saevarsdottir²; ¹Tianjin University; ²Reykjavik University

4:40 PM

Leaching and Carbonation of Electric Arc Furnace(EAF) Slag under a Microwave Field for Mineral Carbonation: Zhibo Tong¹; Guojun Ma¹; Xiang Zhang¹; Junjie Liu¹; *Langsha Shao*¹; ¹Wuhan University of Science and Technology

Environmentally Assisted Cracking: Theory and Practice – Hydrogen Embrittlement

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Bai Cui, University of Nebraska–Lincoln; Raul Rebak, GE Global Research; Sebastien Dryepondt, Oak Ridge National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Tuesday PMRoom: 105AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Khalid Hattar, Sandia National Laboratories; Chris San Marchi, Sandia National Laboratories

2:00 PM Invited

Comparison of Hydrogen Introduction Techniques for In-situ TEM Straining Experiments: *Khalid Hattar*¹; Christopher Barr¹; Daniel Bufford¹; Brittany Muntifering¹; Kathryn Small¹; Ai Leen Koh²; Richard Karnesky¹; 'Sandia National Laboratories; ²Stanford University

2:40 PM

Evaluating the Effect of Sensitizing Time on the Hydrogen Embrittlement of Austenitic Stainless Steels: Osama Alyousif¹; ¹Kuwait University

3:00 PM Invited

Dispelling Myths about Gaseous Hydrogen Environmental Fracture and Fatigue: Chris San Marchi¹; Joe Ronevich¹; ¹Sandia National Laboratories

3:40 PM Break

4:00 PM

Trapping against Hydrogen Embrittlement: *Zahra Hosseini*¹; Kevin Nibur²; Richard Gangloff³; Mohsen Dadfarnia¹; Brian Somerday⁴; Petros Sofronis¹; ¹University of Illinois, Urbana-Champaign; ²Hy-Performance Materials Testing; ³University of Virginia; ⁴Southwest Research Institute

4:20 PM

Hydrogen and Dislocation Assisted Grain Boundary Crack Initiation Mechanism: Liang Wan¹; Wen-Tong Geng¹; Nobuyuki Ishikawa¹; Hajime Kimizuka¹; *Shigenobu Ogata*¹; ¹Osaka University

4:40 PM

TUESDAY PM

Effect of Hydrogen on Ideal Shear Strength of Metals: An Ab-initio Study: Pulkit Garg¹; *Ilaksh Adlakha*¹; Kiran Solanki¹; ¹Arizona State University

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention – Relationships among Processing, Microstructure, and Fatigue Properties

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Ashley Spear, University of Utah; Jean-Briac le Graverend, Texas A&M University; Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky

Tuesday PM	Room: 125B
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Jean-Briac le Graverend, Texas A&M University

2:00 PM Invited

Statistical Characterization of Microstructure and Fatigue of Wire and Arc Additive Manufactured Stainless Steel 304: Jerard Gordon¹; Christina Haden¹; Jacob Hochhalter²; *D Gary Harlow*¹; ¹Lehigh University; ²NASA Langley Research Center

2:20 PM

Fatigue Strength Scaling and Deformation at the Nanoscale – Nanotwinned and Nanocrystalline Metals: *Nathan Heckman*¹; Christopher Barr¹; Timothy Furnish¹; Khalid Hattar¹; Stephen Foiles¹; Fadi Abdeljawad¹; Christoph Eberl²; Andrea Hodge³; Brad Boyce¹; ¹Sandia National Laboratories; ²Fraunhofer Institute for Mechanics of Materials IWM; ³University of Southern California

2:40 PM

Microstructural and Mechanical Properties of Linear Friction Welded Ti-6Al-2Sn-4Zr-6Mo: *Toby Webster*¹; ¹University of Birmingham

3:00 PM

Effect of Advanced Mechanical Surface Treatments on Room and Elevated Temperature Residual Stress, Microstructure, Strength, and Fatigue Behavior of ATI 718Plus Alloy: *Micheal Kattoura*¹; Seetha Ramaiah Mannava¹; Dong Qian²; Vijay Vasudevan¹; ¹University of Cincinnati; ²University of Texas at Dallas

3:20 PM Break

3:40 PM

Influence of Cold Spray on the Enhancement of Corrosion Fatigue of the AZ31B Cast Mg Alloy: Sugrib Shaha¹; S.B. Dayani¹; H. Jahed¹; ¹University of Waterloo

4:00 PM

Fatigue Behavior of Ti6Al4V with Surface Modified by Femtosecond LASER: Alan Santos¹; Leonardo Campanelli¹; Paulo Sergio Silva¹; *Claudemiro Bolfarini*¹; ¹Universidade Federal de São Carlos

4:20 PM

Effects of Cooling Condition on Fatigue Crack Propagation Behaviors of B-processed Ti-6Al-4V Alloys: Daeho Jeong¹; *Hyokyung Sung*¹; Jehyun Lee²; Sangshik Kim¹; ¹Gyeongsang National University; ²Changwon National University

Fracture: 65 Years after the Weibull Distribution and the Williams Singularity – Session IV

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Brad Boyce, Sandia National Laboratories; Ellen Cerreta, Los Alamos National Laboratory; Jacob Hochhalter, NASA LaRC; Jonathan Zimmerman, Sandia National Laboratories

Tuesday PM	Room: 128A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Jonathan Zimmerman, Sandia National Laboratories; Frank Del Rio, National Institute of Standards and Technology

2:00 PM Invited

A Probability Model for Stress Rupture Failure of Carbon Composites, Incorporating Weibull Fiber Strength Statistics, Local Fiber Load Sharing, and Matrix Creep: *Amy Engelbrecht-Wiggans*¹; Leigh Phoenix¹; ¹Cornell University

2:30 PM

Use of Weibull Distribution to Characterize High Performance Fibers: Krishan K Chawla¹; *Nikhilesh Chawla*²; Irene Lujan Regalado²; ¹ University of Alabama at Birmingham; ²Arizona State University

2:50 PM Invited

Predicting Joint Strength: Evaluating Interface Corner Stress Intensity Factor and Cohesive Zone Modeling Approaches: *Earl Reedy*¹; ¹Sandia National Laborabories

3:20 PM Break

3:40 PM Invited

Applicability of Weibull Statistics for Micro- and Nano-scale Silicon Components: *Frank DelRio*¹; Robert Cook¹; Brad Boyce²; ¹National Institute of Standards and Technology; ²Sandia National Laboratories

4:10 PM

Fracture Toughness of Silicon by Variable Temperature Micropillar Splitting: Carmen Lauener¹; Ming Chen¹; *Jeff Wheeler*¹; ¹ETH Zurich

4:30 PM

Limitations and Applicability of LEFM to Spalling Fracture in Single Crystal Semiconductors: Corinne Packard¹; ¹Colorado School of Mines

4:50 PM

Weibull Analysis of High Strength Ni- and Fe-based Bulk Metallic Glasses: Henry Neilson¹; John Lewandowski¹; ¹Case Western Reserve University

5:10 PM Invited

Size, Temperature, Environmental Effects on Brittle Fracture (BDT): William Gerberich¹; Nathan Mara; ¹University of Minnesota

Frontiers in Advanced Functional Thin Films and Nanostructured Materials – Session IV

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Army Research Office; Srinivasa Rao Singamaneni, The University of Texas at El Paso; Haiyan Wang, Purdue University; Nuggehalli Ravindra, New Jersey Institute of Technology; Raj Singh, Oklahoma State University; Amit Pandey, LG Fuel Cell Systems Inc.

Tuesday PM Room: 103A March 13, 2018 Location: Phoenix Convention Center

Funding support provided by: Quantum Design and Radiant Technologies

Session Chairs: Haiyan Wang, Purdue University; Adele Moatti, North Carolina State University

2:00 PM Invited

Point Defect Energetics at Oxide Heterointerfaces: Tim McMaster1; Gaurav Arora¹; Dilpuneet Aidhy¹; ¹University of Wyoming

2:30 PM Invited

Epitaxial Growth of Advanced Ceramic and Metal Films: Xinghang Zhang¹; Jin Li¹; Haiyan Wang¹; ¹Purdue University

3:00 PM Invited

Oxide Epitaxy with Large Mismatch: Bronze-phase VO, on SrTiO,: Matthew Chisholm¹; Hunter Sims²; Xiang Gao¹; Shinbuhm Lee¹; Sokrates Pantelides2; Ho Nyung Lee1; 1Oak Ridge National Laboratory; 2Vanderbilt University

3:30 PM Break

3:50 PM Invited

Physiochemical and Antioxidant Properites of CNPs Modulated by Anions of the Precursor: Sudipta Seal1; Swetha Barkam1; Ritesh Sachan2; Amitava Adhikary1; 1University of Central Florida; 2Army Research Office

4:10 PM

Kinetic Modeling of the Structural Transition in VO, Thin Films: Adele Moatti¹; Ritesh Sachan¹; John Prater¹; Jagdish Narayan¹; ¹NCSU

4:30 PM

Functionalization of Transparent Oxide Thin Films Using Silicon Doped Nanoparticles: Gerald Ferblantier1; Fabien Ehrhardt1; Corinne Ulhaq-Bouillet²; Emilie Steveler¹; Yann Le Gall¹; Daniel Mathiot¹; ¹Strasbourg University - ICube Laboratory; 2Strasbourg University - IPCMS

4:50 PM

Effect of Process Parameters on Phase Stability and Metal-insulator Transition of Vanadium Dioxide (VO2) Thin Films by Pulsed Laser Deposition (PLD): Ryan McGee1; Ankur Goswami1; Kalvin Schofield1; Thomas Thundat1; 1University of Alberta

5:10 PM

A Structural Analysis of the Epitaxial Ni/VO, Heterostructure Integrated on Si(001): Gabrielle Foley1; Srinivasa Singamaneni2; Adele Moatti1; John Prater3; Jagdish Narayan1; 1NCSU; 2The University of Texas at El Paso; 3Army Research Office

5:30 PM Invited

Unraveling Self-Assembly Dynamics to Direct Higher Order: Philip Rack1; ¹The University of Tennessee; Oak Ridge National Laboratory

Frontiers in Solidification Science and Engineering -**Eutectic and Dendritic Growth**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Damien Tourret, IMDEA Materials Institute; Mohsen Eshraghi, California State University, Los Angeles; Johannes Hötzer, University of Applied Science Karlsruhe

Tuesday PM	Room: 126C
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Mohsen Asle Zaeem, Missouri University of Science and Technology

2:00 PM Introductory Comments

2:10 PM

Spacing Homogenization in Lamellar Eutectics with Anisotropic Interfaces: Maxime Ignacio¹; *Mathis Plapp*¹; ¹CNRS/Ecole Polytechnique

2:30 PM

Analysis of Microstructure Rearrangement Processes during Velocity Variations of Directionally Solidified Eutectic Allovs: Johannes Hötzer¹; Philipp Steinmetz²; Michael Kellner²; Anne Dennstedt³; Britta Nestler²; ¹University of Applied Science Karlsruhe; ²Karlsruhe Institute of Technology; ³German Aerospace Center

2:50 PM

Impurities at Work: Integrated Imaging of Eutectic Modification: Saman Moniri¹; Xianghui Xiao²; Ashwin Shahani³; ¹University of Michigan, Department of Chemical Engineering; ²Advanced Photon Source, Argonne National Laboratory; ³University of Michigan, Department of Materials Science & Engineering

3:10 PM

Effect of Interphase Boundary Anisotropy on Three-phase Eutectic Microstructures: Samira Mohagheghi¹; Melis Serefoglu¹; ¹Koc University

3:30 PM Break

3.50 PM

Extension of Jackson-Hunt analysis for Curved Interfaces: Sumanth Nani Enugala¹; Britta Nestler¹; ¹Karlsruhe Institute of Technology

4:10 PM

Multiscale Modeling of Dendritic Grain Structures by Coupling DNN-CA-FE Methods: Romain Fleurisson¹; Gildas Guillemot¹; Charles-Andre Gandin¹; ¹MINES ParisTech

4:30 PM

In Situ X-ray Tomographic Examination and Modeling of Dendrite Patterns during Solidification in Co and Ni Alloys: Mohammed Azeem¹; Shyamprasad Karagadde²; Nghia Vo³; Robert Atwood³; Peter Lee¹; ¹Manchester University; ²Indian Institute of Technology Bombay; ³Diamond Light Source

4:50 PM

Dendrite Orientation Selection and Growth Dynamics of Al-based Alloys: Maike Becker1; Stefan Klein2; Matthias Kolbe1; Sebastian Wiese3; Florian Kargl¹; ¹Deutsches Zentrum für Luft- und Raumfahrt; ²DGM - Deutsche Gesellschaft für Materialkunde e.V.; 3Rheinisch-Westfaelische Technische Hochschule Aachen

High Entropy Alloys VI – Structures and Mechanical Properties II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Tuesday PM	Room: 121B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Easo George, Ruhr University Bochum; Rajiv Mishra, University of North Texas

2:00 PM Keynote

Relating Elementary Deformation Mechanisms to Macroscopic Mechanical Properties in High- and Medium-entropy Alloys: E. P. George¹; G. Laplanche²; A. Kostka²; ¹Oak Ridge National Laboratory; ²Ruhr University Bochum

2:20 PM Invited

Deformation Behavior of the Modified and FCC Structured CoCrFeMnNi Alloys: Choi Minku¹; Nokeun Park¹; ¹Yeungnam University

2:40 PM

Experimental and Computational Studies of Microstructures and Mechanical Behavior of AlxCoCrFeNi High-entropy Alloys (HEAs): Haoyan Diao¹; Tingkun Liu¹; Yanfei Gao¹; Jonathan Poplawsky²; Wei Guo²; Rui Feng¹; Karin A. Dahmen³; Peter K. Liaw¹; ¹The University of Tennessee, Knoxville; ²Oak Ridge National Laboratory; ³University of Illinois at Urbana-Champaign

3:00 PM Invited

Size Effects in High-entropy Alloys and Quasicrystals: Yu Zou¹; ¹University of Toronto

3:20 PM

Microstructure and Mechanical Properties of FeCoNiCr High-entropy Alloy Strengthened by Nano-Y2O3 Dispersion: Xiong-Jun Liu¹; Bei Jia¹; Hui Wang¹; Yuan Wu¹; Zhao-Ping Lu¹; ¹University of Science and Technology Beiiing

3:40 PM Break

4:00 PM Invited

Investigation of Plastic Deformation Modes in Al0.1CoCrFeNi High Entropy Alloy: Deep Choudhuri¹; Mageshwari Komarasamy¹; Victor Ageh¹; Rajiv Mishra¹; ¹University of North Texas

4:20 PM

Investigation of Dynamic Mechanical Response in Al0.3CoCrFeNi High Entropy Alloy: Sindhura Gangireddy¹; Bharat Gwalani¹; Rajiv Mishra¹; ¹UNT Denton

4:40 PM

Mechanical Properties and Oxidation Resistance of NbTiZr-contaning Refractory High Entropy Alloys with Varying Al, Cr and Mo Content: Ulanbek Auyeskhan¹; Hojin Ryu¹; Owais Waseem¹; ¹Korea Advanced Institute of Science and Technology

5.00 PM

On the Temperature Dependence of Fatigue-crack Propagation in the CrMnFeCoNi High-entropy Alloy: Keli Thurston1; Bernd Gludovatz2; Easo George³; Robert Ritchie⁴; ¹University of California, Berkeley; ²University of New South Wales; 3Oak Ridge National Laboratory; 4Lawrence Berkeley National Laboratory

5:20 PM

Work Hardening Behavior and Strain Localization in Single Crystalline High Entropy Alloys: Sezer Picak¹; Ceylan Hayrettin¹; Jun Liu¹; Demircan Canadinc1; Yury I. Chumlyakov1; Ibrahim Karaman1; 1Texas A&M

5:40 PM

Evaluation of Friction and Wear Behavior of a Single-phase Equiatomic TiZrHfNb High-entropy Alloy Using Nanoscratch Technique: Y.X. Ye¹; T.G. Nieh¹; ¹The University of Tennessee

Hume-Rothery Award Symposium: Computational Thermodynamics and Its Implications to Kinetics, Properties, and Materials Design – Computational Thermodynamic Approaches

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Suveen Mathaudhu, University of California, Riverside; Michael Gao, National Energy Technology Lab; Chelsey Hargather, New Mexico Institute of Mining and Technology; Richard Hennig, University of Florida; James Saal, QuesTek Innovations; Dongwon Shin, Oak Ridge National Laboratory

Tuesday PM	Room: 127C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Arthur Pelton, Ecole Polytechnique; Long Qing Chen, Penn State University

2:00 PM Invited

The Application of Computational Thermodynamics to Design Reactiveelement Doped High-temperature Alloys: Hf Additions to NiCrAl: Brian Gleeson1; Thomas Gheno2; Austin Ross3; Zi-Kui Liu3; 1University of Pittsburgh; 2CEA; 3Penn State University

2:30 PM Invited

Thermodynamic Modeling of the History of 3.45-billion-year-old Meteorites: Hiroshi Ohmoto1; Uschi Graham2; Takeshi Kakegawa3; Zi-Kui Liu1; 1The Pennsylvania State University; 2University of Kentucky; 3Tohoku University

3:00 PM Invited

Thermodynamic Theory of Mechanical Destrain: Fei Xue¹; Yanzou Ji¹; Long Qing Chen1; 1Penn State University

3:30 PM Break

3:50 PM Invited

Thermodynamic Calculation of Aqueous Phase Diagrams: Arthur Pelton¹; Gunnar Eriksson²; Klaus Hack²; Christopher Bale¹; ¹Ecole Polytechnique; ²GTT-Technologies

4:20 PM Invited

The Application of Computational Thermodynamics to the Cathodeelectrolyte in Solid Oxide Fuel Cells: Yu Zhong¹; ¹Worcester Polytechnic Institute

4:50 PM Invited

Calphad in FCC High Entropy Alloys: From Binary Alloys to Multiprincipal-component Alloys: Zhijun Wang1; 1Northwestern Polytechnical University

Integrative Materials Design III: Performance and Sustainability – Role of ICME, Data Management & Integrative Design for Fatigue and High Temperature Performance

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee *Program Organizers:* Diana A. Lados, Worcester Polytechnic Institute; Brad Boyce, Sandia National Laboratories; Corbett Battaile, Sandia National Laboratories; Anastasios Gavras, Riley Power

Tuesday PMRoom: 132AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Anthony Spangenberger, Worcester Polytechnic Institute; Sammy Tin, Illinois Institute of Technology

2:00 PM Invited

Application of Integrated Computational Materials Engineering (ICME) and Accelerated Insertion of Materials (AIM) Tools to the Design and Development of Cost-effective Advanced Materials with Improved Performance and Sustainability: *Jason Sebastian*¹; James Saal¹; Greg Olson²; ¹QuesTek Innovations LLC; ²QuesTek Innovations LLC and Northwestern University

2:20 PM Invited

Phase-based Data: One Size Doesn't Fit All: *Ursula Kattner*¹; Carelyn Campbell¹; ¹National Institute of Standards and Technology

2:40 PM Invited

Design of Fatigue Resistant Ni-base Superalloys via Meso-scale Engineering: *Sammy Tin*¹; Martin Detrois¹; Mike Sangid²; John Rotella²; ¹Illinois Institute of Technology; ²Purdue University

3:00 PM Invited

Integrative Materials Design of Mo-Si-B Alloys: *Richard Neu*¹; Kyle Brindley¹; ¹Georgia Institute of Technology

3:20 PM Invited

Microstructure-sensitive Models for Predicting Near Surface Residual Stress Redistribution in P/M Nickel-base Superalloys: *Micheal Burba*¹; Dennis Buchanan²; Michael Caton¹; Reji John¹; Robert Brockman²; ¹Air Force Research Laboratory; ²University of Dayton Research Institute

3:40 PM Break

3:55 PM Invited

Integrating Computational and Experimental Methods to Quantify Microstructure Sensitivity of Thin Fatigue-critical Components: Jacob Hochhalter¹; Saikumar Yeratapally²; Patrick Leser¹; Geoffrey Bomarito¹; Timothy Ruggles²; Richard Russell³; David Dawicke⁴; ¹NASA LaRC; ²National Institute of Aerospace; ³NASA Kennedy Space Center; ⁴AS&M, Inc

4:15 PM Invited

Probabilistic Prediction of Effect of Stress Ratio and Notches on Minimum Fatigue Life of Ti-6Al-4V: *Reji John*¹; Sushant Jha²; Patrick Golden¹; William Porter²; Dennis Buchanan²; James Larsen¹; ¹Air Force Research Laboratory; ²University of Dayton Research Institute

4:35 PM

FatigueCrackGrowthinStructuralCastAluminumAlloys:MicrostructuralMechanisms,ModelingStrategies,andIntegratedDesign:AnthonySpangenberger¹;DianaLados¹;¹WorcesterPolytechnicInstitute,IntegrativeMaterialsDesignCenter

4:55 PM Invited

A Microstructure-sensitive Location-specific Design Tool for Predicting the Yield and Creep Behavior of LSHR Ni-base Superalloy: *T. Parthasarathy*¹; Reji John²; ¹UES, Inc.; ²Air Force Research Laboratory

5:15 PM

Fatigue Crack Growth Modeling and Mechanisms in Al and Ni Engine Materials under Hot Compressive Dwell Conditions: *Xiang Chen*¹; Diana Lados¹; Richard Pettit²; David Dudzinski³; ¹Worcester Polytechnic Institute, Integrated Materials Design Center; ²FractureLab, LLC; ³Derivation Research Laboratory Inc

Looking through the Kaleidoscope: Discovering Your Path to Leadership – Afternoon Session

Program Organizers: Emily Bautista, Virginia Tech; Mackenzie Jones, Virginia Tech; Thomas Maulbeck, Virginia Tech; Rose Roberts, Virginia Tech

Tuesday PM March 13, 2018 Room: 124B Location: Phoenix Convention Center

Session Chairs: Emily Bautista, Virginia Tech; Mackenzie Jones, Virginia Tech; Thomas Maulbeck, Virginia Tech; Rose Roberts, Virginia Tech

2:00 PM Invited

The Art and Science of Leadership: Influence and Disruption: Karen Maud¹; ¹GE

2:20 PM

The Leader Inside: Determining Your Specifc Skills and How to Apply Them (Interactive Session): Emily Bautista¹; *Karen Maud*²; ¹Virginia Tech; ²GE Power

3:00 PM Invited

Perspectives on Contrasting Leadership in Industry, Academia, and Government: Amy Clarke¹; ¹Colorado School of Mines

3:20 PM Invited

The Many Facets of Effective Leadership: A View from Two Perspectives: *George Spanos*¹; ¹TMS

3:40 PM Break

4:00 PM Invited

Park & Diamond: David Hall1; Jordan Klein1; 1Park & Diamond

4:20 PM Invited

Leadership along the Academic Track: *Tresa Pollock*¹; ¹University of California, Santa Barbara

4:40 PM Invited

An Internship Program for Laboratory Technicians at the Oak Ridge National Laboratory: Edgar Lara-Curzio¹; ¹Oak Ridge National Laboratory

5:00 PM Question and Answer Period

5:10 PM Concluding Comments

Magnesium Alloy Development: An LMD Symposium in Honor of Karl Kainer – Wrought Alloys

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Norbert Hort, Helmholtz-Zentrum Geesthacht; Alan Luo, The Ohio State University

Tuesday PM March 13, 2018 Room: 223 Location: Phoenix Convention Center

Session Chairs: Jiehua Li, University of Leoben; Mert Celikin, McGill University

2:00 PM

Alloy Design for the Development of Heat-Treatable High-Strength Mg-Zn-Ca-Zr Sheet Alloy with Excellent Room Temperature Formability: Byeong-Chan Suh¹; Ming-Zhe Bian¹; Taiki Nakata²; *Taisuke Sasaki*¹; Shigeharu Kamado²; Kazuhiro Hono¹; ¹National Institute for Materials Science; ²Nagaoka University of Technology

2:20 PM

Development of Magnesium Sheets: *Dietmar Letzig*¹; Jan Bohlen¹; Gerrit Kurz¹; Jose Victoria-Hernandez¹; Sangbong Yi¹; ¹MagIC - Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht

2:40 PM

Effects of Severe Plastic Deformation on Mechanical Properties and Corrosion Behavior of Magnesium Alloys: *Kwang Seon Shin*¹; Ahmad Bahmani¹; ¹Seoul National University

3:00 PM

Enhancing Impact Toughness of Mg-3%Al-1%Zn Alloy by Grain Structure Modification: Tomoya Maeda¹; Naoko Ikeo¹; Yoshiaki Osawa²; *Toshiji Mukai*¹; ¹Kobe University; ²National Institute for Materials Science

3:20 PM Break

3:35 PM

Development of Heat-Treatable High-Strength Mg-Zn-Ca-Zr Sheet Alloy with Excellent Room Temperature Formability: *Ming-Zhe Bian*¹; Taisuke Sasaki¹; Byeong-Chan Suh¹; Taiki Nakata²; Shigeharu Kamado²; Kazuhiro Hono¹; ¹National Institute for Materials Science (NIMS); ²Nagaoka University of Technology

3:55 PM

Interaction between Propagating Twins and Non-shearable Precipitates in Magnesium Alloys: *Matthew Barnett*¹; Huan Wang¹; ¹Deakin University

Magnesium Technology 2018 – Alloy Design

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Tuesday PM	Room: 224A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Sean Agnew, University of Virginia; Suveen Mathaudhu, University of California – Riverside

2:00 PM Introductory Comments

2:05 PM Invited

Material Design for Enhancing Toughness of Mg Alloy and Application for Biodegradable Devices: *Toshiji Mukai*¹; ¹Kobe University

2:25 PM

Developmentof BioMg 250 Bioabsorbable Implant Alloy: *Raymond Decker*¹; S.E. LeBeau¹; ¹nanoMag, LLC

2:45 PM

Effect of Ca on the Microstructure and Mechanical Properties in Mg Alloys: *Eleftherios Andritsos*¹; Guy Skinner¹; Anthony Paxton¹; ¹King's College London

3:05 PM

Influences of Yttrium Content on Microstructure and Mechanical Properties of As-cast Mg-Ca-Y-Zr Alloys: *Sihang You*¹; Yuanding Huang¹; Karl¹; Norbert Hort¹; ¹Helmholtz-Zentrum Geesthacht

3:25 PM Break

3:45 PM

Experimental Study of the Solidification Microstructure in the Mg-rich Corner of Mg-Al-Ce System: *Charlotte Wong*¹; Mark Styles²; Suming Zhu¹; Trevor Abbott³; Kazuhiro Nogita⁴; Stuart McDonald⁴; David StJohn⁴; Mark Gibson²; Mark Easton¹; ¹RMIT University; ²CSIRO; ³Magontee Limited; ⁴University of Queensland

4:05 PM

Investigation of Grain Refinement Method for AZ91 Alloy using Carbide Inoculation: *Jun Ho Bae*¹; Young Min Kim¹; Ha Sik Kim¹; Bong Sun You¹; ¹Korea Institute of Materials Science

4:25 PM

Strengthening and Toughening Behaviors of the Mg-9Al Alloy Containing Oxygen Atoms: S. W. Kang¹; Donghyun Bae¹; ¹Yonsei University

4:45 PM

Investigations on Microstructure and Mechanical Properties of Nonflammable Mg-Al-Zn-Ca-Y Alloys: *Stefan Gneiger*¹; Nikolaus Papenberg¹; Simon Frank¹; Rudolf Gradinger¹; ¹AIT Austrian Institute of Technology

5:05 PM

Surface and interfacial energies of Mg₁₇**Al**₁₂**-Mg system**: *Fangxi Wang*¹; Bin Li¹; ¹University of Nevada Reno

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Structural Materials I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Tuesday PM	Room: 104B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Osman Anderoglu, University of New Mexico; Walter Luscher, Pacific Northwest National Laboratory

2:00 PM Invited

Progress in Developing High Dose Radiation Tolerant Ferritic Steels for Nuclear Applications: *Stuart Maloy*¹; Eda Aydogan¹; Ben Eftink¹; Tarik Saleh¹; Mychailo Toloczko²; Thak-Sang Byun²; Curt Lavender²; G. Robert Odette³; MD E. Alam³; Soupitak Pal³; Dave Hoelzer⁴; ¹Los Alamos National Laboratory; ²PNNL; ³University of California, Santa Barbara; ⁴ORNL

2:20 PM

Irradiation of Additively Manufactured Grade 91 Ferritic/Martensitic Steel: *Benjamin Eftink*¹; Eda Aydogan¹; Daniel Vega¹; Jordan Weaver¹; Todd Steckley¹; Di Chen¹; Matthew Chancey¹; Yongqiang Wang¹; Carly Cady¹; Thomas Lienert¹; Stuart Maloy¹; ¹Los Alamos National Laboratory

2:40 PM

Neutron irradiation Induced Microstructures in Ferritic/Martensitic Steel HT9: Ce Zheng¹; *Djamel Kaoumi*¹; ¹North Carolina State University

3:00 PM

Effects of Proton Irradiation on Microstructure in Additively Manufactured 316L Stainless Steel Made by Laser Powder Bed Fusion: *Miao Song*¹; Mi Wang¹; Gary Was¹; Xiaoyuan Lou²; Raul Rebak³; ¹University of Michigan; ²Corromet LLC; ³GE Global Research

3:20 PM

In Situ EBSD Analysis of Deformation Mechanisms in Highly Irradiated Austenitic Steels: *Maxim Gussev*¹; Philip Edmondson¹; Keith Leonard¹; ¹Oak Ridge National Laboratory

3:40 PM Break

4:00 PM

Ar Bubble Effects on Precipitation Reactions in Solubilized AISI 316L Steel Irradiated with Heavy Ions: Ítalo Oyarzabal¹; Mariana Timm¹; William Pasini¹; Franciele Oliveira¹; Francine Tatsh¹; Livio Amaral¹; Clarice Kunioshi²; *Paulo Fichtner*¹; ¹Universidade Federal do Rio Grande do Sul; ²Centro Tecnologico da Marinha em Sao Paulo

4:20 PM

Microstructural and Mechanical Integrity of Laser Weldment of Neutron Irradiated AISI 304 SS: *Keyou Mao*¹; Paula Freyer²; Frank Garner³; Janelle Wharry¹; ¹Purdue University; ²Westinghouse Electric Company LLC; ³Texas A&M University

4:40 PM

Shear Punch Measurement of the Mechanical Properties of Irradiated Cladding Material from ATR Irradiations: *Tarik Saleh*¹; Stuart Maloy¹; G. Odette²; Tobias Romero¹; Matthew Quintana¹; ¹Los Alamos National Laboratory; ²University of California, Santa Barbara

5:00 PM

Dual Ion Beam Irradiation of Commercial-grade Austenitic Alloys Relevant to LWR Core Components at High Dose: *Calvin Lear*¹; Miao Song¹; Mi Wang¹; Gary Was¹; ¹University of Michigan

Materials for Energy Conversion and Storage – Energy Storage II

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Tuesday PMRoom: 229BMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Partha Mukherjee , Purdue University; Leela Arava, Wayne State University

2:00 PM Invited

Analysis of Discharge Reactions and Electrolyte Effects at the Cathode of Li/S Batteries: *Perla Balbuena*¹; Saul Perez Beltran¹; Ethan Kamphaus¹; Jaebeom Han¹; ¹Texas A&M University, Artie McFerrin Department of Chemical Engineering

2:25 PM Invited

Atomic Scale Simulations of Solid Electrolytes: Mechanical Properties and Beyond: Donald Siegel¹; ¹University of Michigan

2:50 PM Invited

Cathode Design from Atomistic to Mesoscale Dimensions: Sarbajit Banerjee¹; ¹Texas A&M University

3:15 PM Invited

Chemomechanical Behaviors of Composite Electrodes in Li-ion Batteries: Experiments and Modeling: *Kejie Zhao*¹; ¹Purdue University

3:40 PM Break

3:55 PM Invited

Advanced Study on Complex Hydrides for All-Solid-State Secondary Batteries: Atsushi Unemoto¹; Koji Yoshida²; Shohei Suzuki¹; Jun Kawaji¹; Shin-ichi Orimo³; ¹Research and Development Group, Hitachi Ltd; ²Advanced Institute for Materials Research (AIMR), Tohoku University; ³IMR, Tohoku University

4:15 PM

Effect of Sonication Power on Al2O3 Coated LiNi0.5Mn0.3Co0.2O2 Cathode Material for LIB: *Dila Sivlin*¹; Ozgul Keles¹; ¹ITU

4:35 PM

Electrode-crosstalk in High Energy Lithium Ion Batteries: Kaushik Kalaga¹; Daniel Abraham¹; ¹Argonne National Laboratory

4:55 PM Invited

Hybrid Nanostructured Materials for High Performance Na-ion Batteries: Binson Babu¹; KP Lakshmi¹; Manikoth Shaijumon¹; ¹IISER Thiruvananthapuram

5:20 PM

Investigation of Dynamic Load Effect on Performance and Safety of Lithium- Ion Battery with Raman Spectroscopy: *Bing Li*¹; Vikas Tomar¹; ¹Purdue University

5:40 PM Invited

Measurements of Stress and Fracture in High-capacity Li-ion Battery Anodes: Matt Pharr¹; ¹Texas A&M University

Materials Processing Fundamentals – Alloy Processing and Properties Modeling

Sponsored by: TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Guillaume Lambotte, Boston Electromet; Antoine Allanore, Massachusetts Institute of Technology; Jonghyun Lee, Iowa State University; Samuel Wagstaff, Novelis

Tuesday PM March 13, 2018 Room: 228A Location: Phoenix Convention Center

Session Chairs: Samuel Wagstaff, Novelis; Jonghyun Lee, Iowa State University

2:00 PM

Improvement of Tensile Properties of Vertical-twin-roll-cast Ti/Al Clad Sheets: *Dae Woong Kim*¹; Dong Ho Lee²; Jung Su Kim³; Seok Su Sohn¹; Hyoung Seop Kim¹; Sung Hak Lee¹; ¹POSTECH; ²POSCO; ³Korea Technology Finance Corporation

2:20 PM

Yield Strength Prediction in 3D during Local Heat Treatment of Structural A356 Alloy Components in Combination with Thermal-stress Analysis: *Tobias Holzmann*¹; Andreas Ludwig¹; Peter Raninger²; ¹Montanuniversität Leoben; ²Materials Center Leoben Forschung GmbH

2:40 PM

Thermodynamic Properties of Magnetic Semiconductors Ag₂FeSn₃S₈ and Ag₂FeSnS₄ Determined by the EMF Method: *Mykola Moroz*¹; Fiseha Tesfaye¹; Pavlo Demchenko²; Myroslava Prokhorenko³; Daniel Lindberg¹; Oleksandr Reshetnyak²; Leena Hupa¹; ¹Åbo Akademi University; ²Ivan Franko National University of Lviv; ³Lviv Polytechnic National University

3:00 PM

Study on the Heat Treatment of UNS N 10003 Alloy after Cold Working: *Jianping Liang*¹; Kexin Chen²; Jinhui Fan²; Zhijun Li¹; Chaowen Li¹; Shuangjian Chen¹; ¹Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS); ²Donghua University

3:20 PM

Effects of Heat Treatment on the Electrochemical Performance of Al Based Anode Materials for Air-battery: *Xingyu Gao*¹; Jilai Xue¹; Xuan Liu¹; Gaojie Shi¹; ¹University of science and technology Beijing

3:40 PM Break

4:00 PM

Microstructure Characterization and Mechanical Properties of Mg-9Al (wt.%) Alloy during Low-temperature Equal Channel Angular Extrusion (ECAE): Suhas Eswarappa Prameela¹; Xiaolong Ma¹; Laszlo Kecskes²; Timothy Weihs¹; ¹Johns Hopkins University; ²US Army Research Laboratory

4:20 PM

Highly Productive Machining of the Newest, Super Hard Intractable Composite-ceramic Materials: David Butskhrikhidze¹; ¹Georgian Technical University

4:40 PM

Design and Enhancement of Impression Forged Cylindrical Blanks: *Ahmed Elkholy*¹; ¹Kuwait University

5:00 PM

Manufacturing of a New Type of High Strength High Conductivity Cu–Cr Alloy: *Huiming Chen*¹; Dawei Yuan¹; Mingmao Li¹; Hang Wang¹; Bin Yang¹; ¹Jiangxi University of Science and Technology, China

Mechanical Behavior at the Nanoscale IV – 2D and Unique Structured Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Tuesday PMRoom: 101CMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Christopher Weinberger, Colorado State University; Nan Li, Los Alamos National Laboratory

2:00 PM Invited

Dislocation Structure in Layered Chalcogenides: Douglas Medlin¹; ¹Sandia National Laboratories

2:30 PM

Nanomechanical Characterization of Two Dimensional Materials: Jun Lou¹; ¹Rice University

2:50 PM

Mechanical Testing of a Nanostructured Lyotropic Mesophase Material from an Ionic Liquid Monomer: *Bineh Ndefru*¹; Millicent Firestone¹; Veronica Livescu¹; George Gray¹; James Valdez¹; ¹Los Alamos National Laboratory

3:10 PM

Mechanical Response of Highly Dense Vertically Aligned Carbon Nanotube (VACNT) Brushes Reinforced by Intertube Bridging: *Cayla Harvey*¹; Cordero Nuanez¹; William Mook²; Johann Michler³; Yury Gogotsi⁴; Siddhartha Pathak¹; ¹Chemical and Materials Engineering, University of Nevada, Reno; ²Sandia National Laboratories; ³Laboratory for Mechanics of Materials and Nanostructures, EMPA - Swiss Federal Laboratories for Materials Science and Technology; ⁴Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute, Drexel University

3:30 PM Break

3:50 PM

Impact of Point Defects on the Mechanical Properties of 122-superconductors: *Ian Bakst*¹; Christopher Weinberger¹; Seok-Woo Lee²; John Sypek²; Paul Canfield³; ¹Colorado State University; ²University of Connecticut; ³Iowa State University

4:10 PM

Micro-mechanical Characterization of Novel ThCr₂Si₂-structured Intermetallic Compounds: Fundamental Understanding of Superelasticity by Experiment and Computer Simulation: *Keith Dusoe*¹; Ian Bakst²; John Sypek²; Paul Canfield³; Christopher Weinberger²; Seok-Woo Lee¹; ¹University of Connecticut; ²Colorado State University; ³Iowa State University

4:30 PM

Superelasticity and Micaceous Plasticity of the Novel Intermetallic Compound CaFe₂As₂ at Small Length Scales: *John Sypek*¹; Christopher Weinberger²; Paul Canfield³; Sergey Bud'ko³; Seok-Woo Lee¹; ¹University of Connecticut; ²Colorado State University; ³Ames National Lab

4:50 PM

Diffusive Plasticity in Nanometer-sized Metallic Crystals: Scott Mao¹; Li Zhong¹; Frederic Sansoz²; Yang He¹; Chongmin Wang³; Ze Zhang⁴; ¹University of Pittsburgh; ²University of Vermont; ³Pacific Northwest National Laboratory; ⁴Zhejiang University

Mechanical Characteristics and Application Properties of Metals and Non-metals for Technology: An EPD Symposium in Honor of Donato Firrao – Mechanical Properties

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, AI Isra University; Jiann-Yang Hwang, Michigan Technological University; Bowen Li, Michigan Technological University; Pasquale Russo Spena, Free University of Bozen-Bolzano

Tuesday PM	Room: 123
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Eren Kalay, METU; Pasquale Spena, Free University of Bozen-Bolzano

2:00 PM Invited

Integration of Metallography, Fractography and Mechanical Properties Tests as a Key to Failure Analysis of Quenched and Tempered Large Steel Components: Donato Firrao¹; Paolo Matteis¹; ¹Politecnico di Torino - DISAT

2:40 PM

Microstructure and Mechanical Properties of Low-carbon Ferritic and Bainitic Steels with Different Contents of Mo, Ti and Nb for Seismic and Fire-resistant Applications: Jun Yeon Kim¹; Chang Hoon Lee²; Joon Oh Moon²; Hyun Uk Hong¹; ¹Changwon National University; ²Korea Institute of Materials Science

3:00 PM

Embrittlement in Cast Superaustenitic Stainless Steel: Mertcan Baskan¹; Scott Chumbley²; *Eren Kalay*¹; ¹METU; ²Iowa State University

3:20 PM Break

3:40 PM

Thermo-Calc of the Phase Diagrams of the Nb-N System: Shadia Ikhmayies¹; ¹Al Isra University

4:00 PM

Finding the Small Charge Explosion Center by Analyzing Occurrence of Mechanical Twins in FCC Metals: *Donato Firrao*¹; Paolo Matteis¹; Graziano Ubertalli¹; ¹Politecnico di Torino - DISAT

Metal-Matrix Composites Innovations, Advances and Applications: An SMD Symposium in Honor of William C. Harrigan, Jr. – Mechanical Behavior of Metal Matrix Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Srivatsan Tirumalai, The University of Akron; Yuzheng Zhang, Gamma Alloys, LLC; William Harrigan, Gamma Technology, LLC

Tuesday PM March 13, 2018 Room: 121A Location: Phoenix Convention Center

Session Chairs: Steve Siebeck, TU Chemnitz; Martins Sarma, Helmholtz-Zentrum Dresden - Rossendorf

2:00 PM Invited

Influence of Boron to the Creep Behavior of Particle Reinforced Aluminum Matrix Composites (AMCs): Guntram Wagner¹; *Steve Siebeck*¹; ¹Chemnitz University of Technology

2:30 PM

Effect of Matrix Properties and Sliding Counterface on the Wear Behavior of Magnesium Alloy Metal Matrix Composites: S. Jayalakshmi¹; R. Arvind Singh¹; *Tirumalai Srivatsan*²; ¹Kumaraguru College of Technology (KCT); ²The University of Akron

2:50 PM

Characterization in Drilling Process of Carbon Fiber Reinforced Plastic Composite Materials: Kamlesh Phapale¹; ¹Bharat Forge Ltd.

3:10 PM

Synthesis and Microstructural Development of Particulate Reinforced Metal-matrix Composites Using the Technique of Spray Atomization and Deposition: Tirumalai Srivatsan¹; Yaojun Lin²; Fei Chen²; *Enrique Lavernia*²; ¹The University of Akron; ²University of California, Irvine

3:30 PM Break

3:50 PM

Magnetically Induced Cavitation for the Dispersion of Particles in Liquid Metals: *Martins Sarma*¹; Gunter Gerbeth¹; Ilmars Grants²; Andris Bojarevics²; ¹Helmholtz-Zentrum Dresden - Rossendorf; ²Institute of Physics

4:10 PM

An Engineered Magnesium Alloy Nanocomposite: Mechanisms Governing Microstructural Development and Mechanical Properties: Sravya Tekumalla¹; Shikhar Bharadwaj¹; Tirumalai Srivatsan²; *Manoj Gupta*¹; ¹National University of Singapore; ²The University of Akron

4:30 PM

Investigation of the Mechanical Properties of Al₂O₃ Reinforced Nickel Composite Coatings: *Olgun Yilmaz*¹; Metehan Erdogan²; Ishak Karakaya¹; ¹Middle East Technical University; ²Yildirim Beyazit University

4:50 PM

The Tensile Response and Fracture Behavior of a Copper-Niobium Microcomposite: Role of Surface Modification: Paul Arindam¹; *Tirumalai* Srivatsan¹; ¹The University of Akron

5:10 PM

Fundamental Issues and Highlights of Reactive Wetting in Carbon-based Composites: *Khurram Iqbal*¹; ¹University of Karachi

Multi-material Additive Manufacturing: Processing and Materials Design – Architectured and Mesostructured Materials

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Hang Yu, Virginia Tech; Nanci Hardwick, Aeroprobe Corporation; Steven Boles, Hong Kong Polytechnic University; Blake Barnett, Army Research Laboratory; Michael Gibson, Desktop Metal

Tuesday PM	Room: 232C
March 13, 2018	Location: Phoenix Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Strong and Robust Nanoarchitectures: *Ruth Schwaiger*¹; ¹Karlsruhe Institute of Technology (KIT)

2:30 PM Invited

Design and Fabrication of Lightweight, Hierarchical Multi-material Composites with Tunable Thermal Mechanical Properties: *Rayne Zheng*¹; 'Virginia Tech

3:00 PM

Multi Phase Materials with Architectured Micro Scale Interfaces: *Niyanth Sridharan*¹; David Gandy²; Maxim Gussev¹; Sudarsanam Babu³; ¹Oak Ridge National Laboratory; ²Electric Power Research Institute; ³University of Tennessee, Knoxville

3:20 PM Break

3:40 PM Invited

Multi-material Topology Optimization for 3D Printed Multi-functional Architected Materials and Components: Saranthip Koh¹; Josephine Carstensen¹; Christopher Williams²; *James Guest*¹; ¹Johns Hopkins University; ²Virginia Tech

4:10 PM Invited

Understanding and Predicting the Heterogeneous Local Ligament-level Deformation Response in Metal Lattice Structures: *Holly Carlton*¹; Jonathan Lind¹; Mark Messner¹; Nickolai Volkoff-Shoemaker¹; Nathan Barton¹; Mukul Kumar¹; ¹Lawrence Livermore National Laboratory

4:40 PM

Meso-scale Design of Heterogeneous Material Systems in Multi-material Additive Manufacturing: *David Garcia*¹; Mackenzie Jones¹; Yunhui Zhu¹; Hang Yu¹; ¹Virginia Tech

5:00 PM

Design and Optimization of Fiber Reinforced Polymers Enabled by Additive Manufacturing: *William Hartley*¹; David Garcia¹; Hang Yu¹; ¹Virginia Tech

Nanocomposites V: Structure-Property Relationships in Nanostructured Materials – Metallic and Ceramic Nanocomposites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Meisha Shofner, Georgia Institute of Technology; Nikhilesh Chawla, Arizona State University

Tuesday PM	Room: 102C
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Jonathan Spowart, Air Force Research Laboratory

2:00 PM

In-situ Study on Mechanical Behavior of Flash-sintered Yttria Stabilizedzirconia at Elevated Temperature: *Jaehun Cho*¹; Qiang Li¹; Han Wang¹; Zhe Fan¹; Jin Li¹; Sichuang Xue¹; Haiyan Wang¹; Troy Holland²; Amiya Mukherjee³; Xinghang Zhang¹; ¹Purdue University; ²Colorado State University; ³UC Davis

2:20 PM

Precipitation Phenomena in Al-Zn-Mg Alloy Matrix Composites Reinforced with B4C Particles: *Chuandong Wu*¹; Kaka Ma²; Dalong Zhang³; Guoqiang Luo¹; Fei Chen¹; Qiang Shen¹; Lianmeng Zhang¹; Enrique Lavernia⁴; ¹Wuhan University of Technology; ²Colorado State University; ³Oak Ridge National Laboratory; ⁴University of California-Irvine

2:40 PM

Nanoparticle Reinforced Nanocomposites by Means of Sputtering and Nanoparticle Co-deposition: *Mikhail Polyakov*¹; Rachel Schoeppner¹; Xavier Maeder¹; Johann Michler¹; ¹EMPA

3:00 PM

Effects of Reinforcement Size and Volume Fraction on Tensile Behavior of Al-SiC Composites: *Conrad Park*¹; Erica Bindas¹; Ji Xia¹; Corey Meyer¹; Don Hashiguchi²; Kyung Chung²; John Lewandowski¹; Matthew Willard¹; ¹Case Western Reserve University; ²Materion Brush Incorporated

3:20 PM Break

3:40 PM

Characterization of Magnetic Microstructure in Near Eutectoid Co-Pt Ordered Alloys: Isha Kashyap¹; Marc De Graef¹; ¹Carnegie Mellon University

4:00 PM

Nanoindentation Creep Response of Magnesium/Boron Nitride Nanocomposites: *Meysam Haghshenas*¹; Manoj Gupta²; ¹University of North Dakota; ²National University of Singapore,

4:20 PM

The Mechanical Behavior of Hierarchical Mg Matrix Nanocomposite with High Volume Fraction Reinforcement: *Jinling Liu*¹; Xu He¹; Leigang Zhang¹; Xi Luo¹; Linan An²; ¹Southwest Jiaotong University; ²University of Central Florida

Non-equilibrium Features of Grain Boundaries – Mechanical Responses of Non-equilibrium Grain Boundaries - Part II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan, Ann Arbor; Josh Kacher, Georgia Tech; Elizabeth Holm, Carnegie Mellon University; Irene Beyerlein, University of California, Santa Barbara; Shigenobu Ogata, Osaka University

Tuesday PMRoom: 125AMarch 13, 2018Location: Phoenix Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Dislocations, Twins, Grain Boundaries and their Interactions in HCP Rhenium: Julian Sabisch¹; Lu Jiang¹; Liang Qi²; Joshua Kacher³; Andrew Minor¹; Daryl Chrzan¹; *Mark Asta*¹; ¹University of California, Berkeley; ²University of Michigan; ³Georgia Technological Institute

2:30 PM Invited

The Influence of 3-D Structure on the Mechanical Behavior of Layered Nanocomposites: *Nathan Mara*¹; Youxing Chen²; Nan Li²; Jon Baldwin²; Ben Liu²; Richard Hoagland²; ¹University of Minnesota and Los Alamos National Laboratory; ²Los Alamos National Laboratory

2:50 PM Invited

Dislocation Interactions with Bi-phase Interfaces Using Phase Field Dislocation Dynamics (PFDD): *Abigail Hunter*¹; Irene Beyerlein²; ¹Los Alamos National Laboratory; ²University of California, Santa Barbara

3:20 PM Break

3:40 PM

Continuum Framework for Dislocation Structure, Energy and Dynamics of Dislocation Arrays and Low Angle Grain Boundaries: *Yang Xiang*¹; Luchan Zhang¹; ¹Hong Kong University of Science and Technology

4:00 PM Invited

Competing Effects of Nonmetal Impurities and Planned Metallic Dopants on Grain Boundary Deformation: *Timothy Rupert*¹; ¹University of California, Irvine

4:30 PM Invited

Characterization of Single Grain Boundary and Interface Mechanical Properties Using In-situ TEM: Shen Dillon¹; ¹University of Illinois at Urbana-Champaign

5:00 PM

Understanding the Effects of Hydrogen on the Plasticity of Individual Crystals within a Polycrystalline Nickel Aggregate Using High Energy X-ray Diffraction and High Pressure Torsion: *Timothy Long*¹; Matthew Miller¹; ¹Cornell University

Perfluorocarbon Generation and Emissions from Industrial Processes – PFC Generation Mechanisms from Industrial Processes

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizers: Pascal Lavoie, Light Metals Research Centre - The University of Auckland; David Wong, University of Auckland; Pernelle Nunez, International Aluminium Institute

Tuesday PM	Room: 222B
March 13, 2018	Location: Phoenix Convention Center

Session Chair: David Wong, The University of Auckland

2:00 PM Introductory Comments

2:05 PM

Conditions and Mechanisms of Gas Emissions from Didymium Electrolysis and Its Process Control: *Ksenija Milicevic*¹; Dominic Feldhaus¹; Bernd Friedrich¹; ¹RWTH Aachen University

2:30 PM

Perfluorocarbon Formation during Rare Earth Electrolysis: *Karen Osen*¹; Ana Maria Martinez¹; Henrik Gudbrandsen¹; Anne Store¹; Ole Kjos¹; Camilla Sommerseth¹; Heiko Gaertner¹; Thor Anders Aarhaug¹; Pierre Chamelot²; Mathieu Gibilaro²; Laurent Massot²; ¹SINTEF; ²Laboratoire de Génie Chimique, Université de Toulouse

2:55 PM

PFC Evolution Characteristics during Aluminium and Rare Earth Electrolysis: *Ole Kjos*¹; Asbjørn Solheim¹; Thor Aarhaug¹; Karen Osen¹; Ana Maria Martinez¹; Camilla Sommerseth¹; Henrik Gudbrandsen¹; Anne Støre¹; Heiko Gaertner¹; ¹SINTEF

3:20 PM

Evaluation of Time Consistency when Quantifying Emissions of Perfluorocarbons Resulting from Low Voltage Anode Effects: *Lukas Dion*¹; Pernelle Nunez²; Simon Gaboury³; David Wong⁴; Alexey Spirin⁵; ¹Université du Québec à Chicoutimi; ²International Aluminium Institute; ³Rio Tinto; ⁴Light Metal Research Center; ⁵UC RUSAL

Phase Transformations and Microstructural Evolution – Phase Transformations in Non-ferrous Systems II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Tuesday PM March 13, 2018 Room: 129A Location: Phoenix Convention Center

Session Chairs: Ashwin Shahani, University of Michigan; Samantha Lawrence, LANL

2:00 PM

The Completeness of ω Phase Transformation in Metastable β Titanium Alloys Studied by X-ray Diffraction: Jana Šmilauerová¹; Václav Holý¹; Petr Harcuba¹; Dominik Kriegner¹; ¹Charles University

2:20 PM

Role of Initial Microstructure on the Stability of Pressure Induced ω-phase Zirconium: *M. Arul Kumar*¹; N Hilairet²; Yanbin Wang³; Rodney McCabe¹; Irene Beyerlein⁴; Carlos Tome¹; ¹Los Alamos National Laboratory; ²Université Lille; ³Argonne National Laboratory; ⁴University of California, Santa Barbara

2:40 PM

Dynamic Precipitation in a Mg-9wt.%Al Alloy during Low-temperature Equal Channel Angular Extrusion (ECAE): *Xiaolong Ma*¹; Suhas Eswarappa-Prameela¹; Nicholas Krywopusk¹; Laszlo Kecskes²; Timothy Weihs¹; ¹Johns Hopkins University; ²US Army Research Laboratory

3:00 PM Demonstration: Poster Preview

3:30 PM Break

3:50 PM

Elastic Modulus and Structural Changes upon Age Hardening of a Palladium-based Alloy, Paliney 7: Patrick Bowen¹; David Birdsall¹; Edward Laitila²; Edward Smith¹; ¹Deringer-Ney Inc; ²Michigan Technological University

4:10 PM

Effects of Low-cost Coherent L12-structured Nano-precipitates in Commercial Aluminum Alloys: *Nhon Vo*¹; Evander Ramos¹; Francisco Flores¹; David Seidman²; David Dunand²; ¹NanoAl LLC; ²Northwestern University

4:30 PM

Phase-field Modeling of Widmanstätten Growth: *Hocine Lebbad*¹; Benoît Appolaire¹; Alphonse Finel¹; Yann Le Bouar¹; ¹ONERA/CNRS

4:50 PM

Application of a Generalized Interface Model for Calculation of Solidliquid Interfacial Free Energy in Alloys: *Ning Ma*¹; Jeff Hoyt²; Sumathy Raman¹; Mark Asta²; ¹Corporate Strategic Research, ExxonMobil Research & Engineering Company; ²University of California, Berkeley

5:10 PM

Phase Transformation Modeling of Technical Al Alloy during Solidification: *Jiwon Park*¹; Chang-Seok Oh¹; ¹Korea Institute of Materials Science

Powder Metallurgy of Light, Reactive and Other Nonferrous Metals – Aluminium Powder Metallurgy and Composites

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Ma Qian, RMIT University (Royal Melbourne Institute of Technology); Zak Fang, University of Utah; Bowen Li, Michigan Technological University

Tuesday PM	Room: 225A
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Tim Sercombe, The University of Western Australia; Katsuyoshi Kondoh, Osaka University

2:00 PM

Microstructural and Chemical Analysis of Gas Atomized and Heat Treated Aluminum Alloy Powders: *Benjamin Bedard*¹; Alexis Ernst¹; Tyler Flanagan¹; Sumit Suresh¹; Avinash Dongare¹; Seok-Woo Lee¹; Harold Brody¹; Aaron Nardi²; Victor Champagne³; Mark Aindow¹; ¹Materials Science and Engineering, and Institute of Materials Science, University of Connecticut; ²United Technologies Research Center; ³U.S. Army Research Laboratory, Weapons and Materials Research Directorate

2:20 PM Invited

AA5083 Powder Sintering Comparison Using AC and DC Currents: *Frank Kellogg*¹; Michael Kornecki¹; Selva Vennila Raju²; Brandon McWilliams³; Ray Brennan³; ¹SURVICE Engineering; ²ORAU; ³US Army Research Laboratory

2:50 PM Keynote

Aluminum Matrix Composites by Both Powder Metallurgy (PM) and Additive Manufacturing (AM) Methods: *Tim Sercombe*¹; Xiaopeng Li²; ¹The University of Western Australia; ²University of NSW

3:30 PM Break

3:50 PM Keynote

Solid-state Sintering of Al Alloy Powder and AlN Synthesis in Sintering: Katsuyoshi Kondoh'; ¹Osaka University

4:30 PM

Mechanical Characterization of Cold Sprayed Aluminum Alloy Powders Using In-situ Micropillar Compression and Tension: *Tyler Flanagan*¹; Benjamin Berdard¹; Alexis Ernst¹; Sumit Suresh¹; Mark Aindow¹; Avinash Dongare¹; Harold Brody¹; Aaron Nardi²; Victor Champagne³; Seok-Woo Lee¹; ¹University of Connecticut; ²United Technologies Research Center; ³U.S. Army Research Laboratory

4:50 PM

Influence of Hot Rolling on Mechanical Behavior and Strengthening Mechanism in Boron Carbide Reinforced Aluminum Matrix Composites: *Hao Guo*¹; JianNeng Zhang¹; Yang Zhang¹; Ye Cui¹; Dan Chen¹; Yu Zhao¹; SongSong Xu¹; NaiMeng Liu¹; ZhongWu Zhang¹; ⁻¹Key laboratory of Superlight Materials and Surface technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University

5:10 PM

Synthesis and Characterization of Dual Matrix In-situ Al-based Nanocomposites: *Suprabha Lakra*¹; Tapas Bandyopadhyay¹; Karabi Das¹; ¹IIT Kharagpur

5:30 PM

Mesoscale Modeling of Single Particle Impact Induced Microstructural Evolution during Cold Spray of Aluminum Powders: *Sumit Athikavil Suresh*¹; Jie Chen¹; Benjamin Bedard¹; Alexis Ernst¹; Tyler Flanagan¹; Seok-Woo Lee¹; Mark Aindow¹; Harold Brody¹; Victor Champagne¹; Avinash Dongare¹; ¹University of Connecticut

5:50 PM Invited

Fabrication of Powder Metallurgy Ti-6Al-4V Connecting Rod by Powder Forging Process: Youngmoo Kim¹; Young-Beom Song¹; Sung Ho Lee¹; Young-Sam Kwon²; ¹Agency for Defense Development; ²Cetatech Co.

Rare Metal Extraction & Processing – Ti, V, Mo & W

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee *Program Organizers:* Hojong Kim, The Pennsylvania State University; Bradford Wesstrom, Freeport-McMoRan Copper & Gold; Shafiq Alam, University of Saskatchewan; Takanari Ouchi, The University of Tokyo; Gisele Azimi, University of Toronto; Neale Neelameggham, Ind LLC; Shijie Wang, Rio Tinto Kennecott Utah Copper; Xiaofei Guan, ShanghaiTech University

Tuesday PM	Room: 227C
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Bradford Wesstrom, Freeport-Mcmoran; Neale Neelameggham, IND LLC

2:00 PM

Present Status and Development of Preparation Technologies of Titaniumrich Materials: Shiju Zhang¹; Shiju Zhang²; Songli Liu³; *Wenhui Ma*¹; Wenhui Ma⁴; Wenhui Ma⁵; Yongnian Dai¹; Yongnian Dai⁴; Yongnian Dai⁵; ¹Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology; ²Resources and Environmental Engineering College, Panzhihua University; ³Machinery and Electrical Engineering, Yangtze Normal University; ⁴State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming University of Science and Technology; ⁵Engineering Research Center for Silicon Metallurgy and Silicon Materials of Yunnan Provincial Universities, Kunming University of Science and Technology

2:25 PM

Effect of CaO Additive on the Interfacial Reaction between the BaZrO3 Refractory and Titanium Enrichment Melt: *Guangyao Chen*¹; Juyun Kang¹; Pengyue Gao¹; Wajid Ali¹; Ziwei Qin¹; Xionggang Lu¹; Chonghe Li¹; ¹Shanghai University

2:50 PM

Extracting Uranium and Molybdenum from Refractory U-Mo Associated Ore: *Kang Liu*¹; Zhiping Yang¹; Fengqi Zhao¹; Liuyin Shi¹; Yan Song¹; Xing Fan¹; ¹BeiJing Research Institute of Chemical Engineering and Metallurgy

3:15 PM

Thermodynamics Analysis on the Process of Decarburization and Vanadium Protection by CO₂: Liu Zhuolin¹; Zhang Ting'an¹; Niu Liping¹; Lv Guozhi¹; Dou Zhihe¹; Pan Xijuan¹; ¹School of Metallurgy of Northeastern University

3:40 PM Break

4:00 PM

Purification of a Nigerian Wolframite Ore for Improved Industrial Applications: *Alafara Baba*¹; Muhammed Muhammed¹; Mustapha Raji¹; Kuranga Ayinla¹; Misitura Lawal²; Folahan Adekola¹; Abdul Alabi³; Rafiu Bale¹; ¹University of Ilorin, Nigeria.; ²Kebbi State University of Sc. & Tech.; ³Kwara State University, Malete

4:25 PM

Extraction of Vanadium and Chromium from the Material Containing Chromium, Titanium and Vanadium: *Sheng Huang*¹; Shengfan Zhou¹; Bianfang Chen¹; Biao Liu¹; Qi Ge¹; Mingyu Wang¹; Xuewen Wang¹; ¹Central South University

4:50 PM

TUESDAY PM

Extraction Separation of V and Fe in High Acid and High Iron Solution: *Weiguang Zhang*¹; Zhang Ting'an¹; Guozhi Lyu¹; Yajing Tian¹; Biyu Long¹; Xuejiao Cao¹; ¹Northeastern University

5:15 PM

Batch Studies for Removing Vanadium(V) and Chromium(VI) from Aqueous Solution Using Anion Exchange Resin: Yang Yang¹; Hong-Yi Li¹; Min-Min Lin¹; Bing Xie¹; ¹Chongqing University

Recent Developments in Biological, Structural and Functional Thin Films & Coatings – Functional Films & Coatings II

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Adele Carradò, Université de Strasbourg IPCMS; Nancy Michael, University of Texas at Arlington; Ramana Chintalapalle, University of Texas - El Paso; Heinz Palkowski, Clausthal University of Technology; Nuggehalli Ravindra, New Jersey Institute of Technology; Vikas Tomar, Purdue University; Gerald Ferblantier, Strasbourg University - ICube Laboratory

Tuesday PMRoom: 226AMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Gerald Ferblantier, Université de Strasbourg ICube; Ramana Chintalapalle, University of Texas at El Paso El Paso - UTEP

2:00 PM Keynote

Control of Thin MoSe₂ Layer in Cu(InGa)Se₂-based Thin Film Solar Cell: *Woo Kyoung Kim*¹; Jaseok Koo¹; ¹Yeungnam University

2:40 PM

Modeling, Deposition, and Characterization of Nano-crystalline Nitrides for Use in Optical Coatings: *Neil Murphy*¹; Lirong Sun²; John Jones¹; John Grant³; ¹Air Force Research Laboratory; ²General Dynamics Information Technology; ³Azimuth Corporation

3:00 PM

Rare Earth-doped Tin Oxide and Zinc Oxide Thin Films for Photovoltaic Applications: *Gerald Ferblantier*¹; Karima Bouras¹; Abdelilah Slaoui¹; Guy Schmerber²; ¹Strasbourg University - ICube Laboratory; ²Strasbourg University - IPCMS

3:20 PM

Tunable Optical Constants and Solar Selectivity of Multilayer Films for Smart Window Applications: *P. Dubey*¹; C. Grijalva¹; C. Ramana¹; ¹University of Texas at El-Paso

3:40 PM Break

4:00 PM Invited

Functional Thin Film Enabled Sensor Technologies for Harsh Environment Sensing Applications: Paul Ohodnicki¹; ¹National Energy Technology Laboratory

4:30 PM

Characterization and Performance Evaluation of Titanium Doped B-Ga₂O₃ Thin Films for Oxygen Sensors in Extreme Environment: *Sandeep Manandhar*¹; Anil Battu¹; Chintalapalle Ramana¹; ¹University of Texas at El Paso

4:50 PM

Structural and Optical Properties of Tungsten Doped Hafnium Oxide Nanocrystalline Thin Films: *Marlyn Torres*¹; Ann Uribe¹; Chintalapalle Ramana¹; ¹University of Texas at El Paso

5:10 PM

Effect of Refractory Metal Incorporation on Structural and Mechanical Properties of β -Ga₂O₃ Nanocrystalline Films for Extreme Environment Applications: *Anil Krishna Battu*¹; Sandeep Manandhar¹; Ramana Chintalapalle¹; ¹University of Texas at El Paso

5:30 PM

Magnetic Field Assisted Directed and Deterministic Assembly: *Balraj Mani*¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

Surface Engineering for Improved Corrosion Resistance – Session III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Rajeev Gupta, The University of Akron; Sandip Harimkar, Oklahoma State University; Carlos Schvezov, Institute of Materials of Misiones; Arvind Agarwal, Florida International University

Tuesday PM March 13, 2018 Room: 227A Location: Phoenix Convention Center

Session Chairs: Xiaobo Chen, RMIT University; Rajeev Gupta, The University of Akron

2:00 PM Invited

Development of Linseed Oil Based Self-healing Coatings to Improve Corrosion Protection: *Qixin Zhou*¹; Haoran Wang¹; ¹University of Akron

2:20 PM

Mechanical and Corrosion Behavior of 304 Austenitic Stainless Steel Processed by Cryogenic Rolling: Rahul Singh¹; Deepak Sachan¹; Raviraj Verma²; *Abhishek Kumar*¹; ¹Motilal Nehru National Institute of Technology Allahabad; ²IIT Roorkee

2:40 PM

Severe Plastic Deformation Surface Treatment on Corrosion and Environmental Cracking of Oilfield Alloys: *Ting Chen*¹; Kripa Varanasi¹; ¹Massachusetts Institute of Technology

3:00 PM

Stainless Steel Corrosion Resistance in 0.5 M H₂SO₄ Using Cassia Fistula Extract: *Olugbenga Omotosho*¹; Joshua Okeniyi¹; Cleophas Loto¹; Sunday Afolalu¹; Emmanuel Obi¹; Oluwatobi Sonoiki¹; Oluwatobi Sonoiki¹; Segun Oladipupo¹; Timi Oshin¹; Adebanji Ogbiye¹; ¹Covenant University, Ota

3:20 PM Break

3:35 PM

Corrosion Resistance of Aluminium in 0.5 M H₂SO₄ in the Presence of Cassia Fistula Extract: *Olugbenga Omotosho*¹; Joshua Okeniyi¹; Cleophas Loto¹; Abimbola Popoola²; Adeoluwa Oni¹; Ayomide Alabi¹; Abisola Olarewaju¹; ¹Covenant University, Ota; ²Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology

3:55 PM

Graphene Ultra-thin Coating for Remarkable Corrosion Resistance: Current Status and Challenges: *RK Singh Raman*¹; ¹Monash University

Thermal and Mechanical Stability of Nanocrystalline Materials – Thermal Stability of Nanocrystalline Metals I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jason Trelewicz, Stony Brook University; Daniel Bufford, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Jessica Krogstad, University of Illinois, Urbana-Champaign; Christian Brandl, Karlsruhe Institute of Technology

Tuesday PM	Room: 128B
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Arvind Kalidindi, Massachusetts Institute of Technology; Daniel Bufford, Sandia National Laboratories

2:00 PM Invited

An Atom Probe Tomography Prospective to Nanogranular Thermal Stability: *Gregory Thompson*¹; Xuyang Zhou¹; Thomas Koenig¹; Monica Kapoor¹; Florian Vogel¹; Brad Boyce²; Blythe Clark²; Kris Darling³; B. Chad Hornbuckle³; ¹University of Alabama; ²Sandia National Laboratories; ³Army Research Laboratory

2:30 PM

Atom Probe Tomography Investigation of Diamantane Induced Stability in Nanocrystalline Aluminum: Torben Boll¹; Martin Heilmaier²; Ali Yousefiani³; *James Earthman*⁴; ¹Karlsruhe Institute of Technology (KIT) and Karlsruhe Nano Micro Facility; ²Karlsruhe Institute of Technology (KIT); ³Boeing Research & Technology; ⁴University of California, Irvine

2:50 PM Invited

Thermal Stability of Nanocomposite Metals: In Situ Observation of Anomalous Residual Stresses Relaxation during Annealing Under Synchrotron Radiation: *Ludovic Thilly*¹; Pierre-Olivier Renault¹; Florence Lecouturier²; ¹Pprime Institute - University of Poitiers; ²LNCMI-Toulouse

3:20 PM Invited

Investigating the Thermal Stability of FCC and BCC Nanocrystalline Thin Films by In Situ TEM Annealing and Post Mortem TKD Analysis: *Josh Kacher*¹; Jordan Key¹; ¹Georgia Tech

3:50 PM Break

4:10 PM Invited

The Mechanisms of Thermal Stability and Strength of Nanocrystalline Immiscible Alloys: K. Darling¹; K. Solanki²; R. Koju³; *Yuri Mishin*³; ¹US Army Research Laboratory; ²Arizona State University; ³George Mason University

4:40 PM Invited

Connecting Thermal Stability to Fatigue and Wear Resistance in Nanocrystalline Binary Alloys: *Brad Boyce*¹; Nicolas Argibay¹; Timothy Furnish¹; Khalid Hattar¹; Christopher Barr¹; Michael Chandross¹; Fadi Abdeljawad¹; Stephen Foiles¹; Blythe Clark¹; ¹Sandia National Laboratories

Thermo-mechanical Response of Materials with Special Emphasis on In-situ Techniques – High Temperature Mechanical Properties of Materials II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee, TMS: Chemistry and Physics of Materials Committee *Program Organizers:* Amit Pandey, LG Fuel Cell Systems Inc.; Sanjit Bhowmick, Bruker Nano Surfaces; Jeff Wheeler, ETH Zurich; María Teresa Pérez Prado, IMDEA Materials Institute; Dongchan Jang, Korea Advanced Institute of Science and Technology; Robert Wheeler, MicroTesting Solutions LLC; Josh Kacher, Georgia Tech

Tuesday PM March 13, 2018 Room: 101A Location: Phoenix Convention Center

Session Chairs: Bob Wheeler, Microtesting Solutions; Jeff Wheeler, ETH Zurich

2:00 PM Invited

Deformation Mechanisms of Cu/Nb Nanoscale Metallic Multilayers as a Function of Temperature and Layer Thickness: *Miguel Monclus*¹; Jeromy Snel¹; Miguel Castillo-Rodriguez¹; Nathan Mara²; Irene Beyerlein³; Javier Llorca¹; Jon Molina-Aldareguia¹; ¹IMDEA Materials; ² Los Alamos National Laboratory; ³University of California, Santa Barbara

2:30 PM

Combinatorial In Situ Micromechanics of the Al-Cu System at Low Temperatures: Yuan Xiao¹; Bin Gan²; Alla Sologubenko¹; *Jeff Wheeler*¹; ¹ETH Zurich; ²Northwestern Polytechnic University

2:50 PM

Nanomechanical Properties of Graphene Oxide and Carbon Nanotube Scaffolds: *Sanjit Bhowmick*¹; Chandra Sekhar Tiwary²; Syed Asif¹; Pulickel Ajayan²; ¹Bruker Nano Surfaces; ²Rice University

3:10 PM Invited

Metals under High-pressure, High Temperature and during Plastic Deformation: In-situ Studies of Thermo-mechanical Response by Neutron and Synchrotron Quantum Beams: *Klaus-Dieter Liss*¹; ¹Australian Nuclear Science and Technology Organisation

3:40 PM Break

4:00 PM Invited

The Effect of Strain Rate on the Tensile Properties of Single Crystal Ni – **an In Situ Study**: *Dhriti Bhattacharyya*¹; Alan Xu¹; Joel Davis¹; Michael Saleh¹; ¹Australian Nuclear Science and Technology Organisation

4:30 PM

High throughput Study of Underlying Mechanisms of Serrated Flow in Nickel-based Diffusion Multiple via High Temperature Nanoindentation: *Bin Gan*¹; Yuan Xiao²; Miguel A. Monclus³; Jeffrey Wheeler²; ¹Northwestern Polytechnical University; ²ETH Zurich; ³IMDEA Materials Institute

4:50 PM

Analysis of Longitudinal Twinning in γ-TiAl by Micropillar Compression up to 700 °C with Strain and Crystal Orientation Mapping: *Thomas Edwards*¹; Fabio Di Gioacchino¹; Nigel Martin²; Mark Dixon²; William Clegg¹; ¹University of Cambridge; ²Rolls-Royce plc

Ultrafine-grained Materials X – Early Career Scientist

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Tuesday PMRoom: 103BMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Irene Beyerlein, University of California, Santa Barbara; Srikanth Patala, North Carolina State University

2:00 PM

Achieving Ultra-high Strengthening of A₂02₄ Alloy through Combination of High-pressure Torsion and Subsequent Aging Treatment: *Takahiro Masuda*¹; Xavier Sauvage²; Zenji Horita¹; ¹Kyushu University; ²CNRS, University of Rouen

2:20 PM

Compositionally Tailoring the Mechanical Properties of Nanotwinned Metal Thin Films for Preliminary Micro-cantilever MEMS Devices: *Gianna Valentino*¹; Jessica Krogstad²; Timothy Weihs¹; Kevin Hemker¹; ¹Johns Hopkins University; ²University of Illinois at Urbana-Champaign

2:40 PM

Thermodynamical Instability of a Single-phase, Nanocrystalline TiZrNbHfTa Alloy and its Impact on the Mechanical Properties: *Benjamin Schuh*¹; Bernhard Völker¹; Juraj Todt²; Loic Perriere³; Jean-Philippe Couzinié³; Anton Hohenwarter¹; ¹Montanuniversität Leoben; ²Erich-Schmid-Institute of Materials Science, Austrian Academy of Sciences; ³Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC

3:00 PM

Mechanical Behavior of Bulk Mg-based Ultra-fine Layered Composites: Brandon Leu¹; Irene Beyerlein¹; Nathan Mara²; John Carpenter²; Arulkumar Mariyappan²; ¹University of California, Santa Barbara; ²Los Alamos National Laboratory

3:20 PM Break

3:40 PM

Microstructural Evolution and Thermal Stability of Accumulatively Rollbonded Cu-Nb Nanolaminates: *Jaclyn Avallone*¹; Thomas Nizolek²; Irene Beyerlein¹; Nathan Mara²; Tresa Pollock¹; ¹University of California, Santa Barbara; ²Los Alamos National Laboratory

4:00 PM

Averting Plastic Flow Localization in Metal Nanocomposites by Tailoring Microstructure Morphology: *Ian McCue*¹; Mengying Liu¹; Michael Demkowicz¹; ¹Texas A&M University

4:20 PM

Microstructure, Hardness, and Recrystallization of Tungsten Processed by ECAE to High Strain at Very Low Homologues Temperature: Zachary Levin¹; Karl Hartwig¹; ¹Texas A&M University

4:40 PM

Evolution of Structural Instabilities during Cyclic Deformation of UFG Metals: *Marlene Kapp*¹; Oliver Renk¹; Thomas Leitner¹; Pradipta Ghosh¹; Bo Yang¹; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science

5:00 PM

TECHNICAL PROGRAM

Strengthening and Toughening Effects of Twin Mesh Structures in Polycrystalline Mg: Xin Wang¹; Lin Jiang¹; Dalong Zhang¹; Chase Cooper¹; Ruilin Wang¹; Ali Hernandez¹; Timothy Rupert¹; Subhash Mahajan¹; Irene Beyerlein²; Enrique Lavernia¹; Julie Schoenung¹; ¹University of California, Irvine; ²University of California, Santa Barbara

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials – Nanomaterials, Characterization, and Applications

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Stephen McDonnell, University of Virginia; Chang-Yong Nam, Brookhaven National Laboratory; Lanxia Cheng, University of Texas Dallas; Dong Lin, Kansas State University; Wenda Tan, University of Utah

Wednesday AM	Room: 101B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Lanxia Cheng, University of Texas at Dallas; Stephen McDonnell, University fo Virginia

8:30 AM

Anisotropic and Shape-selective Nanomaterials: Structure-property Relationships: Simona Hunyadi Murph¹; ¹Savannah River National Laboratory & University of Georgia

8:50 AM Invited

Cubic Boron Nitride / Diamond Heterostructures via Plasma-Enhanced Chemical Vapor Deposition: *Robert Nemanich*¹; Joseph Shammas¹; Yu Yang¹; Xingye Wang¹; Franz Koeck¹; Martha McCartney¹; David Smith¹; ¹Arizona State University

9:20 AM

Optimization of Gold Surface Density on SiO₂@Au Core-Shell Nanoparticles for Holographic Fabrication of Ordered Arrays for Plasmonic Metamaterials: *Kyle Iwamoto*¹; Prakash Nallathamby²; Eveline Rigo³; Gregory Timp³; Ryan Roeder²; ¹University of Notre Dame, Department of Chemical and Biomolecular Engineering; ²University of Notre Dame, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program; ³University of Notre Dame, Department of Electrical Engineering

9:40 AM Invited

Atomic Layer Semiconductors and Heterostructures for Engineering Tunable 2D Nanoelectromechanical Systems (NEMS): *Philip Feng*¹; ¹Case Western Reserve University

10:00 AM Break

10:20 AM

2-D Nanosheets and Rod-like WO₃ Obtained via Chemical Precipitation Method for Detecting Formaldehyde: *HuiMin Yu*¹; JianZhong Li¹; ¹Northeastern University

10:40 AM

Oxidation of Silicon for Application on Atomic Layer Deposition: *Su Min Hwang*¹; Xin Meng¹; Aotonio Lucero¹; Harrison Kim¹; Jiyoung Kim¹; ¹The University of Texas at Dallas

11:00 AM

Site Selection by Epitaxial Group IV Quantum Dots on Patterned Si (001) Surfaces - the Roles of Lengthscales and Surface Morphology: Jatin Amatya¹; Jerrold Floro¹; ¹University of Virginia

11:20 AM

Study on the Stress-induced Ferroelectric Polarization of Hafnium Zirconate Thin Films Realized at Low Temperature: *Jaidah Mohan*¹; Si Joon Kim¹; Dushyant Narayan²; Jaegil Lee³; Jiyoung Kim¹; Scott Summerfelt⁴; ¹University of Texas at Dallas; ²University of Colorado Boulder; ³Seoul National University; ⁴Texas Instruments Inc.

WEDNESDAY AM

9th International Symposium on High Temperature Metallurgical Processing – Extraction and Recovery of Metals

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Wednesday AMRoom: 227BMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland

8:30 AM Introductory Comments

8:35 AM

Pyrometallurgical Processing of Secondary Lead Material: An Industry Overlook: Camille Fleuriault¹; ¹Gopher Resource

8:55 AM

Recovery of Aluminium and its Compounds with Hydro and Pyrometalurgical Methods from Non-metallic Residue: Osman Celik¹; Onuralp Yucel¹; ¹Istanbul Technical University

9:15 AM

Purification of Molten Zinc Chloride-Alkali Chloride by Cementation Reaction: Gen Kamimura¹; Hiroyuki Matsuura¹; ¹The University of Tokyo

9:35 AM

Sulfation Roasting of Nickel Sulfide Concentrate in the Presence of Sodium Sulfate: *Guangshi Li*¹; Hongwei Cheng¹; Xionggang Lu¹; Qian Xu¹; ¹Shanghai University

9:55 AM Break

10:15 AM

Thermodynamic Analysis of Smelting of Spent Catalysts for Recovery of Platinum Group Metals: *Zhiwei Peng*¹; Zhizhong Li¹; Xiaolong Lin¹; Yutian Ma²; Yan Zhang²; Yuanbo Zhang¹; Guanghui Li¹; Tao Jiang¹; ¹Central South University; ²Jinchuan Group Co. Ltd.

10:35 AM

Preparation of Titanium Foams through Direct Electrolysis of the Sintered CaO-TiO2 in Molten Salt CaCl2: *Zhengfeng Qu*¹; Meilong Hu¹; Leizhang Gao¹; Pingsheng Lai¹; Chenguang Bai¹; ¹Chongqing University

10:55 AM

Experimental Study on Oxidative Desulfurization and Selective Reduction of Molten Copper Slag: *Wang Yun*¹; Zhu Rong¹; Chen Qizhou¹; ¹University Of Science and Technology Beijing

11:15 AM

Recycling SiO2 and Al2O3 from the Laterite Nickel Slag in Molten Sodium Hydroxides: *Donggen Fang*¹; Jilai Xue¹; ¹University of Science and Technology Beijing

11:35 AM

Removal of Sulfur from Copper Dross Generated by Refining Lead: *Baoqiang Xu*¹; Xutao Guo¹; Yong Deng¹; Hen Xiong¹; Bin Yang¹; Dachun Liu¹; Wenlong Jiang¹; ¹National Engineering Laboratory for Vacuum Metallurgy, Key Laboratory of Nonferrous Metals Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling – Mechanical Behavior and Technique Development

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California, Berkeley; Julie Tucker, Oregon State University; Elaine West, Knolls Atomic Power Laboratory

Wednesday AM	Room: 102A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Peter Hosemann, University of California Berkeley; Elaine West, Naval Nuclear Laboratory

8:30 AM

Linking RIS and Grain Decohesion Using In Situ TEM 4-point Beams: *Kayla Yano*¹; Janelle Wharry¹; ¹Purdue University

8:55 AM

Localized Helium Implantation Utilizing a Helium Ion Beam Microscope to Evaluate Swelling and Mechanical Property Changes: *Peter Hosemann*¹; David Frazer¹; Yun Yang¹; Mehdi Balooch¹; Manfred Ambad¹; ¹University of California, Berkeley

9:20 AM

Characterizing Displacement Cascade Damage via Virtual Diffraction Techniques: James Stewart¹; Remi Dingreville¹; ¹Sandia National Laboratories

9:45 AM

Quantifying Radiation Damage in Materials Using Stored Energy Fingerprints: *Charles Hirst*¹; Rachel Connick¹; Logan Abel¹; Sean Lowder¹; Ki-Jana Carter¹; Kangpyo So¹; Penghui Cao¹; Michael Short¹; ¹Massachusetts Institute of Technology

10:10 AM Break

10:30 AM Invited

Characterizing the Defect Structure and Defect Density in Neutron and Proton Irradiated Zr Alloys by X-ray Line Profile Analysis: *Tamás Ungár*¹; Gábor Ribárik²; Matthew Tpping¹; Rebecca Johns¹; Rory Hulse¹; Hattie Xu¹; Levente Balogh³; Philipp Frankel¹; Christopher Race¹; Michael Preuss¹; ¹University of Manchester; ²Eötvös University Budapest; ³Chalk River Nuclear Laboratories

11:00 AM

Carbon Contamination in Ferritic/Martensitic Steels during Ion Irradiation: Characterization and Mitigation: *Jing Wang*¹; Mychailo Toloczko¹; Karen Kruska¹; Daniel Schreiber¹; Yuanyuan Zhu¹; Danny Edwards¹; Zihua Zhu¹; ¹Pacific Northwest National Laboratory

11:25 AM

Towards In-situ Thermo-mechanical Property Monitoring during Ion Irradiation: *Cody Dennett*¹; Kangpyo So¹; Khalid Hattar²; Michael Short¹; ¹Massachusetts Institute of Technology; ²Sandia National Laboratories

Accident Tolerant Fuels for Light Water Reactor – Ceramic Cladding & Coatings

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Lingfeng He, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory; Kumar Sridharan, University of Wisconsin; Peng Xu, Westinghouse Electric Company

Wednesday AMRoom: 104AMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Kumar Sridharan, University of Wisconsin; Yutai Katoh, Oak Ridge National Laboratory

8:30 AM Invited

Transient Swelling of SiC/SiC Composites and its Implications to Fuels and Core Designs: *Yutai Katoh*¹; Takaaki Koyanagi¹; Gyanender Singh¹; Ken Yueh²; ¹Oak Ridge National Laboratory; ²Electric Power Research Institute

9:00 AM

Experimental Characterization of Micro-scale Failure Mechanisms and Governing Properties in SiC/SiC Composites: Joseph Kabel¹; Peter Hosemann¹; Takaaki Koyanagi²; Yutai Katoh²; Christian Deck³; ¹University of California, Berkeley; ²Oak Ridge National Laboratory; ³General Atomics

9:20 AM

Radiation Effects on SiC/SiC Composites for Advanced Accident Tolerant Fuel Cladding Tubes: Shradha Agarwal¹; William Weber¹; ¹UTK and ORNL

9:40 AM

WEDNESDAY AM

Simulation of SiC-SiC Composite Micro-pillar Compression as an Investigation of Fiber/Matrix Interface Properties: *Ian Love*¹; Brian Bay¹; Peter Hosemann²; Joey Kabel²; Christian Deck³; Julie Tucker¹; ¹Oregon State University; ²University of California, Berkeley; ³General Atomics

10:00 AM Break

10:20 AM Invited

Development of Cold Spray Coatings for Accident Tolerant Fuel (ATF) Cladding: *Kumar Sridharan*¹; Benjamine Maier¹; Greg Johnson¹; Hwasung Yeom¹; Tyler Dabney¹; Mia Lenling¹; Payton Scallon¹; Samantha Joers¹; Kyle Blomstrand¹; Javier Romero²; Hemant Shah²; Jorie Walters²; Peng Xu²; ¹University of Wisconsin-Madison; ²Westinghouse Electric Company

10:50 AM Invited

Multilayer Metal-ceramic Coatings for Accident Tolerant Fuel: Francisco Garcia Ferré¹; Javier Romero²; Jonna Partezana²; Peng Xu²; *Fabio Di Fonzo*¹; ¹Istituto Italiano di Tecnologia; ²Westinghouse Electric Company LLC

11:20 AM

ZrSiO4 as an Efficient Barrier Coating for Nuclear Applications: Sumit Bhattacharya¹; Michael Pellin¹; *Abdellatif Yacout*¹; ¹Argonne National Laboratory

11:40 AM

Enhanced Accident Tolerant Zirconium-silicide Coated LWR Fuel Cladding: *Hwasung Yeom*¹; Cody Lockhart¹; Robert Mariani²; Xianming Bai³; Peng Xu⁴; Kumar Sridharan¹; ¹University of Wisconsin-Madison; ²Idaho National Laboratory; ³Virginia Polytechnic Institute and State University; ⁴Westinghouse Electric Company

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – Post-build Thermal Processing: Effects on Microstructure and Properties

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Wednesday AM	Room: 231AB
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Eric Lass, National Institute of Standards and Technology

8:30 AM Invited

Building Parts by Welding Millions of Little Bits of Metal Together: What Could Possibly Go Wrong?: Lyle Levine¹; ¹National Institute of Standards and Technology

9:00 AM

Microstructural Characterization of Ti64 Following Hot Isostatic Pressing: *Brad Baker*¹; Joel Schubbe¹; ¹US Naval Academy

9:20 AM

Microstructure and Mechanical Properties of Selectively Laser Melted IN718 Alloy before and after Heat Treatment: Le Zhou¹; Abhishek Mehta¹; Yongho Sohn¹; ¹University of Central Florida

9:40 AM

Spatial Heterogeneity of Microstructure and Mechanical Properties in Inconel 718 Fabricated by Selective Laser Melting: *Sharniece Holland*¹; Lin Li¹; ¹The University of Alabama

10:00 AM Break

10:20 AM

Microstructural Evolution during Post-built Thermal Processing of Additively Manufactured Inconel 625: Eric Lass¹; Mark Stoudt¹; Daniel Ng¹; Maureen Williams¹; ¹National Institute of Standards and Technology

10:40 AM

Reversion in Ternary Alloys using Phase-field and CALPHAD Methods: *Trevor Keller*¹; Greta Lindwall¹; Ursula Kattner¹; Jonathan Guyer¹; ¹National Institute of Standards and Technology

11:00 AM

The Effects of Pore Morphology in 316LAM Builds: *Richard Fonda*¹; David Rowenhorst¹; Scott Olig¹; Jerry Feng¹; ¹US Naval Research Laboratory

11:20 AM

Fabrication of Large Additively Manufactured Stainless Steel Structures Using Directed Energy Deposition: *Zakariya Khayat*¹; Todd Palmer¹; ¹Applied Research Lab Penn State University

11:40 AM

The Effects of Hot Isostatic Pressing on the Microstructure and Tensile Properties of Additively Manufactured 2205 Duplex Stainless Steel: *Andrew Iams*¹; Todd Palmer¹; ¹Penn State University

12:00 PM

Microstructural Development in Heat-treated 17-4 PH Stainless Steel Parts Prepared by Selective Laser Melting: Yu Sun¹; Mark Aindow¹; Rainer Hebert¹; ¹University of Connecticut

Additive Manufacturing of Metals: Fatigue and Fracture – Session IV

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International; John Lewandowski, Case Western Reserve University

Wednesday AM	Room: 232A
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Mohsen Seifi, Case Western Reserve University

8:30 AM Invited

3D Printing of Metallic Glasses by Thermoplastic Forming: Jan Schroers¹; mike Gibson²; Nicholas Mykulowycz²; Richard Fontana²; Jonah Myerberg²; Ric Fulop²; Yet-Ming Chiang³; Chris Schuh³; John Hart³; ¹Yale University; ²Desktop Metal; ³Massachusetts Institute of Technology

9:00 AM

Influence of Build-angle on Charpy Impact Fracture of Laser Powder Bed 3D-printed Stainless Steel and Aluminum Cast Alloy: *Brahmananda Pramanik*¹; Kristofer Kuelper¹; MD. Salahuddin¹; Bruce Madigan¹; ¹Montana Tech of the University of Montana

9:20 AM

Mechanical Property and Microstructural Comparison of Additive Manufactured Titanium (Ti64) Lattices: *Michael Brand*¹; Robin Pacheco¹; Cameron Knapp¹; John Carpenter¹; ¹Los Alamos National Laboratory

9:40 AM

Tensile and Fatigue Performance Ti-6Al-4V ELI and Non-ELI Material Manufactured by Selective Laser Melting: *Oscar Quintana*¹; Weidong Tong¹; ¹DePuy Synthes Joint Reconstruction

10:00 AM Break

10:20 AM Invited

Fatigue Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting: *Ma Qian*¹; Yingying Sun¹; Hui Ping Tang²; Stefan Gulizia³; ¹RMIT University (Royal Melbourne Institute of Technology); ²State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xian, China; ³Commonwealth Scientific and Industrial Research Organisation (CSIRO)

10:50 AM

Evaluation of The Mechanical Properties of 15Cr-5Ni Stainless Steel Produced by Direct Metal Laser Sintering: *Davoud Mashhadi Jafarlou*¹; Victor Champagne²; Ian R. Grosse¹; ¹Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst; ²US Army Research Laboratory, Aberdeen, USA

Additive Manufacturing: Building the Pathway towards Process and Material Qualification – Metals in Additive Manufacturing I

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Additive Manufacturing Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas - Austin; Christian Leinenbach, Empa-Swiss Federal Laboratories for Materials Science and Technology; James Sears, Carpenter Technology Coporporation; Christopher Tuck, University of Nottingham

Wednesday AMRoom: 230March 14, 2018Location: Phoenix Convention Center

Session Chair: To Be Announced

8:30 AM Invited

Assessment of the Material Performance upon Additive Manufacturing – Are Post-treatments Always Required?: *Thomas Niendorf*¹; Stefan Leuders²; Liang Wu²; Johannes Günther¹; Florian Brenne¹; ¹University of Kassel; ²Voestalpine Additive Manufacturing Center GmbH

9:00 AM

Characterization of Strut, Node, and Cell Geometry and Mechanical Properties in 3D EBM Printed Ti64 Lattices: Connie Dong¹; Rachel Collino¹; Matthew Begley¹; ¹University of California, Santa Barbara

9:20 AM

Mechanical Properties of AM Metals: *Jay Carroll*¹; Lisa Deibler¹; Andrea Exil¹; Brad Boyce¹; Bradley Salzbrenner¹; ¹Sandia National Laboratories

9:40 AM Invited

Parameter Development of Wire-based Laser Metal Deposition and Characterization of Ti6Al2Sn4Zr2Mo: *Irmela Burkhardt*¹; Stefan Riekehr¹; Volker Ventzke¹; Nikolai Kashaev¹; Josephin Enz¹; ¹Helmholtz-Zentrum Geesthacht Center for Materials and Coastal Research

10:10 AM Break

10:30 AM

A Comparison of the Microstructures, Tensile Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Alloys Fabricated by Three Powder-Based Additive Manufacturing Technologies: *Robert Warren*¹; Yuwei Zhai¹; Haize Galarraga¹; Diana Lados¹; Ryan Dehoff²; Michael Kirka²; Eric Brown³; Gregory Vigilante³; ¹Worcester Polytechnic Institute; ²Oakridge National Laboratory; ³Benét Laboratories

10:50 AM

High-Temperature Tensile, Creep and Microstructural Characterization of Additively Manufactured 15-5 PH Stainless Steel: *Dallas Roberts*¹; Martin Taylor¹; Indrajit Charit¹; Jing Zhang²; ¹University of Idaho; ²Indiana University - Purdue University Indianapolis (IUPUI)

11:10 AM

Effects of Laser Beam Intensity Profile on the Evolution of Microstructure and Defects in 316L SS Components Fabricated via Laser Engineered Net Shaping: *Baolong Zheng*¹; Nancy Yang²; Josh Yee²; James Haley¹; Thale Smith¹; Yizhang Zhou¹; Enrique Lavernia¹; Julie Schoenung¹; ¹University of California; ²Sandia National Laboratories

11:30 AM

Revealing Martensite Decomposition in Ti-6Al-4V Alloys Additively Manufactured with Electron Beam Melting by X-ray and Neutron Diffraction: *Kenta Yamanaka*¹; Manami Mori²; Yusuke Onuki³; Shigeo Sato³; Akihiko Chiba¹; ¹Tohoku University; ²National Institute of Technology, Sendai College; ³Ibaraki University

11:50 AM

Net Shape 3D Printed NdFeB Permanent Magnet: Jacim Jacimovic¹; Reinhard Simon¹; Felix Greuter¹; Lorenz Herrmann¹; *Francisco Garcia Ferre*¹; ¹ABB Corporate Research

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Constitutive Behavior I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Wednesday AMRoom: 122BMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: M. Arul Kumar, Los Alamos National Laboratory; Miguel Monclus, IMDEA Materials

8:30 AM Invited

Understanding the Role of Interfaces on Fully Lamellar TiAl Alloys through Micromechanical Testing: Jon Molina-Aldareguia¹; Alberto Palomares¹; Teresa Pérez-Prado¹; *Miguel Monclus*¹; ¹IMDEA Materials Institute

9:00 AM

Microstructural Evolution of Ti-7Al Under Cyclic Loading: *Rachel Lim*¹; Yufeng Shen¹; He Liu¹; Robert Suter¹; Anthony Rollett¹; ¹Carnegie Mellon University

9:20 AM

Role of Grain Boundary Sliding in Deformation of Polycrystalline Materials: *Ajey Venkataraman*¹; Marissa Linne²; Samantha Daly³; Michael Sangid¹; ¹Purdue University; ²University of Michigan; ³University of California, Santa Barbara

9:40 AM

Time Dependent Plasticity and Cold Dwell Fatigue in Ti-alloys: David Collins¹; Edmund Tarleton¹; Angus Wilkinson¹; ¹University of Oxford

10:00 AM Break

10:20 AM

Effect of Heterogeneous Microstructure on Deformation Twinning in HCP Titanium: *M. Arul Kumar*¹; M Wronski²; Rodney McCabe¹; K Wierzbanowski²; Laurent Capolungo¹; Carlos Tome¹; ¹Los Alamos National Laboratory; ²AGH University of Science and Technology

10:40 AM

In Situ TEM Study of Dislocation – {10-12} Twin Boundary Interaction in Mg: *Fulin Wang*¹; Rodney McCabe²; Christopher Barrett³; Haitham El Kadiri³; Sean Agnew¹; ¹Department of Materials Science and Engineering, University of Virginia; ²Materials Science and Technology Division, Los Alamos National Laboratory; ³Department of Mechanical Engineering, Mississippi State University

11:00 AM

Twinning-detwinning Behavior during the Low-cycle Fatigue Testing of Pure Magnesium Using High Energy X-Ray Diffraction: Aeriel Murphy¹; Darren Pagan²; Armand Beaudoin³; Matthew Miller²; John Allison¹; ¹University of Michigan; ²Cornell University; ³University of Illinois Urbana-Champaign

11:20 AM

In-situ Neutron Diffraction of Pure Mg during ECAE Processing: *Nicholas Krywopusk*¹; Laszlo Kecskes²; Matthew Frost³; Alexandru Stoica³; Todd Hufnagel¹; Ke An³; Timothy Weihs¹; ¹Johns Hopkins University; ²Army Research Laboratory, Aberdeen Proving Ground; ³Oak Ridge Laboratory

11:40 AM

TECHNICAL PROGRAM

Micro-compression Testing of Mg-Nb Multilayered Nano-composites for Ultra-high Strength, Formability and Ductility: *Manish Jain*¹; Nenad Velisavljevic²; Marko Knezevic³; Irene Beyerlein²; Nathan Mara²; Siddhartha Pathak¹; ¹University of Nevada Reno; ²Los Alamos National Laboratory; ³University of New Hampshire, NH

Advanced High-strength Steels – Hydrogen Embrittlement, Fracture and Damage

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Wednesday AM	Room: 121C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Damien Fabregue, MATEIS, INSA Lyon

8:30 AM Invited

Hydrogen Trapping and Desorption due to Nanometer-sized Copper Particles in Quenched-and-tempered Martensite Steel: *Hung-Wei Yen*¹; Yu-Chen Lin¹; Hsin-Chih Lin¹; ¹National Taiwan University

8:55 AM

Ab Initio Insights into Hydrogen Trapping by Precipitates in Highstrength Steels: *Tilmann Hickel*¹; Eunan McEniry¹; Poulumi Dey¹; Joerg Neugebauer¹; ¹Max-Planck-Institut fuer Eisenforschung GmbH

9:15 AM

Unravelling Hydrogen Enhanced Failure of Pipe-line Steels Using Advanced Microstructural Characterisation Tools: *Jim Hickey*¹; T Ben Britton¹; Mary Ryan¹; ¹Imperial College London

9:35 AM

Hydrogen Embrittlement in a Model Advanced High Strength Steels: Peng Gong¹; Arjan Rijkenberg²; *William Rainforth*¹; ¹University of Sheffield; ²Tata Steel

9:55 AM

Studying Hydrogen Embrittlement in Nano-twinned Polycrystalline Fe-12.5Mn-1.2C Austenitic Steel: *Mahmoud Khedr*¹; Li Wei¹; Jin XueJun¹; ¹Shanghai Jiao Tong University

10:15 AM Break

10:30 AM Invited

Prediction of Strength and Fracture Mode of Heterogeneous Spot Welds Made of AHSS by Finite Elements Simulation: Damien Fabregue¹; Thibaut Huin¹; Sylvain Dancette¹; Thomas Dupuy²; ¹MATEIS, INSA Lyon; ²ArcelorMittal

10:55 AM

Liquid Metal Embrittlement in TRIP Steels: *Nathaniel Briant*¹; Luke Brewer¹; Mark Barkey¹; ¹University of Alabama

11:15 AM

Microscale Evaluation of Hydrogen Susceptibility of Martensitic Sheet Steels: *Yiran Lu*¹; Shrikant Bhat²; Sharvan Kumar¹; ¹Brown University; ²ArcelorMittal, Global R&D

11:35 AM

Elucidating the Effect of Liquid Metal Embrittlement on Fatigue Behavior in Resistance Spot Welding of Advanced High Strength Steel: *JB Jordon*¹; Luke Brewer¹; Conner Cleek¹; Mitchell Roze¹; Mark Barkey¹; ¹The University of Alabama

11:55 AM

Non-metallic Inclusion and their Effect on Fatigue Strength for CAShardened Carbon Steel in Gears: *Izudin Dugic*¹; Robin Berndt¹; Simon Josefsson¹; Martin Hedstrom²; ¹Linnaeus University; ²China Euro Vehicle Technology AB

12:15 PM

Void Formation Mechanisms during Tensile Testing of a Cold-rolled Dual Phase Steel: Hamid Ashrafi¹; M. Shamanian¹; R. Emadi¹; Seyed Alireza Etesami²; ¹Isfahan University of Technology; ²University of Memphis

Advanced Magnetic Materials for Energy and Power **Conversion Applications – Additive Manufacturing** and Advanced Processing of Permanent Magnetic Materials

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Wednesday AM Room: 229A March 14, 2018 Location: Phoenix Convention Center

Session Chair: Francis Johnson, GE Global Research

8:30 AM Introductory Comments

8:40 AM Invited

Fabrication of Nanocomposite Magnets with High Energy Density: Challenges and Approaches: J.Ping Liu1; 1University of Texas-Arlington

9:10 AM Invited

Additive Manufacturing of Highly Reactive Lanthanides: Amy Elliott¹; Michael Benedict²; Ayyoub Momen¹; ¹Oak Ridge National Laboratory; ²GE Appliances

9:40 AM Invited

Additive Manufacturing of High Performance NdFeB Bonded Magnets: M. Parans Paranthaman¹; ¹Oak Ridge National Laboratory

10:10 AM Break

10:30 AM Invited

Single-crystalline Nd-Fe-B Nanoparticles via Low-energy Ball Milling: Jeff Shield¹; Meiyu Wang¹; Li Zhang¹; Ye Lin¹; ¹University of Nebraska

11:00 AM Invited

Energy Dense Processing of Magnetic Materials: Raju Ramanujan¹; X Tan¹; H Parmar¹; Y Zhong¹; V Chaudhary¹; ¹Nanyang Technological University

11:30 AM Invited

Additive Manufacturing for Superior Alnico Magnets: Emma White1; Aaron Kassen¹; Emrah Simsek¹; Wei Tang¹; Ryan Ott¹; Michael Kirka²; Ryan Dehoff2; Iver Anderson1; 1Ames Laboratory of US DOE; 2Oak Ridge National Laboratory

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder -**Emerging Interconnects**

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Wednesday AM	Room: 226C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Won-sik Hong, Korea Electronics Technology Institute; Eric Cotts, Binghamton University

8:30 AM

Low Temperature Bonding Material with Submicron Copper Particles: Kei Anai¹; Shinichi Yamauchi¹; Takahiko Sakaue¹; Yoichi Kamikoriyama¹; Katsuaki Suganuma²; ¹Mitsui Mining & Smelting Co., Ltd.; ²Osaka University

8:50 AM

Copper-to-copper Direct Bonding on Highly (111) Oriented Nano-twinned Copper in N2 Ambient: Jing-Ye Juang¹; Chia-Ling Lu¹; Kuan-Ju Chen¹; Chih Chen¹; King-Ning Tu²; ¹National Chiao Tung University; ²University of California at Los Angeles

9:10 AM

Low-temperature and Pressureless Cu-to-Cu Bonding by Electroless Plating: H. T. Hung1; S. Yang1; C. R. Kao1; 1National Taiwan University

9.30 AM

Electroplated (111)-oriented Au Films in Au-Au Direct Bonding: John Wu¹; Chih Chen¹; ¹National Chiao Tung University

9:50 AM

Effect of Orientation on the Bondability of the Sputtered Nano-twinned Copper: Leh-Ping Chang¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

10:10 AM Break

10:30 AM

Thermal Stable Ag-Ag Joints Bonded by Ultrasound-assisted Stress Migration Bonding: Hao Zhang1; Norio Asatani1; Yukiharu Kimoto1; Aiji Suetake¹; Shijo Nagao¹; Tohru Sugahara¹; Katsuaki Suganuma¹; ¹The Institute of Scientific and Industrial Research (ISIR) Osaka University

10:50 AM

Cu-to-Cu Direct Bonding by <111>-oriented Nanotwinned Copper Films with Chemical-mechanical Polishing: Shih-Yang Chang¹; Chih Chen¹; ¹National Chiao Tung University

11:10 AM

Nanoscale Soldering of Self-assembled Multi-segment Metallic Nanowires: Jirui Wang¹; Fan Gao¹; Chefu Su¹; Junwei Su¹; Hongwei Sun¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell

11:30 AM

Electromigration Behavior of Printing Ag Nanoparticles Interconnects: Wan-Hsuan Lin1; Fan-Yi Ouyang1; 1National Tsing Hua University

Advanced Real Time Optical Imaging – Iron and Steelmaking I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: **Biomaterials Committee**

Program Organizers: Jinichiro Nakano, US Department of Energy National Energy Technology Laboratory; David Alman, National Energy Technology Laboratory; II Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology

Wednesday AM March 14, 2018

Room: 123 Location: Phoenix Convention Center

Session Chairs: Jinichiro Nakano, USDOE National Energy Technology Laboratory; Hiroyuki Shibata, Tohoku University

8:30 AM

Introduction to Advanced Real Time Optical Imaging: Jinichiro Nakano¹; ¹US Department of Energy National Energy Technology Laboratory

8:50 AM Invited

Mass Transfer in High-temperature Laser Confocal Microscopy: Stephano Piva¹; Deepoo Kumar¹; Dai Tang¹; P. Chris Pistorius¹; ¹Carnegie Mellon University

9.20 AM Invited

Direct Observation of Iron Solidification under Molten Slag: Takeshi Yoshikawa1; 1The University of Tokyo

9:50 AM

Using High-temperature Confocal Scanning Laser Microscopy to Study Transient Phenomena: Swelling and Spontaneous Emulsification: Stephen Spooner¹; Ian Moore¹; Sridhar Seetharaman¹; Zushu Li¹; ¹University of Warwick

10:10 AM Break

10:30 AM Invited

In-situ Studies of Selective Oxidation in Advanced High Strength Steels: Mary Story¹; Bryan Webler¹; ¹Carnegie Mellon University

11:00 AM

Agglomeration Behavior of Non-metallic Inclusions in Liquid High Carbon Steel: Yasuhiro Tanaka1; Farshid Pahlevani1; Veena Sahajwalla1; ¹University of New South Wales

11:20 AM

Agglomeration of Non-metallic Inclusions at the Liquid Steel/Ar Gas Interface: A Summary of In-situ Observation Experiments and a Theoretical Study: Wangzhong Mu1; Neslihan Dogan1; Kenneth Coley1; ¹McMaster University

Advances in Additive Manufacturing of Titanium and Titanium Based Alloys – ICME for Additive Manufacturing

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Peter Collins, Iowa State University; Leon Prentice, CSIRO; Andrew Baker, The Boeing Company; Craig Brice, Lockheed Martin Space Systems Company

Wednesday AM	Room: 231C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Paul Mason, Thermo-Calc Software Inc.; Aaron Stebner, Colorado School of Mines; Richard LeSar, Iowa State Universitv

8:30 AM Invited

ICME Design, Modeling, and Accelerated Qualification of Additively Manufactured Ti-based Alloys: Ricardo Komai¹; Jeffrey Doak¹; David Snyder1; Greg Olson1; 1QuesTek Innovations LLC

9:00 AM Invited

Scientifically Based Probability Modeling for Additive Manufacturing of Ti-6Al-4V: D Gary Harlow¹; Peter Collins²; ¹Lehigh University; ²Iowa State University

9:30 AM Invited

Platforms for High throughput Structure-property Characterizations to Support Machine Learning Approaches to Additive Manufacturing: Aaron Stebner¹; ¹Colorado School of Mines

10:00 AM Break

10:15 AM Invited

Thermodynamic Database for Multi-component Ti-Based Alloys and TiAl-based Materials: Yang Yang¹; Qing Chen¹; Paul Mason²; ¹Thermo-Calc Software AB; ²Thermo-Calc Software Inc.

10:45 AM

A Fully Integrated Model for the Prediction of Location-specific Yield Strength in Electron Beam Additively Manufactured Ti-6Al-4V: Thomas Ales¹; Peter Collins¹; ¹Iowa State University

11:05 AM

Optimization of Additive Manufacturing Process for Ti-6Al-4V via Integrated Computational Materials Engineering and Sequential Minimum Energy Design Approach: Kai Wing Kelvin Leung¹; Azadeh Keshtgar¹; Luca Airoldi¹; Nicole Apetre¹; Nagaraja Iyyer¹; Jonathan Pegues²; Nima Shamsaei2; 1Technical Data Analysis Inc.; 2Auburn University

Algorithm Development in Materials Science and Engineering – Atomistic Algorithms for Study and **Design of Materials**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Mark Tschopp, Army Research Laboratory; Jonathan Zimmerman, Sandia National Laboratories; Ebrahim Asadi, University of Memphis; Mark Horstemeyer, Mississippi State University

Wednesday AM Room: 130 March 14, 2018 Location: Phoenix Convention Center

Session Chairs: Mark Tschopp, Army Research Laboratory; Abigail Hunter, Los Alamos National Laboratory

8:30 AM Invited

Three-dimensional Structure and Motion of Defect Loops on the {10-12} Twin Boundary in Magnesium: Douglas Spearot¹; Khanh Dang¹; Laurent Capolungo2; Carlos Tome2; 1University of Florida; 2Los Alamos National Laboratory

9:00 AM

A New Method of Quantifying Solid-solution Hardening at Various Solute Concentrations Using Molecular Dynamics: Edwin Antillon¹; Christopher Woodward2; Satish Rao1; Brahim Akdim1; Triplicane Parthasarathy1; 1AFRL/ UES; ²AFRL

9:20 AM

Plastic Material Spin in Atomistic Simulations: Doyl Dickel¹; Mark Horstemeyer1; 1Mississippi State University

9:40 AM

Integrating Molecular Dynamics and Phase-Field Modeling to Study Oxidation of Iron: Fan Xie¹; Alireza Toghraee¹; Mohsen Asle Zaeem¹; ¹Missouri University of Science and Technology

10:00 AM Break

10:20 AM

A Computational Framework for Predicting Failure Behavior of 2D Tin+1Cn Materials: Ning Zhang1; Mohsen Asle Zaeem1; 1Missouri University of Science and Technology

10:40 AM

Plasticity Analysis in Molecular Dynamics via Simple Shear Field Decomposition: Christopher Barrett¹; ¹Mississippi State University

11:00 AM

Algorithms to Simulate the Structure and Mobility of Nanoscale Dislocation Shear Loops via Atomistic Simulations: Khanh Dang¹; Laurent Capolungo2; Douglas Spearot1; 1University of Florida; 2Los Alamos National Laboratory

11:20 AM

Atomistic Cross-scale Simulations of Crystal Plasticity: Alexander Stukowski¹; Luis Zepeda-Ruiz²; Tomas Oppelstrup²; Vasily Bulatov²; ¹Darmstadt University of Technology; ²Lawrence Livermore National Laboratory

Alloy Development and Powder Manufacture for Additive Manufacturing – ICME General Approaches

Sponsored by: TMS Materials Processing and Manufacturing Division Program Organizers: Paul Prichard, Kennametal; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; James Foley, Los Alamos National Laboratory

Wednesday AM	Room: 232B
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Peter Collins, Iowa State University

8:30 AM Invited

Computational Design of High-performance Aluminum Alloys for Additive Manufacturing: David Snyder1; Gregory Olson1; 1QuesTek Innovations LLC

9:00 AM

Development and Application of Techniques for Rapid Alloy Screening via Novel Bicombinatorial Approaches: Brian Martin1; Peter Collins1; 1ISU

9:20 AM

Microstructural Optimization and Design of Metallic Materials for AM: Fuyao Yan¹; Wei Xiong²; Gregory Olson¹; ¹Northwestern University; ²University of Pittsburgh

9:40 AM

Rapid Solidification of Cu-Sn(-Ti) Based Alloys: Towards Alloy Design for Selective Laser Melting: Xiaoshuang Li1; Adriaan Spierings2; Konrad Wegener3; Christian Leinenbach1; 1Empa-Swiss Federal Laboratories for Materials Science and Technology; ²Inspire AG, Innovation Center for Additive Manufacturing Switzerland; ³ETH Zurich, Institute for Machine Tools and Manufacturing

10:00 AM Break

10:20 AM Invited

Relationship between Alloy Composition and Solidification Conditions: Mathieu Brochu1; 1McGill University

10:50 AM Invited

Alloy Design Principles for Additive Manufacturing - Lessons from Learned from Welding Metallurgy: Sudarsanam Babu¹; Alex Plotkowski¹; ¹The University of Tennessee, Knoxville

11:20 AM

Microstructural and Orientation Changes by Modifications on Composition and Processing Parameters In Additive Manufactured Materials: Michael Mendoza1; Iman Ghamarian1; Matthew Rolchigo1; Richard LeSar1; Peter Collins1; 1Iowa State University

Alloys and Compounds for Thermoelectric and Solar Cell Applications VI – Session V

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Ensicaen University of Caen; Soon-Jik Hong, Kongju National University and Institute for Rare Metals; Philippe Jund, Université Montpellier 2; Lan Li, Boise State University; Takao Mori, National Institute for Materials Science (NIMS) ; Hsin-jay Wu, National Sun Yat-sen University; Tiejun Zhu, Zhejiang University

Wednesday AM	Room: 226B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Lan Li, Boise State University; Sinn-wen Chen, National Tsing Hua University

8:30 AM Invited

Thermoelectric Properties of SnSe: Understanding and Tuning: Yongsheng Zhang1; 1 Institute of Solid State Physics, Chinese Academy of Sciences

8:50 AM Invited

Tuning Electrical and Thermal Properties in Atomic Layer Materials: Lan Li¹; Matthew Lawson¹; Ying Rui¹; ¹Boise State University

9:10 AM

Composite of ZnO/Au Hybrid Structure on Silk Textile for Flexible Photocatalyst Application: Wan-Ting Chiu1; Yuma Tahara2; Chun-Yi Chen1; Tso-Fu Mark Chang¹; Tomoko Hashimoto²; Hiromichi Kurosu²; Masato Sone¹; ¹Tokyo Institute of Technology; ²Nara Women's University

9:30 AM

Thin Film Heusler Systems: Boosting ZT: Ernst Bauer¹; Bernhard Hinterleitner¹; Igor Knapp¹; Michael Poneder¹; Mathieu Taupin¹; Christoph Eisenmenger-Sittner¹; Christian Nöbauer¹; ¹Vienna University of Technology

9:50 AM

Prediction of Thermoelectric Transport Properties in Layered Complex Nitrides: Isao Ohkubo¹; Takao Mori¹; ¹National Institute for Materials Science (NIMS)

10:10 AM Break

10:30 AM Invited

Molecular-dynamics Simulations of Liquid-like Copper Diffusion in Copper Chalcogenides: Keenan Zhuo1; Jing Wang1; Jianping Gao1; Uzi Landman1; Mei-Yin Chou2; 1Georgia Institute of Technology; 2Academia Sinica

10:50 AM Invited

Optimization of Thermoelectric Performance for SnTe Alloys and Simulation of the TEG Module with Single SnTe Legs: Hongchao Wang¹; Teng Wang¹; Xue Wang¹; Wenbin Su¹; Woochul Kim²; Chunlei Wang¹; ¹Shandong University; ²Yonsei University

11:10 AM Invited

Inorganic Halide Double Perovskites for Thin Film Solar Cell Application: Feng Yan1; 1The University of Alabama

11:30 AM Invited

MIP Infrastructure and High-throughput Study on Diamond-like Thermoelectric Chalcogenides: Jiong Yang¹; ¹Shanghai University

11:50 AM

Room Temperature Orientation-dependent Thermal Conductivity of Thermoelectric SnSe: Yi Li¹; Bin He¹; Joseph Heremans¹; Ji-Cheng Zhao¹; ¹The Ohio State University

12:10 PM Concluding Comments

Alumina & Bauxite – Valorisation of Bayer Process **Residues: Red Mud Treatment and Scandium** Extraction

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Linus Perander, Outotec

Wednesday AM	Room: 221A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Peter-Hans ter Weer, TWS Services and Advice; Antoine Allanore, Massachusetts Institute of Technology

8:30 AM Introductory Comments

8:35 AM

Expertimental Investigation on Reduction of Cast Iron from Bayer Red Mud and Laterite Nickel: Jianmin Zeng¹; Jiacheng Wang¹; Aoping He¹; ¹Guangxi University

9:00 AM

Analyzing the Bauxite Residue Amendment through the Addition of Ca and Mg Hydroxides Followed by Carbonation: Luis Venancio¹; Jose Antonio Silva Souza²; Emanuel Macedo²; Fernando Botelho²; Raíssa Fonseca¹; Lucas Martins1; Mateus Tavares1; Lucas Emanuel Soares1; 1Federal University of Maranhao; ²Federal University of Pará

9:25 AM

Comprehensive Utilization of Red Mud: Current Research Status and a Possible Way Forward for Non-Hazardous Treatment: Zhang Ting'an¹; Yanxiu Wang¹; Guozhi Lyu¹; Yan Liu¹; Weiguang Zhang¹; Qiuyue Zhao¹; ¹Northeastern University

TECHNICAL PROGRAM

9:50 AM

Alumina, Iron and Titanium Extracting from Bauxite Residue with Low Lime Sinter Method: Di Zhang¹; Wei Zhang¹; Xin Hou¹; Daming Liu¹; Guanyi Liu¹; *Bo Wang*¹; ¹Hebei University of Science and Technology

10:15 AM Break

10:30 AM

Developing New Process for Selective Extraction of Rare Earth Elements from Bauxite Residue Based on Functionalized Ionic Liquids: *Panagiotis Davris*¹; Efthymios Balomenos²; Dimitrios Panias¹; Ioannis Paspaliaris¹; ¹National Technical University of Athens; ²Aluminum of Greece

10:55 AM

Effects of Reductive Roasting with Sodium Salts on Leaching Behavior of Non-ferrous Elements in Bauxite Ore Residue: *Bona Deng*¹; Tao Jiang¹; Guanghui Li¹; Qing Ye¹; Foquan Gu¹; Mingjun Rao¹; Zhiwei Peng¹; ¹Central South University

11:20 AM

Specific Features of Scandium Behavior during Sodium Bicarbonate Digestion of Red Mud: Andrey Panov¹; *Aleksandr Suss*¹; Aleksandr Kozyrev¹; Nataliya Kuznetsova¹; Sergey Gorbachev¹; ¹RUSAL Engineering & Technology Centre

Aluminum Alloys, Processing and Characterization – Microstructures and Mechanical Properties of Aluminum Alloys

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Wednesday AM	Room: 221B
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Dimitry Sediako, University of British Columbia

8:30 AM Invited

Effect of Addition of Mn and Cr on Precipitation Behavior of Dispersoids in Al-Mg-Si-Cu Alloy: *Hiromi Nagaumi*¹; Han Yi²; Tongguang Zhai³; Guo Shijie¹; ¹Soochow University; ²Suzhou Research Institute for Nonferrous Metals; ³University of Kentucky

9:00 AM

WEDNESDAY AM

Failure of 5000 and 6000 Series Aluminum Alloys in Modular Wastewater Treatment Aeration Tanks: John Pavelich¹; John Nychka¹; ¹University of Alberta

9:20 AM

Grain Refinement of Al–Si–Mg Cast Alloys by Al3Ti3B Master Alloy: Xixi Dong¹; Shouxun Ji¹; ¹Brunel Centre for Advanced Solidification Technology (BAST), Brunel University London

9:40 AM

Improving Bendability of Al-Mg-Si Alloy Sheet by Minor Alloying Element Addition: Sazol Das¹; Matthew Heyen¹; Rajeev Kamat¹; Richard Hamerton¹; ¹Novelis

10:00 AM Break

10:20 AM

Indentation Deformation of Cold Rolled AA 6061 Aluminum Alloy: *Diaoyu Zhou*¹; Wenwen Du²; Xiyu Wen²; Wei Liang¹; Fuqian Yang²; ¹Taiyuan University of Technology; ²University of Kentucky

10:40 AM

Effect of Tooling Size and Geometry on the Determination of Forming Limit Curves for an Aluminum Alloy: *Randall Bowers*¹; Xiyu Wen²; Shridas Ningileri¹; ¹Secat, Inc.; ²University of Kentucky

11:00 AM

Deep Drawing and Anodizing Quality Improvement in AA3003-O Alloy by Optimization of Homogenization, Rolling and Annealing: *Anirban Giri*¹; Saikat Adhikari¹; Manu Saxena²; Sachin Gupta²; Sudhir Jain²; ¹Aditya Birla Science and Technology Company Pvt. Ltd.; ²Hindalco Industries Ltd.

11:20 AM

Progress in Aluminum-cerium High-temperature Alloy Development: *Zachary Sims*¹; David Weiss²; Scott McCall³; Jonathan Lee³; Hunter Henderson¹; Eric Stromme⁴; Patrice Turchi³; Aurelien Perron³; Orlando Rios¹; ¹Oak Ridge National Laboratory; ²Eck Industries; ³Lawrence Livermore National Laboratory; ⁴United States Navy

Aluminum Reduction Technology – Cell Design & Modelling

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Abdalla Zarouni, Emirates Global Aluminium

Wednesday AM	Room: 221C
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Marc Dupuis, Genisim

8:30 AM Introductory Comments

8:35 AM

Alucell: A Unique Suite of Models to Optimize Pot Performances and Design: *Steeve Renaudier*¹; Steve Langlois¹; Benoit Bardet¹; Marco Picasso²; Alexandre Masserey³; ¹Rio Tinto; ²EPFL; ³Ycoorsystems

9:00 AM

Anode Bottom Burnout Shape and Velocity Field Investigation in a High Amperage Electrolysis Cell: *Valdis Bojarevics*¹; Evgeniy Radionov²; Yaroslav Tretiyakov²; ¹University of Greenwich; ²Rusal ETC

9:25 AM

CFD Modelling of Alumina Feeding: *Kristian Etienne Einarsrud*¹; Sindre Engzelius Gylver¹; Eirik Manger²; ¹Norwegian University of Science and Technology (NTNU); ²Hydro Aluminium, Primary Metal Technology, Norway

9:50 AM

Effect of Steel Multi-collector Bars on Current Density and Magnetohydrodynamic Stability in an Aluminum Reduction Cell: Meijia Sun¹; Baokuan Li¹; Linmin Li¹; Jian-ping Peng¹; ¹Northeastern University

10:15 AM Break

10:30 AM

MHD Generation of Liquid Metal Droplets in Aluminium Reduction Cell: *Abdellah Kharicha*¹; ¹University of Leoben

10:55 AM

Numerical Simulation Study on Gas Collecting System of 400kA Grade Aluminum Electrolytic Cell: Hongliang Zhang¹; *Kena Sun*¹; Jie Li¹; Tianshuang Li¹; Ling Ran¹; Fengqi Ding¹; Zhong Zou¹; ¹Central South University

11:20 AM

Study on 3D Full Cell Ledge Shape Calculation and Optimal Design Criteria by Coupled Thermo-flow Model: Hongliang Zhang¹; *Ling Ran*¹; Jinding Liang¹; Tianshuang Li¹; Kena Sun¹; Jie Li¹; ¹Central South University

11:45 AM

The Successful Implementation of Energy Saving Technology Based on Steady Flow and Heat Preservation: *Dengpeng Chai*¹; Zhirong Shi¹; Yanan Zhang¹; Yanfang Zhang¹; Guanghui Hou¹; Yanfang Wang¹; Qingtao Hu¹; Bin Fang¹; ¹Zhengzhou Non-ferrous Metals Research Institute Co. Ltd of CHALCO

12:10 PM Concluding Comments

Atom Probe Tomography for Advanced Characterization of Metals, Minerals and Materials – Light-weight Alloys

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee *Program Organizers:* Haiming Wen, Missouri University of Science and Technology; Simon Ringer, The University of Sydney; Gregory Thompson, University of Alabama; Arun Devaraj, Pacific Northwest National Laboratory; Keith Knipling, U.S. Naval Research Laboratory; Gang Sha, Nanjing University of Science and Technology; David Seidman, Northwestern University; Chantal Sudbrack, QuesTek Innovations, LLC

Wednesday AM	Room: 124A
March 14, 2018	Location: Phoenix Convention Center

Funding support provided by: CAMECA Instruments, Inc.

Session Chairs: Keith Knipling, U.S. Naval Research Laboratory; James Coakley, Northwestern University

8:30 AM Invited

Phase Transformations in Titanium Alloys: James Coakley¹; Dieter Isheim²; Anna Radecka³; David Dye⁴; Paul Bagot⁵; Howard Stone¹; David Seidman²; ¹University of Cambridge; ²Northwestern University; ³Rolls-Royce plc.; ⁴Imperial College London; ⁵Oxford University

9:05 AM

Direct Observation of Hydrogen in Ti Alloys by Atom Probe Tomography: Yanhong Chang¹; Baptiste Gault¹; Andrew Breen¹; Dirk Ponge¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH

9:25 AM

Spinodal Decomposition and Periodic Segregation in Grain Boundaries on Al Alloy: *Huan Zhao*¹; Dirk Ponge¹; Baptiste Gault¹; Agnieszka Szczepaniak¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH

9:45 AM

Deformation-induced Mg Redistribution in Al-Mg Alloys Revealed Using Atom Probe Tomography: *Shenbao Jin*¹; Jing Xue¹; Min Zha²; Xianghai An³; Xiaozhou Liao³; Jiehua Li⁴; Gang Sha¹; ¹Nanjing University of Science and Technology; ²Jilin University; ³The University of Sydney; ⁴Institute of Casting Research, Montanuniversität Leoben

10:05 AM Break

10:25 AM

Multi-dimensional Multi-scale Investigation on Solute Partitioning Behaviours and Redistribution ahead of Solidification Fronts: *Jiehua Li*¹; ¹University of Leoben

10:45 AM

Effect of Pre-strain on the Solute Clustering, Mechanical Properties, and Work-hardening of a Naturally Aged Al-Cu-Mg Alloy: *Di Shao*¹; Gang Liu¹; Gang Sha²; ¹Xi'an Jiaotong University; ²Nanjing University of Science and Technology

11:05 AM

Partitioning Behavior of Group VB Transition Metals in L1₂-Strengthened Aluminum Alloys: *Dinc Erdeniz*¹; Anthony De Luca¹; David Seidman¹; David Dunand¹; ¹Northwestern University

11:25 AM

Core/Triple Shell Precipitates in Al-Er-Sc-Zr-(V,Nb,Ta) Alloys: *Keith Knipling*¹; ¹U.S. Naval Research Laboratory

Biodegradable Materials for Medical Applications – Magnesium Alloys I

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Jaroslaw Drelich, Michigan Technological University; Petra Maier, University of Applied Sciences Stralsund; Jan Seitz, Syntellix AG; Norbert Hort, Helmholtz-Zentrum Geesthacht; Huinan Liu, University of California-Riverside

Wednesday AM March 14, 2018

Room: 226A Location: Phoenix Convention Center

Session Chairs: Jaroslaw Drelich, Michigan Technological University; Frank Witte, Charite - Universitätsmedizin Berlin

8:30 AM Keynote

Resoloy – the Resorbable Mg Alloy for Stents: *Michael Stekker*¹; Norbert Hort²; Frank Feyerabend²; Dirk Steglich²; Clemens Meyer-Kobbe¹; ¹MeKo Laser Material Processing; ²Helmholtz-Zentrum Geesthacht

9:10 AM Invited

Mechanical and Corrosion Property Profile of Biodegradable, Openporous Scaffolds Made of Sintered Magnesium Short Fibers: Gabor Szakacs¹; Frank Witte¹; ¹Charite - Universitätsmedizin Berlin

9:40 AM

Biodegradable Mg-implants – Current Market Experiences: Jan Seitz¹; Martin Kirschner¹; ¹Syntellix AG

10:00 AM Break

10:20 AM Invited

Development of a New Biodegradable Surgical Clip Made of a Magnesium Alloy: Evaluation of its Safety and Tolerability for Canine Cholecystectomy: *Takumi Fukumoto*¹; Toshihiko Yoshida¹; Takeshi Urade¹; Naoko Ikeo¹; Toshiji Mukai¹; ¹Kobe University

10:50 AM

Comparative Study on Corrosion Behavior WE33 in Immersion and Polarization Influenced by Heat Treatment: *Petra Maier*¹; Maximilian Bechly¹; Benjamin Hess¹; Norbert Hort²; ¹University of Applied Sciences Stralsund; ²Helmholtz-Zentrum Geesthacht

11:10 AM

Metal Injection Molding (MIM) of Mg-Alloys: Martin Wolff¹; Johannes Schaper¹; Eshwara Nidadavolu¹; Monika Luczak¹; Frank Feyerabend¹; Michael Dahms²; Thomas Ebel¹; Regine Willumeit-Römer¹; Thomas Klassen³; ¹Helmholtz-Zentrum Geesthacht; ²University of Applied Sciences, FH-Flensburg; ³Helmut Schmidt University, Hamburg

11:30 AM

Biological Response of Surface Modified Mg-Sr Alloy for Orthopedic Applications: *Krishna Chaitanya Nune*¹; Devesh Misra¹; Lili Tan²; Weidan Wang²; Xiaoming Yu²; Ke Yang²; ¹University of Texas at El Paso; ²Chinese Academy of Sciences

11:50 AM

Corrosion Properties of Mg-Ca-Gd Alloy Applied to Biodegradable Implants: Ana Caroline Almeida¹; Carlos Elias¹; Daniel Fernandes¹; Paulo Soares²; ¹Instituto Militar de Engenharia; ²Pontificia Universidade Católica do Paraná

Biological Materials Science – Functional Biological Materials

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee Program Organizers: Steven Naleway, University of Utah; Vinoy Thomas, University of Alabama at Birmingham; Holly Martin, Youngstown State University; Jing Du, Pennsylvania State University

Wednesday AM	Room: 225B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Steven Naleway, University of Utah; Jing Du, Penn State University

8:30 AM Invited

From Superhydrophobic to Superhydrophilic: Synthesis of Multifunctional Surfaces Inspired from Carnivorous Plants: Po-Yu Chen1; Zheng-Jun Shih1; Yu-Min Lin1; Po-Yi Chen1; 1National Tsing Hua University

9:00 AM

Design and Testing of Bio-inspired Flexible Armors: Susana Estrada¹; Alexander Ossa¹; Dwayne Arola²; Sean Ghods²; ¹Universidad EAFIT; ²University of Washington

9:20 AM

3D Porosity Analysis of Fruit Tissues for Evaluation of Gas Exchange: Tomas Silva Santisteban1; Yogini Jaiswal2; Yanling Xue3; Tiqiao Xiao3; Leonard Williams²; ¹Thermo Fisher Scientific; ²North Carolina Agricultural and Technical State University; 3Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences

9:40 AM

Optimizing the Structure-property Relationship of Shark Teeth Using Bio-inspired Design: John Wood¹; Hongjoo Rhee²; A. McIntosh¹; M. Horstemeyer3; M. Murphy2; R. Prabhu1; 1Department of Agricultural and Biological Engineering; ²Center for Advanced Vehicular Systems; ³Department of Mechanical Engineering

10:00 AM Break

10:20 AM Invited

On the Dynamic Load Response of Fish Scales: Designed for Resistance to Puncture: Chris Son¹; Alex Ossa¹; Sandra Murcia¹; Anqi Lin¹; Dwayne Arola¹; Sean Ghods1; 1University of Washington

10:50 AM

Mechanism Controlling Ion Diffusion in Wood Cell Wall Layers: Joseph Jakes¹; ¹USDA Forest Products Laboratory

11:10 AM

Modeling Water Absorption and Associated Mechanical Property Changes of Natural Fiber Reinforced Biocomposites: Nicole Robertson¹; John Wolodko1; John Nychka1; 1University of Alberta

Bladesmithing 2018 – Bladesmithing

Program Organizers: Bharat Jasthi, South Dakota School of Mines and Technology; Roxana Ruxanda, Emerson; Garry Warren, University of Alabama; Michael West, South Dakota School of Mines and Technology; Eric Schmidt, Vallourec; Samuel Wagstaff, Novelis

Wednesdav AM March 14, 2018

Room: 224A Location: Phoenix Convention Center

Session Chairs: Michael West, South Dakota School of Mines and Technology; Garry Warren, University of Alabama

8:30 AM Introductory Comments

8:35 AM Keynote

DragonSlayer: The First 20 Years: Greg Olson¹; ¹Northwestern University 9:00 AM

Bowie Knife Forged From a File: David Sapiro1; Mary Story1; 1Carnegie Mellon University

9:20 AM

Damascus Razor Characterization: Stuart Shirley1; Tom Boundy1; 1Colorado School of Mines

9:40 AM

Challenges of Using Black Hills Iron Ore in Bladesmithing: Daniel Nagel¹; George Bernard¹; William Carpenter¹; Aaron Fortier¹; Austin Holmes¹; Strauss Langrud¹; Cole Osendorf¹; Abigail Sherwood¹; Meghan Strawniak¹; George Tillman1; 1South Dakota School of Mines and Technology

10:00 AM Break

10:15 AM

Forging a Multi-Layered Seax: Hannah Goldstein¹; Anthony Petters¹; Gabriel Garcia¹; Benjamin Meffert¹; Dane Sayre¹; ¹University of Kentucky

10:35 AM

Keris: Legacy of Indonesia's Ancient Weapon in Metallurgical Point of View: Abrar Ridhollah¹; Fauzan Kurniawan¹; Safira Firdausi¹; ¹Sepuluh Nopember Institute of Technology

10:55 AM

Pattern Welded Hunga Munga: David Sapiro1; 1Carnegie Mellon University

11:15 AM

Investigating the Mechanical Properties of Knives in a Comparison Between Two SPD Methods: Wojciech Lukaszczyk1; 11llinois Institute of Technology

11:35 AM

Evaluation of Processing Methods on the Mechanical Properties and **Corrosion Resistance of Various Steels**: *Albert Ostlind*¹; Matthew Dougherty¹; Kerry-Ann Stirrup1; 1New Mexico Institute of Mining and Technology

11:55 AM

East Meets West: Calvin Belcher1; Stoney Middleton1; Tucker Parris1; ¹Materials Science at UC Irvine

Building an ICME Infrastructure: Developing Tools that Integrate Across Length and Time Scales to Accelerate Materials Design – ICME Gap Analysis: Multiscale Modeling and Characterization of **Structural Materials: I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee Program Organizers: Carelyn Campbell, National Institute of Standards and Technology; Mark Carroll, Federal Mogul Powertrain; Adam Hope, Thermo-Calc Software; Hojun Lim, Sandia National Laboratories; Myoung-Gyu Lee, Korea University; Amy Clarke, Colorado School of Mines; Dongwon Shin, Oak Ridge National Laboratory

Wednesday AM	Room: 132C
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Hojun Lim, Sandia National Laboratories

8:30 AM Invited

Need for Uncertainty Quantification in Multiscale Materials Modeling: Stephen Foiles1; 1Sandia National Laboratories

9:10 AM Invited

Data Science and Informatics: Key Integrators of Multiscale Experiments and Multiscale Models in ICME: Surya Kalidindi¹; ¹Georgia Institute of Technology

9:50 AM Break

10:10 AM Invited

Gaps in Multiscale Modeling to Address Mechanical Properties of Metal Alloys: David McDowell1; 1Georgia Institute of Technology

10:50 AM Invited

Challenges in Multiscale Modeling of Emergent Phenomena in Solid Mechanics: Joseph Bishop1; 1Sandia National Laboratories

TECHNICAL PROGRAM

11:30 AM Invited

Conceptual and Computational Challenges in Multiscale Modeling: *Richard LeSar*¹; ¹Iowa State University

Bulk Metallic Glasses XV – Alloy Development and Application II

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Wednesday AM	Room: 122A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Frans Spaepen, Harvard School of Engineering & Applied Sciences; Joseph Poon, University of Virginia

8:30 AM Keynote

Stress Measurements on Colloidal Crystals and Glasses: J. Terdik¹; David Weitz¹; Frans Spaepen¹; ¹Harvard School of Engineering & Applied Sciences

9:00 AM Invited

Synthesis and Processing of Roll-bonded Metal/ Metallic Glass Laminated Composites: Sina Shahrezaei¹; Douglass Hofmann²; Stephanie O'Keeffe³; Irene Beyerlein⁴; *Suveen Mathaudhu*¹; ¹University of California, Riverside; ²NASA - Jet Propulsion Laboratory; ³Liquidmetal Technologies, Inc.; ⁴University of California, Santa Barbara

9:20 AM

Selective Laser Melting of Bulk Metallic Glass: *Tim Sercombe*¹; ¹The University of Western Australia

9:40 AM Invited

Formation and Properties of Ni-free Ti-based Bulk Metallic Glasses for Biomedical Applications: *Shujie Pang*¹; Ying Liu¹; Peter K. Liaw²; Tao Zhang¹; ¹Beihang University; ²The University of Tennessee

10:00 AM Break

10:20 AM Invited

Damping, Elasticity, and Density of Sputtered Zr-Ni-Al Nano-films as Gleaned from Laser Interferometry: *Anthony Kwong*¹; Matt Matheny¹; John Sader²; Julia Greer¹; ¹California Institute of Technology; ²University of Melbourne

10:40 AM Invited

Amorphous Magnetic Films: Joseph Poon1; 1University of Virginia

11:00 AM Invited

Catalytic Amorphous Metals in Energy Applications: Vahid Hasannaeimi¹; *Sundeep Mukherjee*¹; ¹University of North Texas

11:20 AM Invited

Exploring Novel Functionalities of Metallic Glasses: *Kostas Georgarakis*¹; ¹Cranfield University

11:40 AM Invited

Structures and Dynamics in Ni-Nb System via Combinatorial and Highthroughput Methods: *Fanqiang Meng*¹; Emrah Simsek¹; Matthew Besser¹; Matthew Kramer¹; Ryan Ott¹; ¹Ames Laboratory

12:00 PM

Research on the Thermoplastic Formability of Lightweight Ti-based Bulk Metallic Glasses: Pan Gong¹; Xin-yun Wang¹; Ke-fu Yao²; ¹Huazhong University of Science and Technology; ²Tsinghua University

Cast Shop Technology – Melt Treatment

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mark Badowski, Hydro Aluminium

Wednesday AM March 14, 2018 Room: 222A Location: Phoenix Convention Center

Session Chair: Johannes Morscheiser, Aleris Rolled Products Germany GmbH

8:30 AM Introductory Comments

8:35 AM

Constellium's R&D on the Use of Power Ultrasound in Liquid Aluminum: An Overview: *Philippe Jarry*¹; Jean-Louis Achard¹; ¹C-TEC

9:00 AM

Molten Metal Cleanliness: Recent Developments to Improve Measurement Reliability: Paul Evans¹; *Phil Enright*²; Ricky Ricks¹; ¹TSC; ²NTec

9:25 AM

On-site Benchmark of LiMCA II vs. LiMCA III for Monitoring of Nonmetallic Inclusions in Liquid Aluminium: Mark Badowski¹; *Thien Dang*²; Nicholas Towsey²; Daniel Krings¹; Klaus Hoffmann²; ¹Hydro Aluminium; ²TRIMET Aluminium SE

9:50 AM

Discussion of Bi-film Index and LiMCA Data in Industrial Aluminum Remelting Trials: *Anne Kvithyld*¹; Jan Anders Sæter²; Martin Syvertsen¹; Harry Fossheim²; Arne Nordmark¹; Ronny Sottar²; Thorvald Abel Engh³; ¹SINTEF; ²Alcoa; ³NTNU

10:15 AM Break

10:30 AM

Inclusion Composition Determination by In-line LIBS Measurement – Plant Assessment: *Pierre Le Brun*¹; Joe Craparo²; Gary Parker³; Jimmy Landham³; Robert De Saro²; ¹Constellium Technology Center; ²Energy Research Company; ³Constellium Muscle Shoals

10:55 AM

An Innovative Ultrasonic Technology for the Continuous Quality Monitoring of Liquid Aluminum on Casting Lines: *Jean-Louis Achard*¹; Fabio Taina¹; Pierre Le Brun¹; Pierre-Yves Menet¹; ¹Constellium

11:20 AM

Ultrasonic Doppler Velocimetry in Liquid Aluminum: Fabio Taina¹; Jean-Louis Achard¹; Philippe Jarry¹; ¹C-TEC, Constellium Technology Center

11:45 AM

Nitridation Reaction of Aluminum and Magnesium in 5XXX Series Aluminum Alloy: Yu Matsui¹; Masaru Morobayashi¹; Hirohisa Shiomi¹; Koichi Takahashi¹; ¹UACJ Corporation

CFD Modeling and Simulation in Materials Processing – Processing III

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee *Program Organizers*: Laurentiu Nastac, The University of Alabama; Koulis Pericleous, University of Greenwich; Adrian Sabau, Oak Ridge National Laboratory; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, Colorado School of Mines

Wednesday AM	Room: 228B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Ruigang Wang, The University of Alabama; Laurentiu Nastac, The University of Alabama

8:30 AM

Effect of Carbide Configuration on the Current Distribution in Submerged Arc Furnaces for Silicon Production – A Modelling Approach: *Yonatan Afework Tesfahunegn*¹; Merete Tangstad²; Thordur Magnusson³; Gudrun Saevarsdottir¹; ¹Reykjavik University; ²Norwegian University of Science and Technology (NTNU); ³United Silicon HF.

8:50 AM

Investigation of Combustion and Heat Transfer in an Industrial Reheating Furnace Using CFD: Yuchao Chen¹; Xiang Liu¹; Armin Silaen¹; Kurt Johnson²; *Chenn Zhou*¹; ¹Purdue University Northwest; ²ArcelorMittal

9:10 AM

WEDNESDAY AM

Finite Element Modelling of Electrokinetic Deposition of Zinc on Mild Steel with ZnO-Citrus Sinensis as Nano-additive: Oluseyi Ajayi¹; Olasubomi Omowa¹; Oluwabunmi Abioye¹; Olugbenga Omotosho¹; Esther Akinlabi²; Stephen Akinlabi²; Abiodun Abioye¹; Felicia Owoeye¹; Sunday Afolalu¹; ¹Covenant University, Cananland, Ota; ²University of Johannesburg

9:30 AM

Modeling of Cooling System in Nitrogen Cooled Aluminum Extrusion Molds and Investigation of Its Effect on Profile Surface: *Murat Konar*¹; ¹Asas Alüminyum

9:50 AM

Implementing CFD Modelling to Address Defect Formation in Core Injection Moulding: *Stefano Cademartori*¹; Nicholas Humphreys²; Jean-Christophe Gebelin²; Jeffery Brooks¹; ¹University of Birmingham; ²Doncasters Group

10:10 AM Break

10:30 AM

Mathematical Model for Gas Fired Rorary Hearth Furnace for Sponge Iron Production: *Sooraj Saleem*¹; Gour Gopal Roy¹; ¹Indian Institute of Technology, Kharagpur

10:50 AM

Numerical Simulation of Turbulence Flow and Solidification in a Bloom Continuous Casting Mould with Electromagnetic Stirring: *Shaoxiang Li*¹; Peng Lan¹; Jiaquan Zhang¹; ¹University of Science & Technology Beijing

11:10 AM

Numerical Analysis of Heat and Mass Transfer on the Self-densification of Metal Hydride Tank: Xi Lin¹; Dongke Sun²; Qian Li¹; ¹Shanghai University; ²Southeast University

Characterization of Minerals, Metals, and Materials – Analysis of Surfaces and Interfaces

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Wednesday AM	Room: 122C
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Shadia Ikhmayies, Al Isra University

8:30 AM Introductory Comments

8:35 AM Invited

Applications of Aberration-corrected Low-energy Electron Microscopy for Metal Surfaces: *Zheng Wei*¹; Tao Li¹; Meng Li¹; Xueli Cao¹; Hanying Wen¹; Guodong Shi¹; Lei Yu¹; Lin Zhu¹; Wen-xin Tang¹; Chenguang Bai¹; ¹Chongqing University

8:55 AM

Surface Damage Layers Produced by Ga Ion and Xe-plasma FIB Milling of Al6061: *Alexis Ernst*¹; Mei Wei¹; Mark Aindow¹; ¹University of Connecticut

9:15 AM

ZnO Thin Films of Flowered-Fibrous Micro/Nanowebs on Glass Substrates Using the Spray Pyrolysis Method: Shadia Ikhmayies¹; ¹Al Isra University

9:35 AM

Examining Regional Weather Effects on Single Ply Roofing Membranes: *Gisica Abdallah*¹; Holly Martin¹; Jeffrey Meyers²; ¹Youngstown State University; ²Simon Roofing

9:55 AM

Analytical Investigation of Coatings Defects: Arif Mubarok¹; Brittany Sinagra¹; ¹PPG Industries

10:15 AM Break

10:30 AM

Recovery of Au(CN)2- from Gold Cyanidation Solution with Graphene Oxide and Reduced Graphene Oxide Hydrogels as Adsorbents: Lang Yang¹; Kaige Sun¹; Feifei Jia¹; *Shaoxian Song*¹; ¹Wuhan University of Technology

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Diffusion I Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Wednesday AM	Room: 131A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Qing-Miao Hu, Institute of Metal Research, Chinese Academy of Science; Chelsey Zacherl Hargather, New Mexico Institute of Mining and Technology

8:30 AM Invited

A Comprehensive First-principles Study of Solute Elements in Dilute Ni Alloys: Diffusion Coefficients and Their Implications to Tailor Creep Rate: *Chelsey Hargather*¹; Shun-Li Shang²; Zi-Kui Liu²; ¹New Mexico Institute of Mining and Technology; ²The Pennsylvania State University

9:00 AM

First-principles Investigation of Thermodynamics and Precipitation Kinetics in Al-Sc Alloys: *Ankit Gupta*¹; Bengue Tas Kavakbasi²; Biswanath Dutta¹; Blazej Grabowski¹; Martin Peterlechner²; Tilmann Hickel¹; Sergiy V. Divinski²; Gerhard Wilde²; J Neugebauer¹; ¹Max-Planck Institute for Iron Research; ²Institute of Materials Physics, University of Muenster

9:20 AM

Monte Carlo Simulation for i-s Clustering in Iron Based on the Firstprinciples Calculation: *Masanori Enoki*¹; Yohei Osawa¹; Marcel Sluiter²; Hiroshi Ohtani¹; ¹Tohoku University; ²Delft University of Technology

9:40 AM

Mobility of Small Point Defect Clusters and Prismatic Dislocation Loops: Jan Fikar¹; *Roman Gröger*¹; Robin Schäublin²; ¹IPM; ²ETHZ

10:00 AM Break

10:15 AM

Impurity Segregation in Copper: Theory vs. Experiment: Vsevolod Razumovskiy¹; Sergiy Divinski²; Lorenz Romaner¹; ¹Materials Center Leoben; ²University of Münster

10:35 AM Invited

Atomic Diffusion and Its Effect on Creep Resistance of High Temperature Titanium Alloys: *Qing-Miao Hu*¹; ¹Institute of Metal Research, Chinese Academy of Science

11:05 AM

The Kinetic Mechanism Underlying the Solid-state Precipitation of Coreshell Particle in Al-Zr-Er Alloy: *Shang-Yi Ma*¹; Shao-Qing Wang¹; ¹Chinese Academy of Sciences

11:25 AM

Thermally Activated Solute-drag Strengthening by Interstitial Impurities in BCC Cr: Christian Brandl¹; ¹Karlsruhe Institute of Technology

11:45 AM

Simulation of Solidification/Devitrification in Ni-Nb Alloys: Mikhail Mendelev¹; Tongqi Wen¹; Cai-Zhuang Wang¹; ¹Ames Laboratory

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Microstructure and Processing Simulations I Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Wednesday AM	Room: 131B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Avinash Dongare, University of Connecticut; Dongwon Shin, Oak Ridge National Laboratory

8:30 AM Invited

Unraveling the Evolution of Microstructure of Materials at the Mesoscales Using Quasi-coarse-grained Dynamics Simulations: Avinash Dongare¹; Sumit Suresh¹; Garvit Agarwal¹; ¹University of Connecticut

9:00 AM

Simulating Phase Transformation and Texture Evolution during Forging of Ti6Al4V: *Connor Campbell*¹; Xin (Tony) Yao²; Terry Lowe¹; ¹Colorado School of Mines; ²Weber Metals, Inc.

9:20 AM

Phase-field Simulation of Nanodomain Formation in Ti-Nb-O Alloys: Yuya Ishiguro¹; Yuhki Tsukada¹; Toshiyuki Koyama¹; ¹Nagoya University

9:40 AM

Process Simulation of H13 Steel Dipping into Molten Aluminum and Prediction of its Thermal Fatigue Cracking: Yan Lu¹; Alan Luo¹; Keith Ripplinger²; Geoffrey Taber¹; Yu Mao¹; Duane Detwiler³; ¹The Ohio State University; ²Honda Engineering North America, Inc.; ³Honda R&D Americas, Inc

10:00 AM Break

10:20 AM Invited

Influence of Platinum Chaplet Pins on Recrystallization Defect in Single Crystal Turbine Blade Casting: *Runnan Wang*¹; Qingyan Xu¹; Baicheng Liu¹; ¹Tsinghua University

10:50 AM

Microstructure Prediction for TMW-4M3 during Heat Treatment: Takaaki Hara¹; Shinichi Kobayashi¹; Tomonori Ueno¹; Nobufumi Ueshima²; Katsunari Oikawa²; ¹Hitachi Metals, Ltd.; ²Tohoku University

11:10 AM

Lattice Mismatch Modeling of Aluminum Alloys: *Dongwon Shin*¹; Shibayan Roy²; Thomas Watkins¹; Amit Shyam¹; ¹Oak Ridge National Laboratory; ²Indian Institute of Technology

11:30 AM

Meso Scale Modeling of Self-assembly and Mechanical Behavior of SWCNT Aerogels: *Ankit Gupta*¹; Elizabeth Holm¹; ¹Carnegie Mellon University

Computational Design and Simulation of Materials (CDSM 2018): Computational Design of Materials – Computational Design: Microstructure and Mechanical Behaviors

Sponsored by: Chinese Society for Metals

Program Organizers: Alan Luo, The Ohio State University; Suveen Mathaudhu, University of California, Riverside; Yong Du, Central South University; Raymundo Arroyave, Texas A & M University; Dianzhong Li, Institute of Metal Research, Chinese Academy of Sciences; Zi-Kui Liu, The Pennsylvania State University

Wednesday AM	Room: 131C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Yunzhi Wang, Ohio State University; Zhiqiang Han, Tsinghua University

8:30 AM Invited

Study on the Effect of Applied Pressure on Directional Dendritic Growth by In-situ Observation: Shan Shang¹; Keyan Wu¹; Leewei Kuo¹; *Zhiqiang Han*¹; ¹Tsinghua University

9:00 AM

Predicting Microstructural Evolution in Oxidation Resistant Coatings during Manufacturing and during Degradation in Service: *Rishi Pillai*¹; Timur Galiullin¹; Wencai Leng¹; Daniel Grüner¹; Dmitry Naumenko¹; W.J. Quadakkers¹; ¹Forschungszentrum Juelich GmbH

9:20 AM

WEDNESDAY AM

Microstructure Evolution and Simulation in 22MnB5 Steel during Hot Stamping: *Kuanhui Hu*¹; Rongdong Han¹; ¹Wuhan Iron and Steel Co., LTD

9:40 AM

Modeling of Solute-dependent Fluidity and Hot Tearing Sensitivity of Conductive Aluminum Alloys: Hengcheng Liao¹; *Qigui Wang*²; Xiaojin Suo¹; Zixing Feng¹; Qin Huang¹; ¹Southeast University; ²GM Global Propulsion Systems

10:00 AM Break

10:15 AM Invited

Computational Design and Simulation of Ultralow Modulus, Hysteresisfree, and Linear Pseudo-elastic Shape Memory Alloy: Jiaming Zhu¹; Yipeng Gao²; Dong Wang¹; Tong-Yi Zhang³; *Yunzhi Wang²*; ¹Xi'an Jiaotong University; ²The Ohio State University; ³Shanghai University

10:45 AM

Coupling Void Coalescence Criteria in Finite Element Models: Application to Tensile Test: *Ahmed Abdelkader*¹; Chahinaz Saleh²; ¹Enppi; ²Faculty of Engineering, Cairo University

11:05 AM

Prediction of the Abrasive Wear Behaviour of Heat Treated Aluminiumclay Composites: *Ademola Agbeleye*¹; David Esezobor¹; Johnson Agunsoye¹; Olawale Balogun; Adeyanju Sosimi¹; ¹University of Lagos

11:25 AM

Modelling of Mechanical Behavior at High Strain Rate of TI-6AL-4V Manufactured by Means of Direct Metal Laser Sintering Technique: *Nicola Bonora*¹; Andrew Ruggiero¹; Gianluca Iannitti¹; Gabriel Testa¹; Domenico Gentile¹; ¹University of Cassino

11:45 AM

Optimizing Elastic Moduli of the Silicate Glasses through Highthroughput Atomistic Modeling and Machine Learning Techniques: *Yong-Jie Hu*¹; Ge Zhao²; Tyler Del Rose¹; Maarten De Jong³; Liang Qi¹; ¹University of Michigan; ²The Pennsylvania State University; ³Space Exploration Technologies (SpaceX)

Computational Materials Science and Engineering for Nuclear Energy – Novel Models and Method Development

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Haixuan Xu, University of Tennessee; Michael Tonks, Pennsylvania State University; Blas Uberuaga, Los Alamos National Laboratory; James Morris, Oak Ridge National Laboratory

Wednesday AM	Room: 102B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Haixuan Xu, The University of Tennessee Knoxville; Izabela Szlufarska, University of Wisconsin-Madison

8:30 AM Invited

Experimentally Validated Computational Modeling of Advanced Alloys and Radiation Effects for Nuclear Energy Applications: *Steven Zinkle*¹; Lizhen Tan²; Ying Yang²; ¹University of Tennessee; ²Oak Ridge National Laboratory

9:00 AM

Cluster Dynamics in Irradiated Materials: A Hybrid Deterministic/ Stochastic Coupling Algorithm: *Pierre Terrier*¹; Thomas Jourdan²; Manuel Athènes²; Gilles Adjanor³; Gabriel Stoltz⁴; ¹Ecole des Ponts Paristech & CEA, SRMP; ²CEA Saclay; ³EDF R&D; ⁴Ecole des Ponts Paristech

9:20 AM

Rate-theory Modeling of Irradiation Damage Cascades and the Influence of the Underlying Microstructure using the MOOSE Framework: *Jesse Carter*¹; Jared Tannenbaum¹; Richard Smith¹; ¹Bettis Laboratory, NNL

9:40 AM

A Phase Field Study of Void Superlattice Formation in Irradiated Materials: *Yipeng Gao*¹; Daniel Schwen¹; Chao Jiang¹; Yongfeng Zhang¹; ¹Idaho National Laboratory

10:00 AM Break

10:20 AM

Microstructure-sensitive Phase Field Fracture Model Including Anisotropic Elastic Properties: *Shuaifang Zhang*¹; Wen Jiang²; Cheng Liu³; Izabela Szlufarka³; Michael Tonks¹; ¹Pennsylvania State University; ²Idaho National Lab; ³University of Wisconsin-Madison

10:40 AM

Off-stoichiometric Cluster Dynamics in Irradiated Oxides: *Sarah Khalil*¹; Todd Allen²; Anter El-Azab³; ¹Alexandria University - Egypt; ²UW-Madison; ³Purdue University

11:00 AM Invited

Real-space Diffusion-driven Models for Microstructural Evolution of Irradiated Materials: Sergei Dudarev¹; ¹UK Atomic Energy Authority

WEDNESDAY AM

Secondary Phase Dissolution in Al Alloys Using DICTRA Models: Kyle

Computational Thermodynamics and Kinetics – Phase Equilibria and Transformations

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and **Engineering Committee**

Program Organizers: Elif Ertekin, University of Illinois; Shawn Coleman, U.S. Army Research Laboratory; Brent Fultz, California Institute of Technology; Richard Hennig, University of Florida; Suveen Mathaudhu, University of California, Riverside

Wednesday AM	Room: 128A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Blazej Grabowski, Max-Planck-Institut für Eisenforschung; James Saal, QuesTek Innovations

8:30 AM Invited

ICME Design of High-performance Materials with Computational Materials Science: James Saal1; Greg Olson1; 1QuesTek Innovations

9:00 AM

Developing Ab-initio Models for Precipitation in Alloys: Anirudh Raju Natarajan¹; John Thomas¹; Brian Puchala²; Anton Van der Ven¹; ¹University of California, Santa Barbara; ²University of Michigan, Ann Arbor

9:20 AM

Thermolab: A Matlab Toolbox for Experimenting Computational Thermodynamics: Thien Duong1; Raymundo Arroyave1; 1Texas A&M University

9:40 AM

Effect of Precipitate Characteristics on the Sensitization of Austenitic Stainless Steels: Satish Kumar Kolli¹; Vahid Javaheri¹; Thomas Ohligschläger²; David Porter1; 1University of Oulu, Oulu; 2Outokumpu, Tornio R & D Center

10:00 AM Break

10:20 AM Invited

Efficient and Accurate Computation of Melting Temperatures and Enthalpies and Entropies of Fusion from Ab Initio: Blazej Grabowski¹; Li-Fang Zhu¹; Jörg Neugebauer¹; ¹Max-Planck-Institut für Eisenforschung

10:50 AM

Simulation of Grain Boundary Migration and Phase Transformation in Metals with Overdamped Langevin Dynamics: Carolina Baruffi¹; Alphonse Finel¹; Oguz Umut Salman²; Brigitte Bacroix²; ¹ONERA; ²LSPM -Université Paris 13

11:10 AM

Transition Process from BCT Martensite to n Phase during Tempering in Fe-C Alloy: Yohei Osawa1; Michitoshi Saeki1; Masanori Enoki1; Marcel Sluiter2; Hiroshi Ohtani1; 1Tohoku University; 2Delft University of Technology

11:30 AM

Fitzpatrick-Schmidt¹; Danielle Cote¹; Richard Sisson¹; Victor Champagne²; ¹Worcester Polytechnic Institute; ²U.S. Army Research Laboratory

Computational Method and Experimental Approaches for Model Development and Validation, **Uncertainty Quantification, and Stochastic** Predictions – Mathematical and Machine Learning Approaches Applied to UQ

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee Program Organizers: Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory; Richard Hennig, University of Florida; Avinash Dongare, University of Connecticut; Shawn Coleman, U.S. Army Research Laboratory; Niaz Abdolrahim, University of Rochester; Joseph Bishop, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Li Ma, National Institute of Standards and Technology

Wednesday AM Room: 132B March 14, 2018 Location: Phoenix Convention Center

Session Chairs: Avinash Dongare, University of Connecticut; Li Ma, National Institute of Standard and Technology

8:30 AM Invited

Uncertainty Quantification for Additive Manufacturing Applications across Scales: Laura Swiler1; Kyle Johnson1; 1Sandia National Laboratories

9:00 AM

Large Scale Sensitivity of Uncertain Parameters on Optimal Control Solutions: An Example in Additive Manufacturing: Bart van Bloemen Waanders1; Joseph Hart2; 1Sandia National Laboratories; 2North Carolina State University

9:20 AM Invited

The Role of Data Analysis in Uncertainty Quantification: Examples from Materials Science: Paul Patrone1; Andrew Dienstfrey1; 1NIST

9:50 AM

Uncertainty Quantification in Materials Strength Models Using Bayesian Inference: David Rivera¹; Jason Bernstein¹; Katie Schmidt¹; Nathan Barton¹; Ana Kupresanin¹; Jeff Florando¹; ¹LLNL

10:10 AM Break

10:30 AM Invited

Machine Learning Based Atomistic Force Fields: Rampi Ramprasad¹; Venkatesh Botu¹; Rohit Batra¹; James Chapman¹; Huan Tran¹; ¹University of Connecticut

11.00 AM Invited

It's a SNAP: Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data: Aidan P. Thompson¹; ¹Sandia National Laboratories

11:30 AM

Linear Scaling, Quantum-accurate Interatomic Potentials with SNAP; Reaching those Hard-to-reach Places in Classical Molecular Dynamics: Mitchell Wood1; Aidan Thompson1; 1Sandia National Laboratories

Coupling Advanced Characterization and Modeling Tools for Understanding Fundamental Phase Transformation Mechanisms: An MPMD Symposium

in Honor of Hamish Fraser – Session III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Gregory Thompson, University of Alabama; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; Soumya Nag, GE Global Research; Rajarshi Banerjee, University of North Texas

Wednesday AMRoom: 127AMarch 14, 2018Location: Phoenix Convention Center

Session Chair: Sudarsanam Babu, University of Tennessee - Knoxville

8:30 AM Invited

Advanced Characterization and Modeling Tools in the Context of Corrosion: Oumaima Gharbi¹; Shravan Kairy¹; *Nick Birbilis*¹; ¹Monash University

9:00 AM Invited

Deformation by Dislocations, Twinning, and Phase Transformations in Compositionally Concentrated FCC Solid Solutions: *Michael Mills*¹; Jiashi Miao¹; Connor Slone¹; Tim Smith²; Maryam Ghazisaeidi¹; ¹The Ohio State University; ²NASA Glenn Research Center

9:30 AM Invited

WEDNESDAY AM

Phase Transformations, Microstructure Evolution and Mechanical Properties of Nickel-base Superalloys Studied by Analytical Scanning and Transmission Electron Microscopy: Micheal Kattoura¹; Seetha Mannava¹; Dong Qian¹; *Vijay Vasudevan*¹; ¹University of Cincinnati

10:00 AM Break

10:20 AM Invited

The Need for Advanced Techniques to Couple Multiscale Physics Based Structural Models: Jaimie Tiley¹; ¹Air Force Office of Scientific Research

10:50 AM Invited

Progress with 3-dimensional Materials Science Tools for Aerospace Alloy Engineering: *Dennis Dimiduk*¹; Michael Uchic²; Michael Groeber²; Paul Shade²; Sean Donegan²; Michael Jackson¹; ¹BlueQuartz Software, LLC; ²Air Force Research Laboratory

11:20 AM Invited

Probabilistic Methodology for Analyzing and Reconstructing Parent Microstructures from EBSD Maps of Transformation Products: Stephen Niezgoda¹; Eric Payton²; Alex Brust¹; Vikas Sinha³; ¹The Ohio State University; ²Air Force Research Laboratory; ³UES, Inc.

Coupling Experiments and Modeling to Understand Plasticity and Failure – Plasticity in HCP Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Sangid, Purdue University; Philip Eisenlohr, Michigan State University; Matthew Miller, Cornell University; Paul Shade, Air Force Research Laboratory

Wednesday AM March 14, 2018 Room: 126B Location: Phoenix Convention Center

Session Chairs: Darren Pagan, CHESS; Michael Sangid, Purdue University

8:30 AM Invited

Comparison of Parameters Required for Computational Models for Modeling Heterogeneous Deformation in Titanium Obtained with Different Approaches: *Thomas Bieler*¹; Chen Zhang¹; Harsha Phukan¹; Yang Su¹; Hongmei Li¹; Philip Eisenlohr¹; Martin Crimp¹; Carl Boehlert¹; Leyun Wang²; Robert Suter³; Jonathan Lind⁴; Peter Kenesei⁵; Jun-Sang Park⁵; Ruqing Xu⁵; Wenjun Liu⁵; ¹Michigan State University; ²Shanghai Jiao Tong University; ³Carnegie Mellon University; ⁴Lawrence Livermore National Laboratory; ⁵Argonne National Laboratory

8:55 AM Invited

Reliability of Slip Resistance Determination in Hexagonal Materials: Chen Zhang¹; Aritra Chakraborty¹; *Philip Eisenlohr*¹; Carl Boehlert¹; Martin Crimp¹; Thomas Bieler¹; ¹Michigan State University

9:20 AM

Coupled Intergranular and Transgranular Fracture Modes in H.C.P. Alloys: *Ismail Mohamed*¹; S. Ziaei¹; Mohammed Zikry¹; ¹North Carolina State University

9:40 AM

The Effect of Temperature on Deformation of CP-Ti: Joao Fonseca¹; Alberto Orozco-Caballero¹; ¹The University of Manchester

10:00 AM Break

10:20 AM Invited

Neighbour Effects on Grain Resolved Stress Distributions in Hexagonal Metals Revealed by 3D X-ray Diffraction Measurements: Hamidreza Abdolvand¹; Jonathan Wright²; *Angus Wilkinson*³; ¹Western University; ²ESRF; ³University of Oxford

10:45 AM

The Influence of Elastic Interactions on Local Stresses and Deformation Mechanism during Tensile Loading of Two-phase Titanium Alloys: *William Joost*¹; Maija Kuklja²; Sreeramamurthy Ankem²; ¹Pratt & Whitney; ²University of Maryland

11:05 AM

Geometrically Necessary Dislocations (GNDs) and Crystal Plasticity in HCP Metals: *Wyatt Witzen*¹; Curt Bronkhorst²; Tresa Pollock¹; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Los Alamos National Laboratory

11:25 AM

Localized Deformation Fields in Hexagonal Close-packed Polycrystals: Hamid Abdolvand¹; Angus Wilkinson²; ¹University of Western Ontario; ²University of Oxford

11:45 AM

Study of the Deformation of Mg-Y by In Situ EBSD and Visco-plastic Selfconsistent Modeling: *Bijin Zhou*¹; Alireza Maldar¹; Xiaoqin Zeng¹; Leyun Wang¹; ¹Shanghai Jiao Tong University

Deformation and Damage Mechanisms in High Temperature Ni, Co and Fe-based Superalloys – 5A: Fe-based Superalloy Development & Properties. 5B: Deformation & Damage in Fe and Ni-based Superalloys

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials; Chantal Sudbrack, QuesTek Innovations, LLC; Michael Titus, Purdue University; Kinga Unocic, Oak Ridge National Laboratory; Yukinori Yamamoto, Oak Ridge National Laboratory

Wednesday AM	Room: 126A
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Yukinori Yamamoto, Oak Ridge National Laboratory

8:30 AM Invited

Microstructural Investigation and In-situ Neutron Diffraction on Novel Creep-resistant Ferritic Superalloys: *Peter Liaw*¹; Shao-Yu Wang¹; Gian Song²; David Dunand³; Gautam Ghosh³; Sungil Baik³; ¹The University of Tennessee; ²Oak Ridge National Laboratory; ³Northwestern University

9:00 AM

Deformation and Damage Behavior during LCF, TMF and CF in an Advanced Heat Resistant Austenitic Stainless Steel: *Guocai Chai*¹; Guocai Chai²; 'Sandvik Materials Technology; ²Linköping University

9:20 AM

Alloy Design Concepts of Creep-resistant, Alumina-forming Ferrous Alloys for High-temperature Structural Applications: *Yukinori Yamamoto*¹; Michael Brady¹; Govindarajan Muralidharan¹; Bruce Pint¹; Chih-Hsiang Kuo²; Benjamin Shassere³; Sudarsanam Babu²; ¹Oak Ridge National Laboratory; ²University of Tennessee; ³University of Tennessee (currently at ORNL)

9:40 AM

Investigation on Creep Properties of Alloy 709 (Fe-25Ni-20Cr) at 1023 K: *Abdullah Alomari*¹; Korukonda Murty¹; Nilesh Kumar¹; ¹North Carolina State University

10:00 AM Break

10:20 AM

Effects of Cr on High-temperature Tensile Properties in High-Nicontaining Austenitic Cast Steels: *Jisung Yoo*¹; Won-Mi Choi¹; Byeong-Joo Lee¹; Yong-Jun Oh²; Seongsik Jang³; Sunghak Lee¹; ¹A Center for Advanced Aerospace Materials Pohang University of Science and Technology; ²Department of Advanced Materials Engineering Hanbat National University; ³Research and Development Center Key Yang Precision

10:40 AM

High Temperature Creep Behavior of a Fe-20Cr-25Ni Based Austenitic Stainless Steel: *Martin Taylor*¹; Harrison Pugesek¹; Jose Ruiz Ramirz¹; Nicholas Shaber¹; Indrajit Charit¹; Gabriel Potirniche¹; Robert Stephens¹; ¹University of Idaho

11:00 AM

Creep Behavior and Microstructural Characterization of Weld Transition Joints between P91 and AISI 304: *Javed Akram*¹; Prasad Kalvala²; Mano Misra²; ¹3DSIM, LLC; ²University of Utah

11:20 AM

Processing and Properties of Forged and Cast Haynes 282 Alloy for A-USC Steam Turbine Components: *Philip Maziasz*¹; ¹Oak Ridge National Laboratory

Dynamic Behavior of Materials VIII – Dynamic Response of HCP Materials

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Saryu Fensin, Los Alamos National Laboratory; George Gray, Los Alamos National Laboratory; Naresh Thadhani, Georgia Institute of Technology; Kenneth Vecchio, University of California, San Diego; Marc Meyers, University of California, San Diego

Wednesday AM March 14, 2018 Room: 127B Location: Phoenix Convention Center

Session Chair: To Be Announced

8:30 AM Invited

Characterisation and Understanding of Deformation Fields in Textured Zirconium Deformed at High Rate: Vivian Tong¹; Euan Wielweski²; *T Ben Britton*¹; ¹Department of Materials, Imperial College; ²Glasgow University

9:10 AM

The Mechanical Behaviors and Microstructural Evolution of AZ31B Magnesium Alloy with Gradient Texture under Impact Loading: *Weiliang Zhang*¹; Peijie Li¹; ¹Tsinghua University

9:30 AM

Dynamic Deformation and Failure of Ultrafine-grained Titanium: *Zezhou Li*¹; Bingfeng Wang²; Shiteng Zhao¹; Ruslan Z. Valiev³; Kenneth S. Vecchio¹; Marc A. Meyers¹; ¹University of California,San Diego; ²Central South China; ³Institute of Physics of Advanced Materials, Ufa State Aviation Technical University

9:50 AM

Effect of Phase Transformation on High Temperature Dynamic Flow Stresses of CP-Ti: *Sindhura Gangireddy*¹; Steven Mates²; ¹University of North Texas; ²National Institute of Standards and Technology

10:10 AM Break

10:30 AM Invited

On the Microstructure-property Relationships in Shock Compressed Solids: Cyril Williams¹; ¹U.S. Army Research Laboratory

11:10 AM

Effects of Thermo-mechanical Processing on the Dynamic Behavior of Additive Manufactured Ti-6Al-4V: *Andrew Brown*¹; Adam Gregg¹; Ali Ameri¹; JP Escobedo¹; Paul Hazell¹; Daniel East²; Zakaria Quadir³; ¹UNSW Australia; ²CSIRO ; ³Curtin University

11:30 AM

Strain Rate and Stress Triaxiality Effects on Ductile Damage of Additive Manufactured Ti-6Al-4V: *Andrew Ruggiero*¹; Gianluca Iannitti¹; Gabriel Testa¹; Nicola Bonora¹; Domenico Gentile¹; ¹University of Cassino

Electrode Technology Symposium for Aluminum Production – Cathode Materials and Properties

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xianan Liao, Elkem Carbon

Wednesday AM March 14, 2018 Room: 222C Location: Phoenix Convention Center

Session Chairs: Stian Madshus, Elkem Carbon; Mohamed Mahmoud, Emirates Global Aluminium

8:30 AM Introductory Comments

8:35 AM

Transport of Sodium in TiB₂ Materials Investigated by a Laboratory Test and DFT Calculations: Zhaohui Wang¹; *Arne Petter Ratvik*¹; Jesper Friis¹; ¹SINTEF Materials and Chemistry **TECHNICAL PROGRAM**

9:00 AM

Multi-scale Modelling of TiB₂ Degradation Using Crystal Elasticity Model and Density Functional Theory: Afaf Saai¹; Zhaohui Wang¹; Micol Pezzotta¹; Jesper Friis¹; *Arne Ratvik*¹; Per Vullum¹; ¹SINTEF MK

9:25 AM

Simulation on the Initial Stage of Sodium-Graphite Intercalation Using First Principle Calculation: *Jing Sun*¹; Jilai Xue¹; Liu Xuan¹; Zengjie Wang¹; Li Lu¹; ¹University of Science and Technology Beijing (USTB)

9:50 AM

Cathode Structure Optimization Research for Aluminum Reduction Cell: *Yungang Ban*¹; Jing Liu¹; Yu Mao¹; Jihong Mao¹; ¹Northeastern University Engineering & Research Institute Co. Ltd

10:15 AM Break

10:30 AM

Research on the Penetration of Potassium-based Electrolyte into Dry Barrier Materials: *Bao Shengzhong*¹; Chai Dengpeng¹; Shi Zhirong¹; ¹Zhengzhou Non-ferrous Metals Research Institute Co.Ltd of Chalco

10:55 AM

Development and Application of Electrocalciners with Increased Calcination Temperature: *Yi Yang*¹; Shikai Gong¹; Xiaosong Zhou¹; Qianjin Ning¹; ¹Guiyang Aluminum Magnesium Design and Research Institute

Environmentally Assisted Cracking: Theory and Practice – Stress Corrosion Cracking II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Bai Cui, University of Nebraska–Lincoln; Raul Rebak, GE Global Research; Sebastien Dryepondt, Oak Ridge National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Wednesday AM	Room: 105A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Karl Sieradzki, Arizona State University; Sergei Shipilov, Oak Ridge National Laboratory

8:30 AM Invited

Dealloying Induced Stress Corrosion Cracking: *Karl Sieradzki*¹; Nilesh Badwe¹; Xiying Chen¹; Erin Karasz¹; Ariana Tse¹; ¹Arizona State University

9:10 AM

Electrochemical-mechanical Interactions in an Aluminum Alloy under Slow Strain Rate Stress Corrosion Cracking: Xinzhu Zheng¹; Homero Castaneda¹; Ankit Srivastava¹; ¹Texas A&M University

9:30 AM

Corrosion Crack Propagation Modeling Using Meshless Peridynamics Approach: *Srujan Rokkam*¹; Michael Brothers¹; Max Gunzburger²; Kishan Goel³; ¹Advanced Cooling Technologies, Inc.; ²Florida State University; ³Naval Air Systems Command

9:50 AM Break

10:10 AM Invited

From First Discoveries in the Late 1800s to Mechanistic Understanding and Radiation Effects in the Early 2000s: Over 140 Years of Stress Corrosion Cracking Research: Sergei Shipilov¹; ¹Oak Ridge National Laboratory

10:50 AM

EAC Behavior of Modified Duplex Stainless Steel Bars in Seawater: Kewei Gao¹; Haisheng Tong¹; Xiaolu Pang¹; Yanjing Su¹; Yanhui Sun¹; ¹University of Science and Technology Beijing

11:10 AM

TECHNICAL PROGRAM

The Stress Corrosion Cracking Mechanism of a Cu-free Al-Zn-Mg Alloy in Sodium Chloride Solutions: *Christoph Altenbach*¹; Daniela Zander¹; ¹RWTH Aachen University

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention – Fatigue Characterization Using Advanced Experimental Methods in 2D and 3D

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee *Program Organizers:* Ashley Spear, University of Utah; Jean-Briac le Graverend, Texas A&M University; Antonios Kontsos, Drexel

University; Tongguang Zhai, University of Kentucky

Wednesday AM	Room: 125B
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Antonios Kontsos, Drexel University

8:30 AM

Miniaturised Ultrasonic Fatigue Testing in Torsion: Tinger Wen¹; *Jicheng Gong*¹; Angus Wilkinson¹; ¹University of Oxford

8:50 AM

The Effect of Grain Size on Low Cycle Fatigue and Cyclic Stress Strain Behavior of Unalloyed Mg: Aeriel Murphy¹; John Allison¹; ¹University of Michigan

9:10 AM

Nickel-titanium-hafnium Alloy Design for Tribological Systems: Sean Mills¹; Christopher Dellacorte²; Ronald Noebe²; Aaron Stebner¹; ¹Colorado School of Mines; ²NASA Glenn Research Center

9:30 AM

Analysis of Crack Initiation and Early Growth in Ti Using Miniaturised Ultrasonic Fatigue Testing: Arutyun Arutyunyan¹; Jicheng Gong¹; Angus Wilkinson¹; ¹University of Oxford

9:50 AM Break

10:10 AM

Fatigue Damage Precursor Effects on the Dynamic Properties of a-Iron: *Joseph Indeck*¹; Cyril Williams²; Kavan Hazeli¹; ¹University of Alabama in Huntsville; ²U.S. Army Research Laboratory

10:30 AM

Cyclic Deformation Induced Twinning in an Austenitic Ferritic Two Phase Alloy during Low Cycle Fatigue: Guocai Chai¹; *Guocai Chai*²; Lars Ewenz³; Katarina Persson¹; Martina Zimmermann³; ¹Sandvik Materials Technology; ²Linköping University; ³Dresden Technical University

Federation of European Materials Societies (FEMS) Keynote Symposium: Energy and Transportation from a European Materials Perspective – Keynote Session I

Sponsored by: Federation of European Materials Societies (FEMS) Program Organizer: Brett Suddell, Federation of European Materials Societies (FEMS)

Wednesday AM	Room: 228A
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Brett Suddell, Federation of European Materials Societies (FEMS)

8:30 AM Introductory Comments

8:35 AM Invited

Materials and Energy: The Need for a Systemic Approach: *Yves Brechet*¹; ¹Grenoble INP and High Commissioner to Atomic Energy, France

9:05 AM Invited

A European Corporate R&D View: New Materials and Processes in Transportation and Energy: *Winfried Keiper*¹; ¹Bosch Corporate Research, Germany

9:35 AM Invited

Third Generation Solar Cells from Laboratory to Factory: Developing a Scale-up Route for Perovskite Solar Cells to Turn 'Buildings into Power Stations': David Worsley¹; Trystan Watson; ¹Swansea University, United Kingdom

10:05 AM Break

10:25 AM Invited

European Efforts in the Development of High-Quality Metallic Components for Energy and Transport Applications: David Jarvis¹; ¹HIPtee, Norway

10:55 AM Invited

Fatigue Micromechanisms and Failure Analysis of Rail Steels: *Donato Firrao*¹; R. Doglione¹; Paolo Matteis¹; S. Rossi²; R. Sesana³; ¹ DISAT, Politecnico di Torino, Italy; ²Rete Ferroviaria Italiana SpA, Italy; ³DIMEAS, Politecnico di Torino, Italy

11:25 AM Panel Discussion

This discussion will be moderated by Pedro Dolabella Portella.

Frontiers in Solidification Science and Engineering – Nucleation and Grain Refinement

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Damien Tourret, IMDEA Materials Institute; Mohsen Eshraghi, California State University, Los Angeles; Johannes Hötzer, University of Applied Science Karlsruhe

Wednesday AM	Room: 126C
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Damien Tourret, IMDEA Materials

8:30 AM

Nucleation Modes in a Hydrodynamic Phase-field Crystal Model of Solidification: Laszlo Granasy¹; *Frigyes Podmaniczky*¹; Gyula Tóth¹; ¹Wigner Research Centre for Physics

8:50 AM

Investigating Nucleation Phenomena and Equilibrium/Non-equilibrium Phases in Rapid Solidification of Binary Al-Cu Alloys: Avik Mahata¹; *Mohsen Asle Zaeem*¹; Michael Baskes²; ¹Missouri University of Science and Technology; ²University of California, San Diego

9:10 AM

Kinetic Factor in the Nucleation Rate of Stoichiometric Compounds: *Huajing Song*¹; Yang Sun¹; Feng Zhang¹; Cai-zhuang Wang¹; Kai-Ming Ho²; Mikhail Mendelev¹; ¹Ames Laboratory, US Department of Energy; ²Iowa State University

9:30 AM

Modeling of Twin Growth during Directional Solidification of Polycristalline Silicon: *Adrian Pineau*¹; Gildas Guillemot¹; Charles-Andre Gandin¹; ¹MINES ParisTech

9:50 AM

Influence of Ta on Solidification Behaviour of Undercooled Ni-Ta Alloys: Matthias Kolbe¹; *Masoumeh Faraji*²; Thomas Lierfeld³; Gunther Eggeler⁴; Dieter Herlach¹; ¹German Aerospace Center; ²Coventry University; ³SGL Group; ⁴Ruhr- Universität Bochum

10:10 AM Break

10:30 AM

Investigating the Impact of Inoculation on Al Based Alloys: Mareike Wegener¹; Maike Becker¹; Matthias Kolbe¹; Florian Kargl¹; ¹German Aerospace Center (DLR)

10:50 AM

Inoculation in Lab Scale Low Alloyed Steel Castings: *Marvin Gennesson*¹; Dominique Daloz²; Julien Zollinger²; Bernard Rouat²; Hervé Combeau²; Joëlle Demurger³; Delphine Poirier³; ¹Institut Jean Lamour / Asco Industries; ²Institut Jean Lamour; ³Asco Industries

11:10 AM

Solidification of Al Alloys Investigated by HAADF-STEM, EELS, and APT: *Jiehua Li*¹; ¹University of Leoben

11:30 AM

Solidification of a Mushy Zone in a Static Temperature Gradient: Phasefield Simulations: *Guillaume Boussinot*¹; Markus Apel¹; Alexandre Viardin¹; ¹Access e.V.

High Entropy Alloys VI – Structures and Characterization I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Wednesday AM	Room: 121A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: E-Wen Huang, National Chiao Tung University; Shou-Yi Chang, National Tsing Hua University

8:30 AM Invited

Sluggish Phase Transition in CoCrFeMnNi High Entropy Alloy: Collective Structural Modulation: *E-Wen Huang*¹; Yu-Lun Jao¹; Jayant Jain²; Wan Chuck Woo³; An-Chou Yeh⁴; ¹National Chiao Tung University; ²IIT Delhi; ³Korea Atomic Energy Research Institute; ⁴National Tsing Hua University

8:50 AM

In-situ Synchrotron X-ray Diffraction Characterization of High Entropy Alloys for Hydrogen Storage Applications: *Guilherme Zepon*¹; Daniel Leiva¹; Renato Strozi²; Vinicius Aranda¹; Santiago Figueroa³; Walter Botta¹; ¹Department of Materials Engineering - Federal University of São Carlos; ²Graduate Program of Materials Science and Engineering - Federal University of São Carlos; ³Brazilian Synchrotron Ligth Laboratory

9:10 AM Invited

Probing Local Lattice Distortion in High-entropy Alloys: *Yang Tong*¹; Gihan Velisa¹; Taini Yang²; Ke Jin¹; Chenyang Lu²; Hongbin Bei¹; J. Ko³; D. Pagan³; R. Huang³; Y. Zhang¹; L. Wang²; F. Zhang¹; ¹Oak Ridge National Laboratory; ²University of Michigan; ³Cornell University

9:30 AM Invited

Radiation Effects in High Entropy Alloys Revealed by Atom Probe Tomography: Jonathan Poplawsky¹; Wei Guo¹; Wei-Ying Chen²; Rui Feng³; Tengfei Yang³; Haoyin Diao³; Peter Liaw³; ¹Oak Ridge National Laboratory; ²Argonne National Laboratory; ³The University of Tennessee

9:50 AM Invited

Real-time Mapping of Local Dissolution Processes in Al CoCrFeNi Highentropy Alloys: *Yunzhu Shi*¹; Bin Yang¹; Liam Collins²; Nina Balke²; Peter Liaw³; ¹University of Science and Technology Beijing; ²Oak Ridge National Laboratory; ³The University of Tennessee

10:10 AM Break

10:30 AM Invited

Loss of Crystallographic Anisotropy and Deformation Heterogeneity in FCC and BCC High-entropy Alloys: Chi-Huan Tung¹; Wen-Ju Chen¹; Tai-Jan Huang¹; Yu-Chieh Lo²; *Shou-Yi Chang¹*; ¹National Tsing Hua University; ²National Chiao Tung University

10:50 AM

Measurement of Equilibrium Concentrations of Vacancies in Highentropy Alloy Co-Cr-Ni by In-situ Neutron Diffraction: *Yu-Lun Jao*¹; E-Wen Huang¹; 'National Chiao Tung University **TECHNICAL PROGRAM**

11:10 AM Invited

In Situ Ion Irradiation on Al-Co-Cr-Fe-Ni High Entropy Alloys: Jing Hu¹; *Meimei Li*¹; Rui Feng²; Mark Kirk¹; Peter Liaw²; ¹Argonne National Laboratory; ²University of Tennessee

11:30 AM Invited

Core Structure of ¹/₂<111> Screw Dislocations in Refractory BCC High Entropy Alloys: Yi-Shen Lin¹; Vaclav Vitek¹; ¹University of Pennsylvania

11:50 AM Invited

Separation of Static and Dynamic Displacements in CrMnFeCoNi: Lewis Owen¹; Helen Playford²; Howard Stone¹; Nicholas Jones¹; ¹University of Cambridge; ²ISIS Neutron and Muon Source

High Entropy Alloys VI – Structures and Modeling I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Wednesday AM	Room: 121B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Michael Bakas, U.S. Army Research Office; Michael Widom, Carnegie Mellon University

8:30 AM Invited

WEDNESDAY AM

Complex Multicomponent Alloys: From High-throughput Calculations to Microstructure Effects in High Entropy Alloys: James Morris¹; ¹Oak Ridge National Laboratory

8:50 AM Invited

First-principles Prediction of High-entropy-alloy Stability: *Michael Widom*¹; Rui Feng²; Peter Liaw²; Michael Gao³; ¹Carnegie Mellon University; ²University of Tennessee; ³National Energy Technology Laboratory

9:10 AM Invited

Atomistic Monte Carlo Modeling of the Microstructures of High Entropy Alloys: *Guofeng Wang*¹; ¹University of Pittsburgh

9:30 AM Invited

The Melting of Ultra-high Temperature Refractory High Entropy Alloys: An Ab Initio Molecular Dynamics Study: *William Yi Wang*¹; Bin Gan¹; Jun Wang¹; Deye Lin²; Bin Tang¹; Shun-Li Shang³; Hongchao Kou¹; Haifeng Song²; Xi-Dong Hui⁴; Yiguang Wang¹; Jinshan Li¹; Peter Liaw⁵; Zi-Kui Liu³; ¹Northwestern Polytechnical University; ²Institute of Applied Physics and Computational Mathematics; ³The Pennsylvania State University; ⁴University of Science and Technology Beijing; ⁵The University of Tennessee

9:50 AM Invited

Life at the Edge: Nudging High-entropy Alloy Systems along Different Pathways: M. Kramer¹; Duane Johnson¹; Pratik Ray¹; ¹Iowa State University

10:10 AM Break

10:30 AM Invited

Predictive Modeling of the Elastic Properties of Refractory High Entropy Alloys: *Wei Chen*¹; Peter Liaw²; ¹Illinois Institute of Technology; ²University of Tennessee

10:50 AM

Computational Investigations of Mechanical Behavior of AlxCrCoFeNi High-entropy Alloy: Yu-Chia Yang¹; Cuixia Liu¹; Chun-Yu Lin¹; Zhenhai Xia¹; ¹University of North Texas

11:10 AM

The Role of Short-range Order on the Dislocation Behavior in BCC and FCC Multicomponent Solid Solution Alloys Using Atomistic Simulations: *Edwin Antillon*¹; Satish Rao¹; Christopher Woodward²; Triplicane Parthasarathy¹; Oleg Senkov¹; Brahim Akdim¹; ¹AFRL/UES; ²AFRL

11:30 AM Invited

Atomistic Simulations of Dislocation Behavior in BCC and FCC Multicomponent Solid Solution Alloys: Satish Rao¹; Edwin Antillon¹; Christopher Woodward²; Brahim Akdim¹; Triplicane Parthasarathy¹; Oleg Senkov¹; ¹UES Inc.; ²Air Force Research Laboratory

High Temperature Corrosion of Structural Materials – Ni-base Alloys and Corrosive Environments at Elevated Temperatures

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; David Shifler, Office of Naval Research; Mark Weaver, University of Alabama; Steve Coryell, Special Metals; James Earthman, University of California, Irvine

Wednesday AM March 14, 2018 Room: 227C Location: Phoenix Convention Center

Session Chairs: Kinga Unocic, Oak Ridge National Laboratory; David Shifler, Office of Naval Research

8:30 AM Invited

Oxide Scale Formation on Cast Ni-base Superalloys in High pO₂environments: Effect of Alloying Additions and Presence of Water Vapor in the Test Gas: *Dmitry Naumenko*¹; Katja Wollgarten¹; Timur Galiullin¹; Wojciech Nowak²; Willem Josef Quadakkers¹; ¹Forschungszentrum Juelich GmbH; ²Rzeszów University of Technology

9:00 AM

The Interaction between Applied Stress and Oxidation in a Coarse Grain Ni-based Superalloy at Temperatures above 700 °C: *Joshua Ramsay*¹; Mary Taylor¹; Hugh Evans¹; Dan Child²; Hang Li¹; Paul Bowen¹; ¹University of Birmingham; ²Rolls-Royce plc.

9:20 AM

The Effect of Titanium Additions on the Oxidation Properties of Ni-Cr-Al Ternary Alloys: *Thomas Reynolds*¹; Mary Taylor¹; Mark Hardy²; Hugh Evans¹; ¹University of Birmingham; ²Rolls-Royce plc

9:40 AM

Outward Diffusion through Protective Alumina on NiAl-alloys: *Torben Boll*¹; Olof Bäcke²; Martin Heilmaier¹; Krystyna Stiller²; ¹Karlsruhe Institute for Technology; ²Department of Physics, Chalmers University of Technology

10:00 AM Break

10:20 AM

Oxidation Mechanism of NiAl-Mo Alloys: Insights from a Cellular Automaton Approach: *Pratik Ray*¹; Mufit Akinc²; Matthew Kramer¹; ¹Ames Laboratory, US-DOE; ²Iowa State University

10:40 AM

Oxidation of Transient Liquid Phase Bonded Ni Alloys in Hightemperature CO₂: *Ömer Dogan*¹; Monica Kapoor¹; Richard Oleksak¹; Casey Carney¹; Gordon Holcomb¹; 'National Energy Technology Laboratory

11:00 AM

Effects of CO₂ on Fatigue and Creep Properties of the Ni-base Alloy 282: *Kinga Unocic*¹; Amit Shyam¹; Sebastien Dryepondt¹; Philip Maziasz¹; ¹Oak Ridge National Laboratory

11:20 AM

Evaluating the Influence of CO₂ Purity on the Corrosion of Structural Alloys for Supercritical CO₂ Power Cycles: *Matthew Walker*¹; Elizabeth Withey¹; Alan Kruizenga¹; ¹Sandia National Laboratories (Livermore)

Hume-Rothery Award Symposium: Computational Thermodynamics and Its Implications to Kinetics, Properties, and Materials Design – Data Science and Diffusion

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Suveen Mathaudhu, University of California, Riverside; Michael Gao, National Energy Technology Lab; Chelsey Hargather, New Mexico Institute of Mining and Technology; Richard Hennig, University of Florida; James Saal, QuesTek Innovations; Dongwon Shin, Oak Ridge National Laboratory

Wednesday AMRoom: 127CMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Suveen Mathaudhu, University of California, Riverside; Raymundo Arróyave, Texas A&M University

8:30 AM Invited

Alloy Design as the Solution to a Continuous Constraint Satisfaction Problem: *Raymundo Arroyave*¹; Anas Abu-Odeh¹; Tann Kirk¹; Edgar Galvan¹; Richard Malak¹; ¹Texas A & M University

9:00 AM Invited

Rapid and Systematic Data Collection for Computational Thermodynamics and Kinetics: *Ji-Cheng Zhao*¹; ¹The Ohio State University

9:30 AM Invited

Computational Thermodynamics: Humans and Machines: *Marius Stan*¹; ¹Argonne National Laboratory

10:00 AM Break

10:20 AM Invited

Mass and Heat Diffusion and Thermotransport in Liquid Alloys: Graeme Murch¹; ¹The University of Newcastle

10:50 AM Invited

First-principles Calculation of Self-diffusion of Oxygen in Zirconia: *Ying Chen*¹; Hubin Luo²; Tetsuo Mohri¹; ¹Tohoku University; ²Chinese Academy of Sciences

11:20 AM Invited

The Future of Aerospace Applications of Additive Manufacturing: Opportunities, Optimization and Modeling: *Andrew Shapiro*¹; ¹Jet Propulsion Laboratory

11:50 AM Invited

Mixed-space Approach to Phonons for Polar Materials and its Connection with the Calculations of Seebeck Coefficient: Yi Wang¹; Long Qing Chen¹; Zi-Kui Liu¹; ¹Pennsylvania State University

Integrative Materials Design III: Performance and Sustainability – Integrative Materials Design and Manufacturing: Approaches, Advances, and Applications

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee *Program Organizers:* Diana A. Lados, Worcester Polytechnic Institute; Brad Boyce, Sandia National Laboratories; Corbett Battaile, Sandia National Laboratories; Anastasios Gavras, Riley Power

Wednesday AM March 14, 2018

Room: 132A Location: Phoenix Convention Center

Session Chairs: Wenjun Cai, University of South Florida; Brad Boyce, Sandia National Laboratories

8:30 AM Invited

Nuances in Addressing Multilevel Materials Design Problems: David McDowell¹; ¹Georgia Institute of Technology

8:50 AM Invited

Hierarchical Microstructural Paradigms for Achieving Exceptional Strength and Ductility: Rajiv Mishra¹; ¹University of North Texas

9:10 AM Invited

The Effects of Microstructural Evolution during Hot- and Warm-forming of Aluminum Alloy Sheet on Pervice Performance: *Eric Taleff*⁺; ⁻¹The University of Texas at Austin

9:30 AM Invited

Improved Formability of Aluminium Alloys at Low Temperatures for Automotive Application: *Belinda Gruber*¹; Florian Grabner²; Thomas Kremmer¹; Stefan Kirnstötter³; Robert Schneider⁴; Robin Schäublin⁵; Peter Uggowitzer⁵; Stefan Pogatscher¹; ¹Montanuniversitaet Leoben; ²Leichtmetallkompetenzzentrum Ranshofen GmbH; ³AMAG Rolling GmbH; ⁴Voestalpine Automotive Components Schwäbisch Gmünd GmbH & Co. KG; ⁵ETH Zürich

9:50 AM Invited

Magnesium Based Metal Matrix Nanocomposites - Processing and Properties: Hajo Dieringa¹; Norbert Hort¹; ¹Helmholtz-Zentrum Geesthacht

10:10 AM Break

10:25 AM Invited

Thermodynamically Stable Nanocrystalline Al, Ni and Ag Alloys by Electrodeposition: Rose Roy¹; *Robert Hilty*¹; Alyssa Kelley¹; ¹Xtalic Corporation

10:45 AM Invited

Optimizing Wear and Corrosion Resistance of Superlattice Coatings through Atomic-scale Design: *Wenjun Cai*¹; ¹University of South Florida

11:05 AM Invited

Increased Materials Reliability via Shot Peening: Simulations and Experiments: Siavash Gahnbari¹; Raheleh Rahimi¹; *David Bahr*¹; ¹Purdue University

11:25 AM Invited

Designing a Resilient Carburization Heat Treating Process: *Richard Sisson*¹; Lei Zhang¹; Jaiqi Ren¹; Mei Yang¹; ¹Worcester Polytechnic Institute, Center for Heat Treating Excellence

11:45 AM Invited

Microstructure Evolution of the High Temperature Intermetallic Phase Al₄Fe_{1,7}Si: *Sujeily Soto-Medina*¹; Giulia Perina¹; Nicholas Etrick¹; Biswas Rijal¹; Richard Hennig¹; Michele Manuel¹; ¹University of Florida

Magnesium Alloy Development: An LMD Symposium in Honor of Karl Kainer – Degradation and Microstructure

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Norbert Hort, Helmholtz-Zentrum Geesthacht; Alan Luo, The Ohio State University

Wednesday AMRoom: 223March 14, 2018Location: Phoenix Convention Center

Session Chairs: Dietmar Letzig, MagIC - Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht; Mark Easton, Royal Melbourne Institute of Technology University

8:30 AM Keynote

Degradable Magnesium Implants - Assessment of the Current Situation: *Regine Willumeit-Roemer*¹; Nezha Ahmad Agha¹; Berengere Luthringer¹; ¹Helmholtz-Zentrum Geesthacht

9:00 AM

Study on Mg-Si-Sr Ternary Alloys for Biomedical Applications: *Omer Van der Biest*¹; Andrea Gil-Santos¹; Norbert Hort²; Rainer Schmid-Fetzer³; Nele Moelans¹; ¹K.U. Leuven; ²Helmholtz-Zentrum Geesthacht; ³Clausthal University of Technology

9:20 AM

Biodegradable Mg-Y and Mg-Li Alloys with the Addition of Ca and Zn for Medical Application: *Sonia Boczkal*¹; Michal Karas¹; Anna M. Osyczka²; Marzena Lech-Grega¹; ¹Institute of Non-Ferrous Metals, Light Metals Division, Skawina, Poland; ²Jagiellonian University, Faculty of Biology and Earth Sciences, Cracow, Poland

9:40 AM Invited

Co-precipitation on the Basal and Prismatic Planes in Mg-Gd-Ag-Zr Alloy Subjected to Over-ageing: *Jiehua Li*¹; ¹University of Leoben

10:00 AM Break

10:20 AM

Intermetallic Phase Characteristics in the Mg-Nd-Zn System: Domonkos Tolnai¹; Samuel Hill¹; Serge Gavras¹; Tungky Subroto¹; Ricardo Buzolin²; Norbert Hort¹; ¹Helmholtz Zentrum Geesthacht; ²Graz University of Technology

10:40 AM Invited

Solidification Analysis of Grain Refined AZ91D Magnesium Alloy via Neutron Diffraction: *Tyler Davis*¹; Lukas Bichler¹; Dimitry Sediako¹; Levente Balogh²; ¹University of British Columbia; ²Canadian Nuclear Laboratories

11:00 AM

Evolution of the Dislocation Structure during Compression in a Mg-Zn-Y Alloy with Long Period Stacking Ordered Structure: *Kristian Máthis*¹; Moustafa El-Tahawy²; Gerardo Garcés³; Jeno Gubicza²; ¹Faculty of Mathematics and Physics, Charles University; ²Eötvös Loránd University; ³CENIM-CSIC

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Structural Materials II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Wednesday AM	Room: 104B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Stuart Maloy, Los Alamos National Laboratory; Brian Cockeram, Bechtel-Bettis

8:30 AM Invited

Microstructure Evolution in Neutron Irradiated and Ion Irradiated Alloy T91: *Gary Was*¹; Stephen Taller¹; Zhijie Jiao¹; Kevin Field²; ¹University of Michigan; ²Oak Ridge National Laboratory

9:10 AM

The ATR-2 RPV Steel Irradiation Hardening Data Base: An Overview and Some Major Findings: *Nathan Almirall*¹; Peter Wells¹; Takuya Yamamoto¹; David Gragg¹; Kirk Fields¹; G. R. Odette¹; Randy Nanstad²; Keith Wilford³; Tim Williams³; ¹University of California, Santa Barbara; ²Oak Ridge National Laboratory; ³Rolls Royce

9:30 AM

Microstructure Based Hardening Models for Alloys Irradiated with Charged Particles an in the ATR and BOR60 Reactors: *Takuya Yamamoto*¹; Peter Wells¹; Emanuelle Marquis²; Dhriti Bhattacharyya³; Tarik Saleh⁴; Stuart Maloy⁴; G. Robert Odette¹; ¹University of California, Santa Barbara; ²University of Michigan; ³ANSTO; ⁴Los Alamos National Laboratory

9:50 AM

Effect of 0.25 and 2.0 MeV He-ion Irradiation on Cr Atoms Distribution in Model Fe-Cr Alloys: *Stanislaw Dubiel*¹; Jan Zukrowski¹; Yves Serruys¹; ¹AGH University of Science and Technology

10:10 AM Break

10:30 AM

Radiation Effects on HT9 Tempered Martensitic Steels as a Function of Initial Dislocation Density: *Eda Aydogan*¹; Stuart Maloy¹; Yongqiang Wang¹; ¹Los Alamos National Laboratory

10:50 AM

Atom Probe Examinations of Zircaloy Irradiated at 358-410C: Brian Cockeram¹; Phil Edmondson²; Keith Leonard²; Jim Hollenbeck¹; ¹NNL Bettis Laboratory; ²Oak Ridge National Laboratory

11:10 AM

Examining the Effects of Neutron Irradiation on Zirconium-alloy Oxide Film Microstructure Using Focused Ion Beam Techniques: Gene Lucadamo¹; John Seidensticker¹; Ram Bajaj²; Arash Parsi³; ¹Bettis Laboratory, NNL; ²Bettis Laboratory, NNL (retired); ³Westinghouse Electric Company

11:30 AM

Post-irradiation Examination (PIE) of Irradiated Hafnium: *Ken Anderson*¹; Brandon Miller²; Jeffery Aguiar³; Jason Gruber¹; Richard Smith¹; ¹Naval Nuclear Laboratory; ²Idaho National Laboratory-Materials & Fuels Complex; ³Idaho National Laboratory-Fuel Design and Development

TECHNICAL PROGRAM

Materials for Energy Conversion and Storage – Functional Materials I

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Wednesday AM	Room: 229B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Kyle Brinkman, Clemson University; Ritesh Sachan, ARL, North Carolina

8:30 AM

An Intermediate-temperature Oxygen Transport Membrane Based on Rare-earth Doped Bismuth Oxide: *Kyle Brinkman*¹; Mingyang Zhao¹; Tao Hong¹; Frank Chen²; Shumin Fang³; Siwei Wang³; Hailiang Zhang³; ¹Clemson University; ²University of South Carolina; ³Nanowise LLC

8:50 AM Invited

Understanding Elasticity of Novel Porous Ceramics at Different Physical Conditions: *Joseph Gladden*¹; Ashoka Karunarathne¹; Gautam Priyadarshan¹; Amit Pandey²; ¹University of Mississippi; ²LG Fuel Cell Systems Inc.

9:15 AM Invited

Interfacial Charge Transfer Dynamics in Graphene-inorganic 'Hybrids' with Transition Metal Oxides Using In-situ Raman Spectroelectrochemistry: Sanju Gupta¹; ¹Western Kentucky University

9:40 AM

Superionicity Emanating from Jammed States: *Venkata Annamareddy*¹; Jacob Eapen¹; ¹North Carolina State University

10:00 AM Break

10:15 AM

Silicon/Graphite Nanocomposites with a Thin Carbon Shell: How Etching Enhances the Electrochemical Performance of Si-based Composite: Maziar Ashuri¹; Qianran He¹; Leon Shaw¹; ¹Illinois Institute of Technology (IIT)

10:35 AM

Using a Catalyst to Enhance the Free Corrosion Dealloying Rate & Application of Nanoporous Materials as Alloy-type Anodes in Alkali Ion Batteries: *Eric Detsi*¹; ¹University of Pennsylvania

10:55 AM

In Situ Imaging and Spectroscopy of Carbon Deposition on a Ni/CeO₂ Catalyst: Ethan Lawrence¹; Peter Crozier¹; ¹Arizona State University

11:15 AM

Combinatorial Development of Hetero-structured LSC-113 and LSC-214 Perovskite Cathode for High ORR Activity: *Dogancan Sari*¹; Ziya Torunoglu¹; Yunus Kalay¹; Tayfur Ozturk¹; ¹Middle East Technical University

11:35 AM

Formation and Corrosion Properties of $Zr_{50}Al_{10}Cu_{30}Au_{10}$ and $Zr_{41}Cu_{41}Al_8Ag_6Au_4$ Bulk Glassy Alloys: *El-Sayed Shalaan*¹; Akihisa Inoue²; Fahad Al-Marzouki¹; Saleh Al-Heniti¹; Abdullah Obaid¹; ¹King Abdulaziz University; ²Josai International University

Mechanical Behavior at the Nanoscale IV – Material Properties in Small Dimensions

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Wednesday AM March 14, 2018

Room: 101C Location: Phoenix Convention Center

Session Chairs: Seok-Woo Lee, University of Connecticut; Wendy Gu, Stanford University

8:30 AM Invited

Solution Growth of Single-crystalline Intermetallic Compounds and their Mechanical Behaviors at Small Length Scales: *Seok-Woo Lee*¹; John Sypek¹; Keith Dusoe¹; Gyuho Song¹; Paul Canfield²; Sergey Budko³; Christopher Weinberger⁴; ¹University of Connecticut; ²Iowa State University; ³Ames Laboratory; ⁴Colorado State University

9:00 AM

Size-dependent Pseudo-elasticity in Gold Nanocrystals: *X. Wendy Gu*¹; Lindsey Hanson²; A. Paul Alivisatos³; ¹Stanford University; ²Trinity College; ³UC Berkeley

9:20 AM

Stress-dependent Activation Volumes in Au Nanowires: Christian Brandl¹; ¹Karlsruhe Institute of Technology

9:40 AM

Plasticity of Face-centered Cubic Metallic Nanoparticles under Uniaxial Compression: Selim Bel Haj Salah¹; *Celine Gerard*¹; Laurent Pizzagalli¹; ¹Institut Pprime, CNRS - ENSMA - Université de Poitiers

10:00 AM Break

10:20 AM

Slip Dynamics in Small-scale Crystals and the Transition from Intermittent to Smooth Flow: Gregory Sparks¹; *Robert Maass*¹; ¹University of Illinois at Urbana-Champaign

10:40 AM

The Extreme Value Statistics of Intermittent Plasticity: Peter Derlet¹; Robert Maass²; ¹Paul Scherrer Institut; ²University of Illinois at Urbana-Champaign

11:00 AM

Ultrahigh Strength and Fracture of Metallic and Semiconductor Nanowires: *Yang Lu*¹; ¹City University of Hong Kong

11:20 AM

Stress-strain Responses from Spherical Nanoindentation and Micro-pillar Compression Experiments in Fe-3% Si: A Comparative Study: Soumya Varma¹; Jordan Weaver²; Johann Michler³; Surya Kalidindi⁴; Siddhartha Pathak¹; ¹University of Nevada Reno; ²Los Alamos National Laboratory; ³EMPA – Swiss Federal Laboratories for Materials Testing and Research; ⁴Woodruff School of Mechanical Engineering, Georgia Institute of Technology

11:40 AM

Loading Sequence Dependent Deformation Mode of FCC Nanowires: Sangryun Lee¹; Ill Ryu²; Seunghwa Ryu¹; ¹ Korea Advanced Institute of Science and Technology; ²University of Texas at Dallas

Mechanical Behavior at the Nanoscale IV – Temperature, Rate and Environmental Effects

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Wednesday AM Room: 103A March 14, 2018

Location: Phoenix Convention Center

Session Chairs: Jaime Marian, UCLA; Nathan Mara, Los Alamos National Lab

8:30 AM Invited

Understanding the Fundamental Mechanisms of Serrated Flow in BCC Alloys Using Computational Modeling: Jaime Marian¹; Yue Zhao¹; Lucile Dezerald²; ¹University of California, Los Angeles; ²Université de Lorraine

9:00 AM

Mechanical Properties of Rapidly Solidified Ni.Ge, Intermetallic: Nafisul Haque1; Robert Cochrane1; Andrew Mullis1; 1University of Leeds

9:20 AM

WEDNESDAY AM

Determination of Crack Tip Stress around the Notch of IN-617 by Using Nano Mechanical Raman Spectroscopy: Debapriva Mohanty¹; Yang Zhang¹; Vikas Tomar¹; ¹Purdue University

9:40 AM

Dynamic TEM In Situ Mechanical Testing: Characterization of Defects Motion at High Strain Rates: Thomas Voisin¹; Michael D.¹; Tian Li¹; Jonathan Ligda²; Nicholas Lorenzo²; Brian Schuster²; Melissa Santala¹; Yong Zhang³; Xiaolong Ma³; Geoffrey Campbell¹; Timothy Weihs³; ¹Lawrence Livermore National Laboratory; ²Army Research Laboratory; ³Johns Hopkins University

10:00 AM Break

10:20 AM Invited

High-throughput Nanomechanical Characterization of Fe-alloys for Service under Extreme Conditions: Nathan Mara¹; Doug Stauffer²; Youxing Chen3; Jordan Weaver3; Siddhartha Pathak4; Ashley Reichardt5; Peter Hosemann⁵; ¹Los Alamos National Laboratory and the University of Minnesota; ²Bruker Nano Surfaces; ³Los Alamos National Laboratory; ⁴University of Nevada, Reno; ⁵University of California, Berkeley

10:50 AM

Temperature Effect on the Stochastic Plasticity in BCC Micropillars: Nicole Aragon¹; Ill Ryu¹; ¹The University of Texas at Dallas

11:10 AM

Temperature Dependence of Indentation Size Effects on Polycrystalline Tungsten from 25 to 950 C: Ben Beake¹; Adrian Harris¹; Dave Armstrong²; Johnny Moghal2; 1Micro Materials Ltd; 2University of Oxford

11:30 AM

Instrumentation for In Operando Characterization: Douglas Stauffer1; Eric Hintsala1; Syed Asif1; 1Bruker Nano Surfaces

Multi-material Additive Manufacturing: Processing and Materials Design - Non-beam Based and **Emerging AM Technologies for Metals**

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Hang Yu, Virginia Tech; Nanci Hardwick, Aeroprobe Corporation; Steven Boles, Hong Kong Polytechnic University; Blake Barnett, Army Research Laboratory; Michael Gibson, Desktop Metal

Wednesday AM	Room: 232C
March 14, 2018	Location: Phoenix Convention Center

Session Chair: To Be Announced

8:30 AM

Large-scale Additive Manufacture of MMC and Layered Multi-material Products: Chase Cox1; Nanci Hardwick1; 1Aeroprobe Corporation

8:50 AM

Nanomechanical and EBSD Characterization of Thermo-mechanical Additive Manufactured Inconel 625: Paul Allison¹; Zack McClelland²; Dustin Avery1; Oscar Rivera3; J.B. Jordon1; Luke Brewer1; Nanci Hardwick4; ¹University of Alabama; ²US Army ERDC; ³Sikorsky Aircraft Corporation; ⁴Aeroprobe Corporation

9:10 AM

Novel High Temperature Drop on Demand Liquid Metal-jetting for the Production of Single and Multi-material 3D Objects: Marco Simonelli¹; Mark East¹; Nesma Aboulkhair¹; Chris Tuck¹; Richard Hague¹; ¹University of Nottingham

9:30 AM Invited

A Separable Support Strategy for 3D Printing of Complex Metal Parts: Nihan Tuncer1; Jay Tobia1; Michael Gibson1; Nicholas Mykulowycz1; Alexander Barbati¹; Aaron Preston¹; Dans Krause; Brian Kernan¹; Mark Sowerbutts1; Dana Krause1; Richard Fontana1; Jonah Myerberg1; Ricardo Fulop¹; Yet-Ming Chiang¹; Christopher Schuh¹; Animesh Bose¹; Jan Schroers¹; John Hart2; Jay Tobia1; 1Desktop Metal, Inc.; 2Massachusetts Institute of Technology

10:00 AM Break

10:20 AM

Microstructure and Mechanical Properties of Additive Friction Stir Processed Dissimilar Metals: Biswajit Dalai¹; Nanci Hardwick²; Jianging Su²; Benjamin Sutton3; Nicholas Mohr3; Seetha Mannava1; Young-Sik Pyun4; Vijay Vasudevan1; 1University of Cincinnati; 2Aeroprobe Corp; 3EPRI; 4Sunmoon University

10.40 AM

Bonding Features and Microstructural Evolution in Cold Sprayed Metallic Coatings and Bulks: A New Materials Perspective: Yu Zou¹; ¹University of Toronto

11:00 AM

Development of Novel Squeeze Cast High Tensile Strength Al-Si-Cu-Ni-Sr Alloys: Li Fang1; Luyang Ren1; Xinyu Geng1; Henry Hu1; Xueyuan Nie1; Jimi Tjong1; 1University of Windsor

Nanocomposites V: Structure-Property **Relationships in Nanostructured Materials – Metal** Matrix Nanocomposites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Meisha Shofner, Georgia Institute of Technology; Nikhilesh Chawla, Arizona State University

Wednesday AM	Room: 102C
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Meisha Shofner, Georgia Institute of Technology

8:30 AM

Super Copper with Populous Self-dispersed Nanoparticles: Gongcheng Yao1; Chezheng Cao1; Abdolreza Javadi2; Xiaochun Li2; 1Department of Materials Science and Engineering, University of California; ²Department of Mechanical and Aerospace Engineering, University of California

8:50 AM

How to Play with Grain Size and Texture to Tune Mechanical Properties of Architectured Materials: The Case of Cu-Nb (Nano)Composite Wires: Ludovic Thilly¹; Pierre-Olivier Renault¹; Florence Lecouturier²; ¹Pprime Institute - University of Poitiers; ²LNCMI-Toulouse

9:10 AM

Rapid Synthesis of Lightweight Metal Matrix Nanocomposite Processed by High-pressure Torsion: Megumi Kawasaki1; Jae-il Jang2; Terence Langdon3; ¹Oregon State University; ²Hanyang University; ³University of Southampton

9:30 AM

Mechanochemical Synthesis of Intermetallic Phases in Systems Al - Nb - (Ti) via Mechanical Alloying: Petra Hanusova1; 1Brno University of Technology, Faculty of Mechanical Engineering

9:50 AM

Synthesis and Characterization of Crystalline-amorphous Composite: Taiwo Dada1; Olanrewaju Ojo1; Chuang Deng1; 1University of Manitoba

10:10 AM Break

10:30 AM

Fabrication of Super Al and Mg Powders with Self-dispersed Nanoparticles: Abdolreza Javadi¹; Shuaihang Pan¹; Chezheng Cao¹; Gongcheng Yao¹; Xiaochun Li1; 1University of California, Los Angeles

10:50 AM

The Effects of Nano-Al₄C₄ on Precipitation Hardening and Mechanical Behaviors in Al-5.5Cu Composites: Daeyoung Kim¹; Jun Yeon Hwang²; Hyunjoo Choi¹; ¹School of Advanced Materials Engineering, Kookmin University; ²Institute of Advanced Composite Materials, Korea Institute of Science and Technology

11:10 AM

Superplastic Behavior of Ultrafine Grained Aluminium Matrix Nano Composite: Suman Deb1; Sushanta Panigrahi1; Matthias Weiss2; 1Indian Institute of Technology, Madras; ²Deakin University

11:30 AM

Microstructure and Mechanical Properties of AA5083-Al,O, Bulk Nanocomposites Produced by Two-step Ultrasonic Casting Technique: Vishwanatha Hire Math1; Jayakumar Eravelly1; Cheruvu Kumar1; Sudipto Ghosh1; 1Indian Institute of Technology

Perfluorocarbon Generation and Emissions from Industrial Processes – PFC Measurements, **Reduction and Abatement Methods**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizers: Pascal Lavoie, Light Metals Research Centre - The University of Auckland; David Wong, University of Auckland; Pernelle Nunez, International Aluminium Institute

Wednesday AM March 14, 2018

Room: 222B Location: Phoenix Convention Center

Session Chair: Ana Maria Martinez, SINTEF

8:30 AM Introductory Comments

8.35 AM

Low Voltage PFC Measurements and Potential Alternative to Reduce Them at Alcoa Smelters: Eliezer Batista¹; Luis Espinoza-Nava¹; Chris Tulga²; Richard Marcotte²; Yan Duchemin³; Steven Starr⁴; Petre Manolescu⁵; ¹Alcoa Technical Center; ²Alcoa Massena; ³Alcoa ABI; ⁴Alcoa TN; ⁵Alcoa Iceland

9:00 AM

New Approach for Quantification of Perfluorocarbons Resulting from High Voltage Anode Effects: Lukas Dion¹; Simon Gaboury²; László Kiss¹; Sándor Poncsák¹; Charles-Luc Lagacé³; ¹Université du Québec à Chicoutimi; ²Rio Tinto; ³Aluminerie Alouette inc.

9:25 AM

New Algorithm for Calculating CF4 Emissions from High Voltage Anode Effects: Jerry Marks1; Pernelle Nunez2; 1J Marks & Associates; 2International Aluminium Institute

9:50 AM

Validation of Online Monitoring of PFC by QCL with FTIR Spectroscopy: Thor Anders Aarhaug¹; Alain Ferber¹; Heiko Gaertner¹; Steinar Kolås²; Sven Olof Ryman²; Peter Geiser³; ¹SINTEF; ²Hydro Aluminium; ³Neo Monitors

10:15 AM Break

10:30 AM

PFC Emission Reduction in the Semiconductor Industry: Michael Czerniak1: 1Edwards

10:55 AM

Methodologies to Measure Greenhouse Gas (GHG) Emissions from Industrial Processes and Determine the GHG Emission Factors: Brian Mader1; 13M Company Environmental Laboratory

Phase Stability, Phase Transformations, and **Reactive Phase Formation in Electronic Materials** XVII – Phase Stability of Advanced Electronic Interconnection I

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Chih-Ming Chen, National Chung Hsing University; Thomas Reichmann, Karlsruhe Institute of Technology; Yu Zhong, Worcester Polytechnic Institute; Hiroshi Nishikawa, Osaka University; Shien Ping Feng, The University of Hong Kong; Yee-Wen Yen, National Taiwan University of Science & Technology; Song-Mao Liang, Clausthal University of Technology

Wednesday AM	Room: 227A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Shih-kang Lin, National Cheng Kung University; Hiroshi Nishikawa, Osaka University

8:30 AM Introductory Comments

8:35 AM Invited

Sinter Joining and Wiring without Pressure Assist for GaN Power Device Interconnection: Katsuaki Suganuma1; 1Osaka University

9:00 AM Invited

Interfacial Reaction Studies in SLID Bonding Processes Using Ga and In: Sinn-wen Chen1; Tsu-ching Yang1; Ji-min Lin1; 1National Tsing Hua University

9.25 AM

Solid-solution Cu-to-Cu Interconnection Fabricated with Sub-micron Ga-based Pastes: Shih-kang Lin¹; Che-yu Yeh¹; Hseng-ming Liao¹; Mei-jun Wang¹; ¹National Cheng Kung University

9:45 AM

Mechanical Properties of In-33.7Bi Alloy for Low Melting Temperature Solder: Sanghun Jin¹; Min-Su Kim¹; Shutetsu Kanayama²; Hiroshi Nishikawa¹; ¹Osaka University; ²Panasonic Corporation

10:10 AM Break

10:30 AM

Microstructure Evolution due to Isothermal Reactive Diffusion between Solid Co and Liquid Sn: Minho O¹; Noritomo Odashima¹; Masanori Kajihara¹; ¹Tokyo Institute of Technology

10:50 AM

Ga-doping Effect upon Sn-0.7Cu/Cu Interfacial Reactions and the Isothermal Section of Sn-Cu-Ga Ternary System: Chih-han Yang1; Yu-chen Liu¹; Yi-kai Kuo¹; Shih-kang Lin¹; ¹National Cheng Kung University

11:10 AM

Interfacial Reactions in the Au/Sn/Ni/Cu Multilayer Couples: Yi-Zhen Guo¹; Chu-Hsuan Wang¹; Yee-Wen Yen¹; Yu-Chun Li¹; ¹National Taiwan University of Science and Technology

11:30 AM

Thermodynamic Stability Maps for the La0.6Sr0.4Co0.2Fe0.8O3±d-SO2–O2 System for Application in Solid Oxide Fuel Cells: Shadi Darvish¹; Yu Zhong²; ¹Florida International University; ²Worcester Polytechnic Institute

Phase Transformations and Microstructural Evolution – Phase Transformations in Titanium I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State Universitv

Wednesday AM	Room: 129A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Mark Aindow, University of Connecticut; Rajarshi Banerjee, North Texas University

8:30 AM

The Microstructural Evolution and Mechanical Behavior of Beta Titanium Alloys Based on Ti-13Cr(wt.%): Vahid Khademi1; JoAnn Ballor1; Carl Boehlert¹; Masahiko Ikeda²; ¹Michigan State University; ²Kansai University

8:50 AM

Nano-scale Instabilities in Beta Titanium Allovs: Yufeng Zheng¹; Rajarshi Banerjee²; Dipankar Banerjee³; Hamish Fraser¹; ¹The Ohio State University; ²University of North Texas; ³Indian Institute of Science

9:10 AM

Control of B Phase Stability and Deformation Induced Martensitic Transformation in a Near-a titanium Alloy: Fan Meng¹; Gregory Olson¹; ¹Northwestern University

9:30 AM

Interface Characteristics in Ti6246: Abigail Ackerman¹; Ioannis Bantounas¹; Vassili Vorontsov¹; David Rugg²; David Dye¹; ¹Imperial College, London; ²Rolls Royce Plc

9:50 AM

Effects of Grain Orientation during Spark Plasma Sintering Beta Phase Ti-Al-Nb Alloys: Stoney Middleton1; 1University of California, Irvine

10:10 AM Break

10:30 AM

Thermo-mechanical Simulation of Solid-state Welding in Ti-17: Samuel Kuhr¹; Gopal Viswanathan¹; Jonathan Orsborn²; Thomas Broderick³; Hamish Fraser1; 1CAMM / The Ohio State University; 2CEMAS / The Ohio State University ; 3GE Aviation

10:50 AM

Phase-field Approach Coupled with Crystal Plasticity for Threedimensional Recrystallization in Ti-Al Alloys and Comparison with Experiment: Arunabha Roy¹; Sriram Ganesan¹; Pinar Acar¹; Susan Gentry¹; Anna Trump¹; John Allison¹; Katsuyo Thornton¹; Veera Sundararaghavan¹; ¹University of Michigan at Ann Arbor

11:10 AM

The Effect of Deformation-induced Adiabatic Heating on Microstructure Evolution of Ti-6Al-4V Alloy during Open-die Screw Press Forging: Mykola Kulakov¹; Tatyana Konkova²; Giribaskar Sivaswamy¹; Salaheddin Rahimi¹; ¹Advanced Forming Research Centre, University of Strathclyde; ²Department of Design, Manufacture & Engineering Management, University of Strathclyde

Phase Transformations and Microstructural **Evolution – Special Topics in Phase Transformations**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Wednesday AM Room: 124B March 14, 2018 Location: Phoenix Convention Center

Session Chairs: Gregory Thompson, University of Alabama; Paul Gibbs, LANL

8:30 AM

Nucleation and Growth of Crystalline Carbonates from Amorphous Precursors: Derk Joester1; 1Northwestern University

8:50 AM

Morphological Development of Quasicrystals in Powder-processed Icosahedral-phase-strengthened Aluminum Alloys: Hannah Leonard¹; Sarshad Rommel¹; Thomas Watson²; Venkat Vedula³; Mark Aindow¹; ¹University of Conneticut; ²Pratt & Whitney; ³UTC Aerospace Systems

9:10 AM

In Situ Observation of Shear-driven Amorphization Process in Silicon Crystals: Scott Mao¹; Yang He¹; Feifei Fan²; Chongmin Wang³; Ting Zhu²; ¹University of Pittsburgh; ²Georgia Institute of Technology; ³Pacific Northwest National Laboratory

9:30 AM

Evolution of Martensitic Transformation Behavior in Cu-Zr-Ni Shape Memory Alloy Thin Films Evaluated Using Combinatorial Nanocalorimetry: Yucong Miao1; Anjana Talapatra2; Ruben Villareal2; Raymundo Arroyave2; Joost Vlassak1; 1Harvard University; 2Texas A&M University

9:50 AM

Deformation-induced Phase Transformations during Biaxial or Strain Path Change: HR-DIC and Synchrotron X-ray Diffraction: Efthymios Polatidis1; Wei-Neng Hsu1; Miroslav Smid1; Steven Van Petegem1; Helena Van Swygenhoven1; 1Paul Scherrer Institut

TECHNICAL PROGRAM

10:10 AM Break

10:30 AM

Phase Stability and Microstructure of the Zeta Phase in Transition Metal Carbides and Nitrides: Christopher Weinberger¹; Xiao-Xiang Yu²; Hang Yu³; Bradford Schulz²; Gregory Thompson²; ¹Colorado State University; ²University of Alabama; ³Drexel University

10:50 AM

Role of Anisotropic Mobility and Grain Orientation on Microstructure Evolution during Sintering: Sudipta Biswas¹; Daniel Schwen²; Vikas Tomar¹; Hao Wang; ¹Purdue University; ²Idaho National Laboratory

11:10 AM

Irradiation-induced Phase Reversal and Grain Boundary Formation in U-alloys: Yipeng Gao1; Yongfeng Zhang1; 1Idaho National Laboratory

11:30 AM

The X-phase of Precipitates: *Qingfeng Xing*¹; ¹Ames Laboratory

11:50 AM

Tuning Phase Transformation in Compositionally Complex Alloys for Superior Mechanical Properties: Zhiming Li¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung

Powder Metallurgy of Light, Reactive and Other Nonferrous Metals - Porous Metal Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Ma Qian, RMIT University (Royal Melbourne Institute of Technology); Zak Fang, University of Utah; Bowen Li, Michigan Technological University

Wednesday AM	Room: 225A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Ming Yan, South University of Science and Technology of China; Jianzhong Wang, State Key Laboratory of Porous Metal Materials, NIN, China

8:30 AM

Effects of Geometry Anisotropy on Fluid-flow and Mechanical Properties of Titanium Foams: Chedtha Puncreobutr¹; Sedthawatt Sucharitpwatskul²; Anchalee Manonukul²; ¹Chulalongkorn University; ²National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA)

8:55 AM

Fabrication of Porous Copper Structure by Using Powder Injection Molding and Space Holder Technology: Hanlyun Cho1; Seong Jin Park1; ¹Pohang University of Science and Technology

9:20 AM Keynote

Research Progress in High-performance Metal Powder Porous Materials: H. P. Tang¹; Q.B. Wang¹; J. Wang¹; ¹Northwest Institute for Nonferrous Metal Research

10:00 AM Break

10:20 AM Invited

Effect of Gradient Structure on the Sound Absorption Coefficient of Porous Metal Fiber Materials: Jianzhong Wang¹; Qingbo Ao¹; Jun Ma¹; Huiping Tang1; 1Northwest Institute for Nonferrous Metal Research

10.50 AM

Processing and Characterization of Porous High Entropy Alloy Structures via Freeze-casting: Mora Issa¹; Silvia Briseño Murguia¹; Yoav Snir²; Marcus Young1; 1University of North Texas, Department of Material Science and Engineering; ²Department of Materials Science, Nuclear Research Center Negev (NRCN), Israel

11:10 AM

Preparation of Titanium Foams with Uniform and Fine Pore **Characteristics through Powder Metallurgy Route Using Urea Particles** as Space Holder: Guibao Qiu1; Tengfei Lu1; Jian Wan1; Chenguang Bai1; ¹Chongqing University

11:30 AM

A Novel Approach to Making Metal@titanium Core-shell Powder by Fluidized Bed Chemical Vapor Deposition: Yafeng Yang1; 1Institute of Processing Engineering, Chinese Academy of Science

Stored Renewable Energy in Coal – Stored **Renewable Energy in Coal**

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee, TMS: Energy Committee

Program Organizers: Neale Neelameggham, Ind LLC; Sarma Pisupati, Penn State University; John Howarter, Purdue University; Huimin Lu, Beihang University

Wednesday AM	Room: 224B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: John Howarter, Purdue University; Sarma Pisupati, Pennsylvania State University

8:30 AM

Aluminum-silicon Alloys Prepared from High-aluminum Fly Ash to Extract Magnesium from Serpentine: Huimin Lu¹; Wu Guangzhi²; Neale Ramaswami Neelameggham3; 1Beihang University; 2Inner Mongolia Xintai Construction and Installation (Group) Co., Ltd; ³IND LLC

8:50 AM

Organic Agriculture Using Natural Material Coal: Neale Neelameggham¹; Brian Davis²; ¹Ind LLC; ²Brian Davis Associates Consulting

9:10 AM

Extraction and Production of Rare Earth Elements from Coal-Seam Bedrock and Caprock: John Gordon¹; ¹JG Novel Solutions

9:30 AM

Extraction and Thermal Dissolution of Low-rank Coal by N-methyl-2-pyrrolidinone: Jun Zhao¹; Haibin Zuo¹; Siyang Long¹; Jingsong Wang¹; Qingguo Xue1; 1University of Science and Technology Beijing

9:50 AM Break

10.10 AM

Enhancement of Coal Nanostructure and Investigation of Its Novel Properties: Manoj B1; 1Christ University

10:30 AM

A Review on the State of Coal Use as Soil Amendment in East Africa and China: Abebe Dakka1; Neale, R. Neelameggham2; Lu Huimin3; Girma Balcha4; ¹Kotobe Metropolitan University (KMU); ² Ind LLC; ³ Beihang University of Aeronautics and Astronautics; 4Environment, Climate Change and Coffee Forest Forum

Thermal and Mechanical Stability of Nanocrystalline Materials – Thermal Stability of Nanocrystalline Metals II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee Program Organizers: Jason Trelewicz, Stony Brook University; Daniel Bufford, Sandia National Laboratories; Fadi Abdeljawad, Sandia

National Laboratories; Jessica Krogstad, University of Illinois, Urbana-Champaign; Christian Brandl, Karlsruhe Institute of Technology

Wednesday AM	
March 14, 2018	

Room: 128B Location: Phoenix Convention Center

Session Chairs: Shen Dillon, University of Illinois at Urbana-Champaign; Garritt Tucker, Colorado School of Mines

8:30 AM Invited

Grain Boundary Phases and their Thermal Stability: Timofey Frolov¹; ¹Lawrence Livermore National Laboratory

TECHNICAL PROGRAM

9:00 AM

Mesoscale Modeling of Grain Boundary Segregation: The Role of Anisotropy in Segregation: *Fadi Abdeljawad*¹; Stephen Foiles¹; Blas Uberuaga²; Enrique Martinez²; ¹Sandia National Laboratories; ²Los Alamos National Laboratory

9:20 AM

The Role of Entropy on the Stability of Nanocrystalline Alloys: Arvind Kalidindi¹; Christopher Schuh¹; ¹Massachusetts Institute of Technology

9:40 AM Invited

Stabilization of Nanocrystalline Alloys through the Incorporation of Grain Boundary Complexions: *Timothy Rupert*¹; ¹University of California, Irvine

10:10 AM Break

10:30 AM Invited

Toward Understanding the Factors that Govern the Temperature Dependence of Mobility in FCC Metals: *Elizabeth Holm*¹; Ian Chesser¹; Yutong Bi¹; Jonathan Humberson¹; ¹Carnegie Mellon University

11:00 AM

The Effect of Free Volume and Interfacial Junctions on the Stability of Nanocrystalline Structures: *Günter Gottstein*¹; Lasar Shvindlerman¹; ¹RWTH Aachen University

11:20 AM

Polycrystal Plasticity with Grain Noundary Evolution: *Nikhil Chandra Admal*¹; Jaime Marian¹; ¹University of California, Los Angeles

11:40 AM

Thermal Stability of Ultra-tough Nanocrystalline Cu-1%Nb: *Khaled Youssef*¹; Mohamed Abaza¹; Ronald Scattergood²; Carl Koch²; ¹Qatar University; ²North Carolina State University

Thermo-mechanical Response of Materials with Special Emphasis on In-situ Techniques – In-Situ TEM/SEM Nanomechanics

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee, TMS: Chemistry and Physics of Materials Committee Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Sanjit

Bhowmick, Bruker Nano Surfaces; Jeff Wheeler, ETH Zurich; María Teresa Pérez Prado, IMDEA Materials Institute; Dongchan Jang, Korea Advanced Institute of Science and Technology; Robert Wheeler, MicroTesting Solutions LLC; Josh Kacher, Georgia Tech

Wednesday AM Room: 101A March 14, 2018 Location: Phoenix Convention Center

Session Chairs: Dongchan Jang, KAIST, S. Korea; Janelle Wharry, Purdue University

8:30 AM Invited

In Situ TEM Imaging and Quantitative Orientation Mapping of the Structural Evolution in Nanocrystalline Metals during Mechanical Deformation: Christian Kuebel¹; Ankush Kashiwar¹; Horst Hahn¹; ¹KIT

9:00 AM Invited

Mechanics of Irradiated Alloys Studied through In Situ TEM Testing: Janelle Wharry¹; Kayla Yano¹; Priyam Patki¹; Yaqiao Wu²; ¹Purdue University; ²Boise State University, Center for Advanced Energy Studies

9:30 AM

Investigating Irradiation Creep by In Situ TEM: *Daniel Bufford*¹; Baoming Wang²; Khalid Hattar¹; Aman Haque²; ¹Sandia National Laboratories; ²The Pennsylvania State University

9:50 AM

TECHNICAL PROGRAM

Studying Tensile Properties of Silicon via In-situ Microcompression Testing of Push-to-pull Pillar: *Ming Chen*¹; Ralph Spolenak¹; Jeffrey Wheeler¹; ¹ETH Zurich

10:10 AM Break

10:30 AM Invited

High-resolution Digital Image Correlation: Advances in Quantifying the Strain Distribution at the Submicron-scale in Hexagonal Materials: *Alberto Orozco-Caballero*¹; João Quinta da Fonseca¹; ¹The University of Manchester

11:00 AM Invited

Deformation of Monatomic Metallic Glasses Processed through In-situ Ultrafast Liquid Quenching: Scott Mao¹; ¹University of Pittsburgh

11:30 AM

In-situ ECCI Characterization of Microstructural Defects and their Effect on Superconducting Properties of SRF Cavity Niobium: *Mingmin Wang*¹; Shreyas Balachandran²; Santosh Chetri²; Anatolii Polyanskii²; Peter Lee²; Christopher Compton³; Thomas Bieler¹; ¹Michigan State University; ²National High Magnetic Field Laboratory; ³Facility for Rare Isotope Beams

Ultrafine-grained Materials X – Grain Boundary Diffusion and Migration: Joint Session with Non-Equilibrium Features on Grain Boundaries

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Wednesday AM March 14, 2018

Room: 125A Location: Phoenix Convention Center

Session Chairs: Liang Qi, University of Michigan; Jason Trelewicz, Stony Brook University

8:30 AM Invited

Activation Volume Tensors for Atomistic Events at Grain Boundaries: Kathleen Alexander¹; Sabrina Ball¹; *Christopher Schuh*¹; ¹MIT

9:00 AM Invited

Comparing Grain Growth Mechanisms in Nanocrystalline FCC Metals due to Ion Irradiation, Mechanical Loading, Conductive Heating, and Laser Heating: Daniel Bufford¹; Abdeljawad Fadi¹; Christopher Barr¹; Patrick Price¹; *Khalid Hattar*¹; ¹Sandia National Laboratories

9:30 AM

Thermally Induced Grain Coarsening in Alpha Iron: *Yu-Feng Shen*¹; S. Maddali²; David Menasche³; Aditi Bhattacharya¹; G. Rohrer¹; R. Suter¹; ¹Carnegie Mellon University; ²Argonne National Laboratory; ³Hamilton, LLC

9:50 AM

Increased Defect Densities in SPD-processed Hydrogenated Palladium and their Impact to the Macroscopic Strength: *Wolfgang Ress*¹; Erhard Schafler¹; Wolfgang Sprengel²; Yuzeng Chen³; Reiner Kirchheim⁴; Michael Zehetbauer¹; Daria Setman¹; ¹University of Vienna; ²Graz University of Technology; ³Northwestern Polytechnical University; ⁴Georg August Universitaet Goettingen

10:10 AM Break

10:30 AM Invited

Grain Boundary Statistical Mechanics: A Disconnection Dynamics Approach: *David Srolovitz*¹; Jian Han¹; Spencer Thomas¹; Vaclav Vitek¹; ¹University of Pennsylvania

11:00 AM Invited

Gaining New Insights into Structure/Property Relations by Mining and Analysis of Published Images: Ian McCue¹; Joshua Stuckner²; Mitsu Murayama²; *Michael Demkowicz*¹; ¹Texas A&M University; ²Virginia Tech

11:30 AM

Grain Coarsening in Two-dimensional Phase-field Models with an Orientation Field: Bálint Korbuly¹; *Tamás Pusztai*¹; Hervé Henry²; Mathis Plapp²; Markus Apel³; László Gránásy¹; ¹Wigner Research Centre for Physics; ²École Polytechnique, CNRS, Université Paris-Saclay; ³Access e.V.

11:50 AM

A New Mathematical Framework for Simulation of Grain Growth: Mary Comer¹; Shruthi Kubatur²; ¹Purdue University; ²Nikon Research Corporation of America

Ultrafine-grained Materials X – Rolling Studies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Wednesday AM	Room: 103B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Caizhi Zhou, Missouri University of Science and Technology; Chong Soo Lee, POSTECH

8:30 AM Invited

Ultra-fine Laminated Mg/Nb Composites Produced via Accumulative Roll Bonding: *Marko Knezevic*¹; Daniel Savage¹; Nathan Mara²; Sven Vogel²; Rodney McCabe²; Irene Beyerlein³; ¹University of New Hampshire; ²Los Alamos National Laboratory; ³University of California, Santa Barbara

9:00 AM Invited

Tensile Characteristics of Ultrafine Grained Fe-Cr-Mn Stainless Steel Fabricated by Reverse Transformation: Jeom-Yong Choi¹; Ik-Soo Shin²; *Kyung-Tae Park*²; ¹POSCO; ²Hanbat National University

9:30 AM

Mechanical Properties of Mg-3%Gd with a Heterogeneous Lamella Structure: *Guilin Wu*¹; Xuan Luo¹; Zongqiang Feng¹; Tianlin Huang¹; Xiaoxu Huang¹; ¹Chongqing University

9:50 AM

Atomistic Simulation of Driven Steady States in Rolled Cu-Nb Nanocomposites: *Ian Chesser*¹; Elizabeth Holm¹; Michael Demkowicz²; ¹Carnegie Mellon University; ²Texas A&M

10:10 AM Break

10:30 AM

Mechanical Behavior of 304L Austenitic Stainless Steel Processed by Cryogenic Rolling: Rahul Singh¹; Sunkulp Goel²; *Abhishek Kumar*³; ¹MNNIT Allahabad; ²Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology; ³Motilal Nehru National Institute of Technology

10:50 AM

Effect of Cu on Structure and Mechanical Properties in an Al-0.3%Cu Alloy Cold Rolled to 98%: *Tianlin Huang*¹; Linfei Shuai¹; Guilin Wu¹; Xiaoxu Huang¹; ¹Chongqing University

11:10 AM

Investigation of Fatigue Micro-mechanisms in Ultrafine Grained CoCrxNi Medium Entropy Alloy: *Shivakant Shukla*¹; Mageshwari Komarasamy¹; Kaimiao Liu¹; Rajiv Mishra¹; ¹University of North Texas

11:30 AM

Mechanical Properties of Ultrafine Grained 2519 Aluminum Alloy: Gbadebo Owolabi¹; *Temitayo Daramola*¹; Nadir Yilmaz¹; Horace Whitworth¹; Ahmet Zeytinci²; ¹Howard University; ²University of District Columbia

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials – Joint with Bio-Nano Interface Engineering and Applications Symposium

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Stephen McDonnell, University of Virginia; Chang-Yong Nam, Brookhaven National Laboratory; Lanxia Cheng, University of Texas Dallas; Dong Lin, Kansas State University; Wenda Tan, University of Utah

Wedne	esday PM	
March	14, 2018	

Room: 101B Location: Phoenix Convention Center

Session Chairs: Stephen McDonnell, University of Virginia; Candan Tamerler, University of Kansas

2:00 PM

Nanoparticles-grafted Functionalized Graphene Coated with Nanostructured Polyaniline Layered Nanocomposites for Highperformance Biosensors: Sanju Gupta¹; Romney Meek¹; ¹Western Kentucky University

2:20 PM

Transparent Titanium Dioxide Nanotubes: Processing, Characterization, and Application in Establishing Cellular Response Mechanisms: *Jevin Meyerink*¹; Divya Kota¹; Scott Wood¹; Grant Crawford¹; ¹South Dakota School of MInes & Technology

2:40 PM

Self-assembled Formate Dehydrogenase-metal Nanoparticle Hybrids Improved Enzyme Stability: *Rachel Lietz*¹; Sarah VanOosten¹; Erkan Mozioglu¹; Brandon Tomas¹; Kasra Alizadeh¹; Mark Richter¹; Candan Tamerler¹; ¹University of Kansas

3:00 PM

Development of FRET Biosensor Based on Aptamer/Functionalized Graphene for Ultrasensitive Detection of Bisphenol A and Discrimination from Analogues: Sanju Gupta¹; Rebecca Wood¹; ¹Western Kentucky University

3:20 PM Break

3:40 PM

Effect of pH on the Green Synthesis of MPA–capped CdTe/CdSe Quantum Dots and Cell Viability of Fibroblast Histiocytoma Cells: Vuyelwa Ncapayi¹; Sandile Songca²; Tetsuya Kodama³; *Oluwafemi Oluwatobi*¹; ¹University of Johannesburg; ²University of Zululand; ³Tohoku University Sendai

4:00 PM

Large Scale Synthesis of Highly Fluorescent CuInS2/ZnS Quantum Dots - Porphyrin Conjugates for Photodynamic Therapy: Ncediwe Tsolekile¹; Mangaka Matoetoe²; Oluwafemi Oluwatobi¹; Sandile Songca³; ¹University of Johannesburg; ²Cape-Peninsula University of Technology; ³University of Zululand

9th International Symposium on High Temperature Metallurgical Processing – Treatment and Recycling of Metallurgical Slag/Solid Wastes

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Wednesday PMRoom: 227BMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Rafael Padilla, University of Concepcion; Guanghui Li, Central South University

2:00 PM Introductory Comments

2:05 PM

Production of Titanium from Waste Slag: *Samuel Martin Treceno*¹; Thomas Hughes¹; Catherine Bishop¹; Ian Brown²; Yaodong Jia²; Aaron Marshall¹; Matthew Watson¹; ¹University of Canterbury; ²Callaghan Innovation

2:25 PM

Recovery of Fe-Cu Alloys from Copper Slag: *Mario Sanchez*¹; Fernando Parada²; Jose Palacios³; ¹Universidad Andrés Bello; ²Universidad de Concepcion; ³Universidad Playa Ancha

2:45 PM

WEDNESDAY PM

Physiochemical Properties of High Alumina Blast Furnace Slag: *Zhiming Yan*¹; Zhengde Pang¹; Xuewei Lv¹; Guibao Qiu¹; Chenguang Bai¹; ¹Chongqing University

3:05 PM

Effect of Cooling Rate on the Acidolysis of Titania Slag: *Yu Zhang*¹; Zhixiong You¹; Jinsheng Wang¹; Xuewei Lv¹; ¹Chongqing University

3:25 PM Break

3:45 PM

Selective Recovery of P and Mn from Steelmaking Slag by Carbothermic Reduction: Shin-ya Kitamura¹; *Dong Jun Shin*¹; Xu Gao¹; Shigeru Ueda¹; ¹Tohoku University

4:05 PM

The Use of Zirconia-based Solid Electrolytes Oxygen Sensor in High Titanium Slag: Kai Hu¹; Run Zhang¹; Xuewei Lv¹; ¹Chongqing University

4:25 PM

In-situ Observation of the Precipitation Behavior of Dy2O3 Containing Slag System: *Fei Wang*¹; Bin Yang¹; Bart Blanpain²; Muxing Guo²; ¹Kunming University of Science and Technology; ²KU Leuven

4:45 PM

Recovery of Zn and Mn from Spent Alkaline Batteries: *Guozhu Ye*¹; Marcel Magnusson¹; Pekka Väänänen²; Yang Tian³; ¹Swerea MEFOS; ²Isologistics; ³Kuming University of Science and Technology

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling – Facility Overviews and Materials Development

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California, Berkeley; Julie Tucker, Oregon State University; Elaine West, Knolls Atomic Power Laboratory

Wednesday PM	Room: 102A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Kevin Field, Oak Ridge National Laboratory; Jian Gan, Idaho National Laboratory

2:00 PM

Accelerated Advanced Nuclear Materials Development at LAMDA through the NSUF Mechanism: Kory Linton¹; Kevin Field¹; ¹Oak Ridge National Laboratory

2:25 PM

Deconvolution of Complex Environmental Effects Active in Nuclear Reactor Materials Through In-situ Ion Irradiation: Caitlin Taylor¹; *Christopher Barr*¹; Samuel Briggs¹; Brittany Muntifering¹; Khalid Hattar¹; ¹Sandia National Laboratories

2:50 PM

TEM with In Situ Ion Irradiation of Nuclear Materials at the IVEMtandem: *Meimei Li*¹; Mark Kirk¹; Jing Hu¹; Peter Baldo¹; Ed Ryan¹; ¹Argonne National Laboratory

3:15 PM

Modeling and Validation on Role of Stoichiometry on Degradation in Ni-Cr Alloys for Nuclear Applications: *Fei Teng*¹; Kevin Field²; Benjamin Spencer³; Octav Ciuca⁴; Grace Burke⁴; Emmanuelle Marquis⁵; Li-Jen Yu⁵; Leland Barnard⁶; Julie Tucker¹; ¹Oregon State University; ²Oak Ridge National Laboratory; ³Idaho National Labortory; ⁴University of Manchester; ⁵University of Michigan - Ann Arbor; ⁶Elysium Industries

3:40 PM Break

4:00 PM Invited

Simulation and Experimental Investigation on the Applications of Nonlinear Ultrasonic Techniques in Non-destructive Probes of Nuclear Materials: *Shenyang Hu*¹; Wahyu Setyawan¹; Yulan Li¹; Chuck Henager¹; ¹Pacific Northwest National Laboratory

4:20 PM

Effect of Alloying Elements on Defect Evolution in Ni-20X Concentrated Binary Alloys: *Taini Yang*¹; Chenyang Lu¹; Gihan Velisa²; Ke Jin²; Hongbin Bei²; Yanwen Zhang²; Lumin Wang¹; ¹University of Michigan; ²Oak Ridge National Lab

4:40 PM

Mechanical Properties, Damage and Morphology Details of Nanocrystalline and Ultrafine Tungsten Materials Exposed to Low Energy Helium and Heavy Ion Irradiation: Osman El-Atwani¹; Erika Esquivel¹; Mert Efe²; Jordan Weaver¹; Jason Trelewicz³; Nathan Mara¹; Stuart Maloy¹; ¹Los Alamos National laboratory; ²Middle East Technical University; ³Stony Brook University

WEDNESDAY PM

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Lingfeng He, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory; Kumar Sridharan, University of Wisconsin; Peng Xu, Westinghouse Electric Company

Wednesday PM	Room: 104A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Lingfeng He, Idaho National Laboratory; Meimei Li, Argonne National Laboratory

2:00 PM Invited

In Situ Ion Irradiation of Multilayer (TiN, TiAlN) Ceramic Coating for Accident Tolerant Zr-alloy Fuel Claddings: Jing Hu¹; *Meimei Li*¹; Douglas Wolfe²; Mark Kirk¹; Arthur Motta²; ¹Argonne National Laboratory; ²The Pennsylvania State University

2:30 PM

Mitigation of Oxidation of Zircaloy Cladding in High Temperature Steam via Cr and CrAl Coatings: *Weicheng Zhong*¹; Peter Mouche¹; Brent Heuser¹; ¹University of Illinois

2:50 PM

Steam Oxidation and Heavy Ion Irradiation Behaviors of Ti₂AlC Ceramics: *Bai Cui*¹; Fei Wang¹; Ziyad Smoqi¹; Qing Su¹; Michael Nastasi¹; ¹University of Nebraska–Lincoln

3:10 PM

Crystallographic and Chemical Instabilities of MAX Phases during Proton Irradiation: Joseph Ward¹; Michael Preuss¹; Philipp Frankel¹; Phillip Withers¹; Simon Middleburgh²; Michel Barsoum³; *Maxwell Rigby*¹; ¹University of Manchester; ²Westinghouse; ³Drexel University

3:30 PM Break

3:50 PM

New Zr-based MAX Phases as Accident Tolerant Fuel Cladding: David Bowden¹; Tamas Ungar²; Shafqat Shah³; Michael Preuss¹; Philipp Frankel¹; ¹University of Manchester; ²Eötvös University Budapest; ³University of Cambridge

4:10 PM

Corrosion Products of FeCrAl Alloys in Simulated LWR Environments during In-situ Proton Corrosion-irradiation Experiment: *Peng Wang*¹; Gary Was¹; ¹University of Michigan

4:30 PM

Oxidation Behavior of FeCrAl Alloys at T= 300-600C for 100-1000 Hours: *Nan Li*¹; Scott Parker¹; Elizabeth Wood¹; Andy Nelson¹; ¹Los Alamos National Laboratory

4:50 PM

Modeling Radiation Defect Cluster Accumulation in Neutron Irradiated FeCrAl: Dwaipayan Dasgupta¹; Brian Wirth¹; ¹University of Tennessee

5:10 PM

Simulation of Iron-chrome-aluminum Alloy Cladding under LOCA Conditions Using the BISON Fuel Performance Code: *R. Sweet*¹; Kurt Terrani²; Brian Wirth¹; ¹University of Tennessee - Knoxville; ²Oak Ridge National Laboratory

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – Emerging Materials and Processes

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Wednesday PM	Room: 231AB
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Mark Stoudt, National Institute of Standards and Technology; Thien Phan, National Institute of Standards and Technology

2:00 PM Invited

Additive Manufacturing of Bulk Metallic Glasses (aka Amorphous Metals): A Novel Material Coming Full Circle: *Douglas Hofmann*¹; Scott Roberts¹; Andre Pate¹; ¹NASA JPL/Caltech

2:30 PM

Development of Process-structure-property Relationships for Optimization of Alloy 17-4PH for SLM AM Process: *Abhinav Saboo*¹; David Snyder; Greg Olson; ¹QuesTek Innovations LLC

2:50 PM

Processing of Fe-Co Soft Ferromagnetic Alloys Using Laser Engineered Net Shaping (LENS): *Andrew Kustas*¹; Kyle Johnson¹; Shaun Whetten¹; Dave Keicher¹; Mark Rodriguez¹; Daryl Dagel¹; Joseph Michael¹; Allen Roach¹; Nicolas Argibay¹; Don Susan¹; ¹Sandia National Laboratories

3:10 PM

Processing-microstructure-property Evolution in Laser Deposited Hiperco-50: Potential for Spatial Control of Magnetic Behavior: *Robert Dillon*¹; Samad Firdosy¹; Adam Herrmann²; Ryan Conversano¹; Bryan McEnerney¹; John Paul Borgonia¹; Andrew Shapiro-Scharlotta¹; ¹Jet Propulsion Laboratory; ²University of Cincinnati

3:30 PM Break

3:50 PM

Laser Modulation Effects on the Morphology and Microstructure of Additively Manufactured Metals: *Tien Roehling*¹; Sheldon Wu²; Saad Khairallah²; John Roehling²; Gabe Guss²; Michael Crumb²; Manyalibo Matthews²; ¹University of the Pacific; ²Lawrence Livermore National Laboratory

4:10 PM

A Study on the Production of Oriented High-silicon Steel by Powder Bed Additive Manufacturing: *Marco Simonelli*¹; Jannis Lemke²; Michele Garibaldi¹; Ian Ashcroft¹; Chris Tuck¹; Richard Hague¹; ¹University of Nottingham; ²SAES Getters

4:30 PM

Additive Manufacturing of Tantalum: Differing Microstructure with Differing Build Parameters: *Roberta Beal*¹; George Gray¹; Bineh Ndefru¹; Veronica Livescu¹; Cameron Knapp¹; John Carpenter¹; ¹Los Alamos National Laboratory

4:50 PM

Direct Metal Writing: Controlling the Rheology through Microstructure: *Wen Chen*¹; Luke Thornley¹; Diran Apelian¹; Andrew Pascall¹; Eric Duoss¹; Joshua Kuntz¹; Christopher Spadaccini¹; ¹Lawrence Livermore National Laboratory

5:10 PM

Additive Manufacturing of 3D Nano-architected Metals: Andrey Vyatskikh¹; Stéphane Delalande²; Akira Kudo¹; Xuan Zhang³; Julia Greer¹; ¹California Institute of Technology; ²PSA Group; ³Tsinghua University

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – Modeling of Additive Manufacturing Processes

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Wednesday PMRoom: 232AMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Behrang Poorganji, GE Additive; Trevor Keller, National Institute of Standards and Technology

2:00 PM Invited

Modeling and Simulation of Phase and Microstructure Formation in Ni and Ti Alloys during AM Using Finite Elements, Computational Thermodynamics and Phase Field Simulation: Christian Leinenbach¹; Toni Ivas¹; ¹Empa-Swiss Federal Laboratories for Materials Science and Technology

2:30 PM

Process Modeling, Microstructure Measurements, and Residual Stresses in Additively Manufactured Austenitic Stainless Steels: *Josh Sugar*¹; Michael Stender¹; Lauren Beghini¹; Samuel Subia¹; David Keicher¹; Chris D'Elia²; Mike Hill²; Chris San Marchi¹; ¹Sandia National Laboratories; ²UC Davis

2:50 PM

Multi-physics Modeling of Wire Arc Additive Manufacturing (WAAM) Process: *Ranadip Acharya*¹; Mike Klecka¹; Alexander Staroselsky¹; Vijay Jagdale¹; John Sharon¹; Tahany El-Wardany¹; Joseph Mantese¹; Sergei Burlatsky¹; William Tredway¹; ¹United Technologies Research Center

3:10 PM

Investigation of Grain Structure Development in Laser-based Manufacturing via Modeling and Experiment: *Wenda Tan*¹; ¹University of Utah

3:30 PM Break

3:50 PM

Quantifying the Impact of Microstructure Variability and Local Microtextures in Mechanical Performance of Additively Manufactured Metals: *Judith Brown*¹; Theron Rodgers¹; Joseph Bishop¹; Kyle Johnson¹; ¹Sandia National Laboratories

4:10 PM

Microstructure Evolution during Rapid Solidification: Developing Predictive Modeling Capabilities for Additive Manufacturing: *Joseph McKeown*¹; Amy Clarke²; Jean-Luc Fattebert¹; Aurelien Perron¹; John Roehling¹; Adam Stokes²; Patrice Turchi¹; ¹Lawrence Livermore National Laboratory; ²Colorado School of Mines

4:30 PM

High-fidelity Mesoscale Thermal/Fluid Modeling of the LENS Additive Manufacturing Process: *Bradley Trembacki*¹; David Noble¹; Daryl Dagel¹; Shaun Whetten¹; Mario Martinez¹; ¹Sandia National Laboratories

4:50 PM

TECHNICAL PROGRAM

Multi Scale Solid Mechanics Models of Additive Manufacturing: *Kurtis Ford*¹; Bradley Trembacki¹; Kyle Johnson¹; David Noble¹; Mario Martinez¹; Joe Bishop¹; ¹Sandia

Additive Manufacturing: Building the Pathway towards Process and Material Qualification – Metals in Additive Manufacturing II

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Additive Manufacturing Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas - Austin; Christian Leinenbach, Empa-Swiss Federal Laboratories for Materials Science and Technology; James Sears, Carpenter Technology Coporporation; Christopher Tuck, University of Nottingham

Wednesday PM March 14, 2018 Room: 230 Location: Phoenix Convention Center

Session Chairs: Roland Loge, EPFL; Adam Clare, University of Nottingham

2:00 PM Invited

Controlling Bulk Residual Stresses in SLM by 3D Laser Shock Peening: *Roland Loge*¹; Nikola Kalentics¹; Patrice Peyre²; Eric Boillat¹; ¹EPFL; ²CNRS-ENSAM Paristech

2:30 PM

Effect of Build Process Environment on Selective Laser Melted Inconel 718: *Glenn Bean*¹; David Witkin¹; Tait McLouth¹; Dhruv Patel¹; Woonsup Park¹; Rafael Zaldivar¹; ¹The Aerospace Corporation

2:50 PM

Issues of Spatter during Laser Powder Bed Fusion of Nickel-base Superalloys: *Alexander Gasper*¹; Adam Clare¹; Ian Ashcroft¹; ¹University of Nottingham

3:10 PM

The Impact of Powder Feedstock Variability on Microstructure and Defects in Selective Laser Melted Superalloy 718: *Timothy Smith*¹; Chantal Sudbrack¹; ¹NASA Glenn Research Center

3:30 PM Break

3:50 PM Invited

High-throughput Testing and Characterization of Novel Additive Manufacturing Processes and Properties: Kendrick Mensink¹; Guillermo Aguilar¹; *Suveen Mathaudhu*¹; ¹University of California, Riverside

4:20 PM Invited

Healing Defects within Powder Bed Fabrication: *Adam Clare*¹; Richard Leach¹; Ian Ashcroft¹; Matthias Hirsch¹; Rikesh Patel¹; Steve Sharples¹; ¹University of Nottingham

4:50 PM

The Role of Different Hot Isostatic Pressing and Post Heat Treatment Routes for SLM -built Alloy 718: Magnus Ahlfors¹; ¹Quintus Technologies

5:10 PM

Influence of Processing in Selective Laser Melting on Cracking and Microstructure of Nickel Alloy Inconel 738LC: Marcus Chun Wai Lam¹; Paul Rometsch¹; Xinhua Wu¹; ¹Monash University

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Plasticity Modeling / Experiments

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Wednesday PMRoom: 122BMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Marko Knezevic, University of New Hampshire; Kaan Inal, University of Waterloo

2:00 PM Invited

A New Numerical Integration Scheme for Fast Fourier Transform-based Crystal Plasticity Models: *Kaan Inal*¹; Jaspreet Nagra¹; Abhijit Brahme¹; Ricardo²; ¹University of Waterloo; ²Los Alamos National Laboratory

2:30 PM

Using Crystal Plasticity to Predict Local Deformation during Reverse Loading of an Aerospace Alloy: *Michael Atkinson*¹; João Quinta da Fonseca¹; ¹University of Manchester

2:50 PM

Simulations of Bi-crystal Nanoindentation and Polycrystalline Uniaxial Tensile Deformation with a Grain Boundary-aware Crystal Plasticity Model: *Yang Su*¹; Philip Eisenlohr¹; Thomas Bieler¹; Martin Crimp¹; ¹Michigan State University

3:10 PM

Representative Volume Generation from 2D EBSD Maps and their Implementation in FFT Based Crystal Plasticity Models: *Simon Wyatt*¹; T Ben Britton¹; ¹Department of Materials, Imperial College

3:30 PM Break

3:50 PM

Tensile Behavior of Individual Grains in Austenitic Steel Studied by 3DXRD and Crystal Plasticity Simulations: *Nicolai Juul*¹; Jette Oddershede²; Grethe Winther¹; ¹Technical University of Denmark; ²Xnovo Technology ApS

4:10 PM

Experimental and Crystal Plasticity Based Characterization of Heterogeneous Deformation in Hexagonal Titanium: *Harsha Phukan*¹; Thomas Bieler¹; Chen Zhang¹; Ruqing Xu²; Philip Eisenlohr¹; Martin Crimp¹; Carl Boehlert¹; ¹Michigan State University; ²Argonne National Laboratory

4:30 PM

In-situ EBSD Analysis and Crystal Plasticity FE Simulations in a CP Titanium: *Joo-Hee Kang*¹; Ji Hoon Kim²; Chan Hee Park¹; Jong Woo Won¹; Chang-Seok Oh¹; ¹Korea Institute of Materials Science; ²Pusan National University

4:50 PM

Comparison of Strain Maps from Digital Image Correlation and Modeling of Polycrystalline Metals: *Nathan Bieberdorf*¹; Antonia Antoniou¹; Laurent Capolungo²; Vincent Taupin³; Aurélien Villani⁴; Vadim Roytershteyn⁵; ¹Georiga Institute of Technology; ²Los Alamos National Laboratory; ³University of Lorraine; ⁴Mines St. Etienne; ⁵Space Science Institute

5:10 PM

A Study of Anisotropy in Tensile and Cyclic Deformation Behavior of Hexagonal Close Packed Titanium Using Electron Backscatter Diffraction and Elastoplastic Self-consistent Simulations: Subhasis Sinha¹; Nilesh Gurao¹; ¹Indian Institute of Technology Kanpur

Advanced High-strength Steels – Phase

Transformation and Thermo-mechanical Processing Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Wednesday PM	Room: 121C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Matthias Militzer, The University of British Columbia; Feng Liu, Northwestern Polytechnical University

2:00 PM Invited

Microstructure and Mechanical Properties of the Coarse Grained Intercritically Annealed Heat Affected Zone in High Strength Pipeline Steels: Maddie Madhumanti¹; Thomas Garcin¹; Laurie Collins²; Matthias Militzer¹; Warren Poole¹; ¹The University of British Columbia; ²Evraz NA

2:25 PM

1

Dynamic Transformation of Austenite during Plate Rolling of a High Nb X70 Pipeline Steel: Samuel Rodrigues¹; Clodualdo Aranas Jr.¹; Fulvio Siciliano²; John Jonas¹; ¹McGill University; ²Dynamic Systems Inc.

2:45 PM

A Computational Approach to Designing Martensitic Microstructures in Carbon Steels: *Shengyen Li*¹; Steven Mates¹; Mark Stoudt¹; Carelyn Campbell¹; ¹National Institute of Standards and Technology

3:05 PM

Microstructure of Flash Processed 10XX Steel: Cullen Pearson¹; S Babu¹; Ben Shassere²; Gary Cola³; ¹UTK; ²Oak Ridge National Laboratory ; ³SPF Works LLC

3:25 PM

Phase Transition Enhanced Ductility in a Superstrong Nanostructured Ferrous Alloy: *Weitong Lin*¹; Linke Huang¹; Feng Liu¹; ¹Northwestern Polytechnical University

3:45 PM Break

4:00 PM Invited

Multi-scale Modeling for Microstructural Evolution in First-order Phase Transformations: Kang Wang¹; Bo Lin¹; *Feng Liu*¹; ¹Northwestern Polytechnical University

4:25 PM

Structure - Mechanical Property Relationship in Laser Welded T-250 Maraging Steel Joint: Devesh Misra¹; *Kun Li*¹; ¹University of Texas at El Paso

4:45 PM

Effects of Simulated Post-weld Heat Treatment on Microstructure and Mechanical Properties of 1.25Cr-0.5Mo Steel: Yang Shen¹; Cong Wang¹; 'Northeastern University

5:05 PM

Influence of Austenitizing Temperature and Time on Microstructure and Mechanical Properties of an YP460 Grade Crack Arrest Steel: *Dan Chen*¹; Wenqing Jiang¹; Songsong Xu¹; Naimeng Liu¹; Hao Guo¹; Ye Cui¹; Yang Zhang¹; Zhongwu Zhang¹; ¹Harbin Engineering University

5:25 PM

The Evolution of Microstructure of an High Ni HSLA X100 Forged Steel Slab by Thermomechanical Controlled Processing: *Hashem Mousavi Anijdan*¹; M. Sabzi²; ¹Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University; ²Young Researchers and Elite Club, Dezful Branch, Islamic Azad University

Advanced Magnetic Materials for Energy and Power Conversion Applications – Additive Manufacturing and Advanced Processing of Soft Magnetic Materials

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Wednesday PMRoom: 229AMarch 14, 2018Location: Phoenix Convention Center

Session Chair: Alex Leary, NASA Glenn

2:00 PM Introductory Comments

2:05 PM Invited

Effect of Cooling Rate on the Magnetic and Mechanical Properties of Melt Spun Fe-6.5 wt.% Electric Steel: *Jun Cui*¹; Gaoyuan Ouyang¹; Brandt Jensen²; Kevin Dennis²; Lin Zhou²; Wei Tang²; Matthew Kramer²; Chad Macziewski¹; Chaochao Pan¹; ¹Iowa State University; ²Ames Laboratory

2:35 PM Invited

Microstructural Stability of Additively Manufactured Soft Magnetic Composites: *Mitra Taheri*¹; Kyle Matthews¹; James Frishkoff¹; Stephen Luckowski²; Jeffrey Schutz²; ¹Drexel University; ²US Army ARDEC Picatinny Arsenal

3:05 PM Invited

WEDNESDAY PM

The Advantages Offered by the Additive Manufacturing Approach in the Production of Soft Magnetic Silicon Steel Parts: from the Fabrication to the Magnetic and Mechanical Characterisation of the Printed Material: Michele Garibaldi¹; Ian Ashcroft¹; Marco Simonelli¹; Leonidas Gargalis¹; *Richard Hague*¹; ¹University of Nottingham

3:35 PM Break

3:55 PM Invited

Field-annealed Amorphous and Nanocrystalline Ribbons and Composites with Improved Energy Performance: *Ivan Skorvanek*¹; Irena Janotova²; Frantisek Andrejka¹; Branislav Kunca¹; Jozef Marcin¹; Peter Svec², Peter Svec Sr²; ¹Institute of Experimental Physics; ²Institute of Physics, SAS

4:25 PM Invited

Comparing Binder Jetting and Laser Metal Deposition for Ni-Mn-based Functional Magnetic Materials: Jakub Toman¹; Amir Mostafaei¹; Katerina Kimes¹; Erica Stevens¹; *Markus Chmielus*¹; ¹University of Pittsburgh

4:55 PM

Application Impact of Magnetic Ribbon Core Strain Annealing: *Richard Beddingfield*¹; Kevin Byerly²; Subhashish Bhattacharya¹; Paul Ohodnicki²; ¹North Carolina State University; ²National Energy Technology Labs

5:15 PM

Laser Additive Manufacturing of Magnetic Materials: Calvin Mikler¹; *Tushar Borkar*²; Raju Ramanujan³; Rajarshi Banerjee¹; ¹University of North Texas; ²Cleveland State University; ³Nanyang Technological University

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder – Pb Free Solder Alloy I

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee *Program Organizers:* Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Wednesday PM March 14, 2018

Room: 226C Location: Phoenix Convention Center

Session Chairs: Christopher Gourlay, Imperial College London; Mehran Maalekian, AIM Solder

2:00 PM

Altering the Mechanical Properties of Pb-free Solder Alloys by Alloying with Bi and Sb: *Mehran Maalekian*¹; Mert Çelikin²; Karl Seelig¹; ¹AIM Metals & Alloys; ²McGill University

2:20 PM

Study of the Solid-State Diffusion of Bi in Sn – The Effects of β -Sn Grain Orientation: *Andre Delhaise*¹; Zhangqi Chen²; Doug Perovic¹; ¹University of Toronto; ²Ohio State University

2:40 PM

Role of Bi in Microstructural Evolution of Sn-Cu-Ni and Sn-Ag-Cu Solders and their Mechanical Performance: *Sergey Belyakov*¹; Takatoshi Nishimura²; Keith Sweatman²; Tetsuya Akaiwa²; Christopher Gourlay¹; ¹Imperial College London; ²Nihon Superior Co., Ltd.

3:00 PM

Insights into the Heterogeneous Nucleation of BSn in Solder Joints: *Christopher Gourlay*¹; Zhaolong Ma¹; Jingwei Xian¹; Sergey Belyakov¹; ¹Imperial College London

3:20 PM Break

3:40 PM

The Microstructure and Hot Rolling Deformation Mechanism of AuSn Eutectic Alloy: Yong Mao¹; Jiyang Xie¹; Yanan Du¹; Kai Xiong¹; ¹Yunnan University

4:00 PM

In-situ high-voltage TEM Observations of Polymorphic Phase Transformations in Cu6Sn5 Solder Joints: Flora Somidin¹; Hiroshi Maeno²; Mohd Arif Anuar Mohd Salleh³; Xuan Tran¹; Stuart McDonald¹; Syo Matsumura²; *Kazuhiro Nogita*¹; ¹The University of Queensland; ²Kyushu University; ³Universiti Malaysia Perlis

Advanced Real Time Optical Imaging – High **Temperature Phenomena**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: **Biomaterials Committee**

Program Organizers: Jinichiro Nakano, US Department of Energy National Energy Technology Laboratory; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology

Wednesday PM Room: 123 March 14, 2018 Location: Phoenix Convention Center

Session Chairs: II Sohn, Yonsei University; David Alman, US DOE National Energy Technology Laboratory

2:00 PM

Thermal Imaging Furnace for the Investigation of the Molten State: Antoine Allanore1; Bradley Nakanishi1; 1Massachusetts Institute of Technology

2:20 PM Invited

High-temperature Microscopy Incorporating Differential Thermal Analysis: Rian Dippenaar1; Suk-Chun Moon1; Dominic Phelan1; 1University of Wollongong

2:50 PM Invited

Real Time Observation of High Temperature Metallurgical Phenomenon at the University of Leuven: Muxing Guo1; 1KULeuven

3.20 PM

In-situ Microscopic Study of Natural Hematite over Repeated Reductionoxidation Gas Exposures: Anna Nakano¹; Jinichiro Nakano¹; James Bennett¹; ¹US Department of Energy National Energy Technology Laboratory

3:40 PM Break

4:00 PM Invited

Real-time Observation of Solution Growth Interface of SiC Using Alloy Solvent: Sakiko Kawanishi¹; Takeshi Yoshikawa²; Kazuki Morita²; ¹Tohoku University; 2The University of Tokyo

4:30 PM

Insitu Tensile Performance of P91 Steel in CO, Environment, Utilizing Small Samples and a Confocal Microscope: Kyle Rozman¹; Jinichiro Nakano¹; Sajedur Akanda¹; Omer Dogan¹; Jeffery Hawk¹; ¹NETL

4.20 PM

Determining Metastable Phase Transformation Temperature between Al4Sm-beta and Al4Sm-gamma: Shihuai Zhou1; Xiong Yang1; Fanqiang Meng¹; Ryan Ott¹; Matthew Kramer¹; Ralph Napolitano¹; ¹Ames Laboratory

Advances in Additive Manufacturing of Titanium and Titanium Based Alloys - Solidification and **Microstructure II**

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Peter Collins, Iowa State University; Leon Prentice, CSIRO; Andrew Baker, The Boeing Company; Craig Brice, Lockheed Martin Space Systems Company

Wednesday PM	Room: 231C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Leon Prentice, CSIRO; Joseph Newkirk, Missouri University of Science and Technology; Eric Faierson, Quad City Manufacturing Laboratory - Western Illinois University

2:00 PM Invited

Characterization of Titanium Interpenetrating Phase Composites Formed through Additive Manufacturing and Spark Plasma Sintering: Eric Faierson1; 1Quad City Manufacturing Laboratory - Western Illinois University

2:30 PM Invited

In-situ Microstructural Control in Ti-6Al-4V during Selective Laser Melting – from Fine Acicular a' Martensite to Various Forms of Lamellar $\alpha + \beta$: Wei Xu¹; Edward Lui²; Milan Brandt²; Ma Qian²; ¹Macquarie University; ²RMIT University

3:00 PM

Effects of Beam Focus and Shape on Microstructure and Defect Characteristics in an E-beam AM Ti-6Al-4V Alloy: A Synchrotron X-ray Micro-CT Study: Rakesh Kamath1; Kin-Ling Sham2; Hahn Choo1; Sean Yoder3; Ryan Dehoff3; Xianghui Xiao4; 1Department of Materials Science and Engineering, University of Tennessee, Knoxville; ²University of Tennessee, Knoxville; ³Manufacturing Demonstration Facility, Oak Ridge National Laboratory; 4X-ray Science Division, Argonne National Laboratory

3:20 PM Break

3:35 PM

Additive Manufacturing of Ti-Cu Alloys: Srinivas Aditya Mantri¹; Tushar Borkar1; James Williams1; Rajarshi Banerjee1; 1University of North Texas

3:55 PM

Microstructure, Defect and Mechanical Properties of Gamma TiAl Alloys Additively Manufactured by Selective Electron Beam Melting: Kun Yang¹; Jian Wang¹; Huiping Tang¹; ¹Northwest Institute for Nonferrous Metal Research

Algorithm Development in Materials Science and Engineering – Atomistic and Micro Scale Algorithms and Models

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Mark Tschopp, Army Research Laboratory; Jonathan Zimmerman, Sandia National Laboratories; Ebrahim Asadi, University of Memphis; Mark Horstemeyer, Mississippi State University

Wednesday PM	Room: 130
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Ebrahim Asadi, The University of Memphis

2:00 PM Invited

Development and Parameterization of Phase-field-crystal Models: David Montiel¹; Jason Luce¹; Guanglong Huang¹; Katsuyo Thornton¹; ¹University of Michigan

2:30 PM Invited

Ordering and Properties of Pure and Binary Two Dimensional Honeycomb Films: Ken Elder1; 1Oakland University

3:00 PM

Computational Performance of Phase Field Calculations using a Matrixfree (Sum-Factorization) Finite Element Method: Stephen DeWitt1; Katsuvo Thornton1; Shiva Rudraraju2; 1University of Michigan - Ann Arbor; 2University of Wisconsin - Madison

3:20 PM

Divergent Properties from Divergent Microstructures: The Effect of Polycrystal Instantiation Methods on Macroscopic Materials Properties: Jacob Gruber1; Fadi Abdeljawad2; Stephen Foiles2; Hojun Lim2; Garritt Tucker1; 1Colorado School of Mines; 2Sandia National Laboratories

3:40 PM Break

4:00 PM Invited

Algorithmic Extensions to Phase Field Dislocation Dynamics (PFDD) for Fcc and Bcc metals: Abigail Hunter1; Enrique Martinez Saez1; Irene Beyerlein2; 1Los Alamos National Laboratory; 2University of California, Santa Barbara

TECHNICAL PROGRAM

4:20 PM

Recent Advances in Polycrystal Plasticity Models and Algorithms: FFTbased and Self-consistent Approaches: *Ricardo Lebensohn*¹; ¹Los Alamos National Laboratory

4:40 PM

GPU Accelerated Phase Field Dislocation Dynamics: Application to Bi-metallic Interfaces: *Adnan Eghtesad*¹; Kai Germaschewski¹; Irene J. Beyerlein²; Abigail Hunter³; Marko Knezevic¹; ¹University of New Hampshire; ²University of California, Santa Barbara; ³Los Alamos National Laboratory

5:00 PM

Discrete Dislocation Dynamics Based Polycrystal Plasticity: John Graham¹; Laurent Capolungo²; Richard LeSar¹; ¹Iowa State University; ²Los Alamos National Lab

Alloy Development and Powder Manufacture for Additive Manufacturing – Powder Development

Sponsored by: TMS Materials Processing and Manufacturing Division Program Organizers: Paul Prichard, Kennametal; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; James Foley, Los Alamos National Laboratory

Wednesday PM	Room: 232B
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Jim Foley, Los Alamos National Laboratory

2:00 PM Invited

Developing Powder Rheology Relationships for Characterization of Metal Powder Feedstocks Used in Additive Manufacturing: Scott Meredith¹; Bellamarie Ludwig¹; *Todd Palmer*¹; ¹Penn State

2:30 PM

WEDNESDAY PM

RF Plasma Powder Metallurgy: An Overview of Applications for Material Development in Additive Manufacturing: *Jean-Francois Carrier*¹; ¹Tekna

2:50 PM

Synchrotron Radiation, XPS Depth Profiling and TEM Characterization for Understanding the Powder Microstructures of Some Key Printable Ti materials, and their Implications for Additive Manufacturing: *Ming Yan*¹; Yinghao Zhou¹; Ma Qian²; ¹South University of Science and Technology of China; ²RMIT University

3:10 PM

The Metalysis Process - a Flexible Distributed Manufacture Route for the Production of Novel AM Powders: *Ian Mellor*¹; Greg Doughty¹; Luke Benson Marshall¹; Melchiorre Conti¹; Stephen Repper¹; Vanessa Linley¹; ¹Metalysis Ltd

3:30 PM Break

3:50 PM Invited

Increasing Powder Yields and Quality for Additive Manufacturing by Fundamental Processing Research on Gas Atomization: *Iver Anderson*¹; Emma White¹; Jordan Tiarks¹; Tim Prost¹; Trevor Riedemann¹; David Byrd¹; ¹Ames Laboratory

4:20 PM

Performance of PTAAM Components for Mining and Energy Applications: Jose Mercardo Rojas¹; Dylan Rose¹; *Tonya Wolfe*²; Ahmed Qureshi¹; Gary Fisher²; Hani Henein¹; ¹University of Alberta; ²InnoTech Alberta

4:40 PM

Progress toward the Use of Elemental Powders for Additive Manufacturing of Aluminum Alloys: *Christopher Roberts*¹; David Bourell¹; ¹University of Texas at Austin

5:00 PM

Thermal Stability of Laser Sintered Nanostructured Powder: *Kendrick Mensink*¹; Sandip Harimkar²; Guillermo Aguilar¹; Suveen Mathaudhu¹; ¹University of California, Riverside; ²Oklahoma State University

5:20 PM

Effect of Atomizing Media on Mechanical Properties of 17-4 PH Stainless Steel Additively Manufactured via Selective Laser Melting: *Milad Ghayoor*¹; Somayeh Pasebani¹; Sunil badwe²; Harish Irrinki³; Sundar Atre³; ¹Oregon State University; ²North American Hoganas; ³University of Louisville

5:40 PM

Characterization of Metal Additive Manufacturing Surfaces Using Synchrotron X-ray CT and Micromechanical Modeling: *Christopher Kantzos*¹; Ross Cunningham¹; Vahid Tari¹; Anthony Rollett¹; ¹Carnegie Mellon University

Alumina & Bauxite – Processing of Low Grade Bauxite: Flotation and Pretreatment

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee *Program Organizer:* Linus Perander, Outotec

Wednesday PM	Room: 221A
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Andrei Smirnov, RUSAL ETC

2:00 PM Introductory Comments

2:05 PM

Flotation Separation of Pyrite from Refractory High-sulfur Bauxite: Wencui Chai¹; *Guihong Han*¹; Jiongtian Liu¹; Yanfang Huang¹; Huilan Chen¹; Zhen Yan¹; ¹Zhengzhou University

2:30 PM

Research on the Desulfurization of High Sulfur Bauxite: *Yanfang Huang*¹; Dianyuan Dang¹; Guihong Han¹; Shuzhen Yang¹; ¹Zhengzhou University

2:55 PM

Research on the Interaction between 1-butyl-2-mercaptobenzimidazole and Pyrite: Tongtong Yang¹; *Guihong Han*¹; Jiongtian Liu¹; Yanfang Huang¹; Wencui Chai¹; Weijun Peng¹; ¹Zhengzhou University

3:20 PM

Flotation of Low-grade Bauxite Using Modified Humics as Depressant: Guihong Han¹; Zhen Yan¹; *Yanfang Huang*¹; Dianyuan Dang¹; ¹Zhengzhou University

3:45 PM Break

4:00 PM

Research on the Adsorption of Humic Acid on Pyrite Surface: Yanfang Huang¹; Huilan Chen¹; *Guihong Han*¹; ¹Zhengzhou University

4:25 PM

Experimental Investigation on Desiliconization of Low-grade Bauxite by Flotation Process: *Guihong Han*¹; Hongyang Wu¹; Wenjuan Wang¹; Yanfang Huang; Yanfang Huang¹; ¹Zhengzhou University

4:50 PM

The Impact of Backwater Iron Ions on Bauxite Flotation: *Chaojun Fang*¹; Leming Ou¹; Qiming Feng¹; Shichao Yu¹; Jun Wang¹; ¹Central South University

Aluminum Alloys, Processing and Characterization – Simulations and Studies of Processing

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Wednesday PM March 14, 2018

Room: 221B Location: Phoenix Convention Center

Session Chair: William Golumbfskie, US Naval Surface Warfare Center

2:00 PM Invited

Comparison of ASTM Grid and ISO Digital Image Correlation Methods on Determination of Forming Limit Curves for an Aluminum Alloy: Randall Bowers1; Xiyu Wen2; Shridas Ningileri1; 1Secat, Inc.; 2University of Kentucky

2:30 PM

Understanding Large-strain Softening of Aluminum in Shear at Elevated Temperature: Michael Kassner¹; Roya Ermagan¹; ¹University of Southern California

2:50 PM

Assessments of Sc-containing Ternary Systems Al-Sc-Ti and Al-Sc-Zr within the Thermodynamic Database for Aluminium Alloys, TCAL5: Hai-Lin Chen1; Qing Chen1; Paul Mason2; 1Thermo-Calc Software AB; 2Thermo-Calc Software Inc.

3:10 PM

Multiscale Model for Al-Li Material Processing Simulation under Forging Conditions: Luke Borkowski1; Alexander Staroselsky1; 1United Technologies Research Center

3:30 PM Break

3:50 PM

Investigation of Effect of Aging Treatment on Deformation Behavior of Al-Mg-Si Alloy Using Quasi-2D Polycrystalline Sample: Jiang Zheng¹; Lin Zhu1; Haoge Shou1; Jinsong Rao1; 1Chongqing University

4:10 PM

Development of Innovative Aluminum Alloys with High Mechanical Properties: Jozef Medved1; Stanislav Kores2; Maja Voncina1; 1University of Ljubljana, Faculty of Natural Sciences and Engineering; ²Talum d.d.

4.30 PM

A General Formulation of Eutectic Silicon Morphology and Processing History: José Spinelli¹; William Hearn²; Abdoul-Aziz Bogno²; Hani Henein²; ¹Federal University of São Carlos; ²University of Alberta

4:50 PM

Evaluation of Hot Tearing Susceptibility of 6000 Series Aluminum Alloys Using Constrained Solidification Test: Leonel Stermann¹; Martín Iraizoz¹; ¹ALUAR

Aluminum Reduction Technology - Fundamentals, **Electrolyte Chemistry & Market**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Abdalla Zarouni, Emirates Global Aluminium

Wednesday PM	Room: 221C
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Zlatko Cus, TALUM d.d.

2:00 PM Introductory Comments

2:05 PM

Current Efficiency in Hall-Héroult Cells: The Role of Mass Transfer at the Cathode: Asbjorn Solheim1; Henrik Gudbrandsen1; Karen Osen1; Ole Edvard Kongstein1; Egil Skybakmoen1; 1SINTEF

2:30 PM

Effects of Current Density on Current Efficiency in Low Temperature Electrolysis with Vertical Electrode Structure: Shengzhong Bao¹; Dengpeng Chai¹; Zhirong Shi¹; Junwei Wang¹; Guisheng Liang¹; Yanan Zhang¹; ¹Zhengzhou Non-ferrous Metals Research Institute Co. Ltd of CHALCO

2:55 PM

Evaluating Effects of Future Shared Mobility and Electrification Trends on Key Intermediate Indicator of Aluminum Transportation Demand: US Vehicle Fleet Size: Suhrid Deshmukh¹; Rich Roth¹; Michele Bustamante¹; ¹MIT

3:20 PM

Improvement in Smelter Process Analysis through EGA Lab Modernization: Najeeba Aljabri¹; Salma Almehairi¹; Shamsa Falasi¹; Yazeed Yabroudi¹; Frank Feret¹; Tapan Sahu¹; Almero Eybers¹; ¹Dubal

3:45 PM Concluding Comments

Atom Probe Tomography for Advanced Characterization of Metals, Minerals and Materials – Fe-based Alloys and High-entropy Alloys

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee Program Organizers: Haiming Wen, Missouri University of Science and Technology; Simon Ringer, The University of Sydney; Gregory Thompson, University of Alabama; Arun Devaraj, Pacific Northwest National Laboratory; Keith Knipling, U.S. Naval Research Laboratory; Gang Sha, Nanjing University of Science and Technology; David Seidman, Northwestern University; Chantal Sudbrack, QuesTek Innovations, LLC

Wednesday PM	Room: 124A
March 14, 2018	Location: Phoenix Convention Center

Funding support provided by: CAMECA Instruments, Inc.

Session Chairs: Chantal Sudbrack, QuesTek Innovations, LLC; Gang Sha, Nanjing University of Science and Technology

2:00 PM

Application of APT in Understanding Thermal Embrittlement of a Duplex Stainless Steel: Sha Gang1; 1Nanjing University of Science and Technology

2:20 PM

Issues with Atom Probe Quantification of Nitrogen in Steels: Frederic Danoix1; Raphaële Danoix2; Andrius Martinavicius3; Mohamed GOUNE4; Hugo Van Lendeghem⁵; François Vurpillot²; ¹CNRS - Université de Rouen; ²Normandie Université; ³Normandie Université & IJL Nancy; ⁴ICMCB Bordeaux; 5Université Grenoble Alpes

2:40 PM

Investigation of Carbon Redistribution in Martensite during Room Temperature Aging by Correlative TEM and APT: Wenjun Lu¹; Michael Herbig1; Christian Liebscher1; Lutz Morsdorf1; Ross Marceau2; Gerhard Dehm¹; Dierk Raabe¹; ¹Max Planck Institute for Iron Research; ²Deakin University

3:00 PM

Long-range Ordered Nanoscale Domains in an Fe-Co-Mo Maraging Steel, an Atom Probe Microscopy and Neutron Diffraction Study: Sophie Primig1; Felix Theska1; Christoph Turk2; Anna Ceguerra3; Simon Ringer3; 1UNSW Sydney; 2Boehler Edelstahl GmbH & Co KG; 3The University of Sydney

3:20 PM Break

3:40 PM

Grain Boundary Chemistry of Dual Main Phase Nd-Ce-Fe-B As-sintered Magnets Revealed by Atom Probe Tomography: Hansheng Chen¹; Rui Han²; Shengzhi Dong²; Fan Yun¹; Jiangtao Qu¹; Simon Ringer¹; Wei Li²; Rongkun Zheng¹; ¹The University of Sydney; ²Central Iron and Steel Research Institute

4:00 PM

Correlative Transmission EBSD-APT Analysis of Grain Boundaries in Additively Manufactured Nickel-base Superalloy Inconel-738LC: Avinash Hariharan¹; Jeroen Risse²; Eric Jägle¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Fraunhofer-Institut für Lasertechnik ILT

4:20 PM

Secondary Phase and Precipitate Characterization of a Fe25Co25Ni25Al10Ti15 HEA Using Atom Probe Tomography: Andrew Hoffman¹; Haiming Wen¹; ¹University of Missouri S&T

4:40 PM

Nanoscale Phase Separation and Precipitation in AlCoCrFeNi High Entropy Alloys as Studied by Atom Probe Tomography: *Keith Knipling*¹; Joshua Tharpe²; Peter Liaw²; ¹U.S. Naval Research Laboratory; ²University of Tennessee

Biodegradable Materials for Medical Applications – Magnesium Alloys II

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Jaroslaw Drelich, Michigan Technological University; Petra Maier, University of Applied Sciences Stralsund; Jan Seitz, Syntellix AG; Norbert Hort, Helmholtz-Zentrum Geesthacht; Huinan Liu, University of California-Riverside

Wednesday PM	Room: 226A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Diego Mantovani, Laval University; Mauricio Vedani, Polytechnic of Milano

2:00 PM Keynote

Is Corrosion Fatique Relevant for Biodegradable Magnesium Implants?: Frank Witte¹; ¹Charite - Universitätsmedizin Berlin

2:40 PM Invited

Microstructure Properties and In-vitro Degradation Behavior of the Bioresorbable Magnesium Alloy ZNdK100: *Christian Klose*¹; Rainer Eifler¹; Hans Jürgen Maier¹; ¹Leibniz Universität Hannover

3:10 PM

Microstructure and Mechanical Properties of Mg-Gd Alloys as Biodegradable Implant Materials: *Yiyi Lu*¹; Yuanding Huang¹; Frank Feyerabend¹; Regine Willumeit-Römer¹; Karl-Ulrich Kainer¹; Norbert Hort¹; ¹Helmholtz-Zentrum Geesthacht

3:30 PM Break

3:50 PM Invited

Influence of Casting on Microstructure and Corrosion of Mg-Ca-Zn Alloys for Biomedical Application: *Daniela Zander*¹; Naemi Zumdick¹; ¹RWTH Aachen University

4:20 PM

Osteosynthesis in a Growing Ovine Model using Bioresorbable Rareearth-free Magnesium Screws: Johannes Eichler¹; Patrick Holweg¹; Leopold Berger²; Martina Cihova²; Nicholas Donohue¹; *Nicole Grün*¹; Jörg Löffler²; Annelie Weinberg¹; ¹Medical University of Graz; ²ETH Zuerich

4:40 PM

Osteosynthesis in an Osteoporotic Rat Model Using Magnesium-based Pins: *Nicole Gruen*¹; Daniela Hirzberger¹; Johannes Eichler¹; Nicholas Donohue¹; Annelie-Martina Weinberg¹; ¹Medical University of Graz

5:00 PM

TECHNICAL PROGRAM

Development of Porous and Biodegradable Hydroxyapatite/Mg Alloy Composite as Biodegradable Implants for Orthopaedic Applications: *Jae-Young Jung*¹; Yajur Maker¹; Sung Sik Hur¹; Steven Naleway²; Gracia Innocentia¹; Kathy Kang¹; Marc Meyers¹; Shu Chien¹; Joanna McKittrick¹; ¹University of California, San Diego; ²The University of Utah

Biological Materials Science – Biomaterials and Biomedical Applications II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee Program Organizers: Steven Naleway, University of Utah; Vinoy Thomas, University of Alabama at Birmingham; Holly Martin, Youngstown State University; Jing Du, Pennsylvania State University

Wednesday PM	Room: 225B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Jing Du, Penn State University; Steven Naleway, University of Utah

2:00 PM

Anchoring Tannic Acid to a Polymeric Backbone - a Novel Burn Wound Treatment: *Matthew Korey*¹; ¹Purdue University

2:20 PM

The Study of the Effects of Cancer Drugs on the Structure and Mechanical Properties of Triple Negative Breast Cancer Cells (TNBCs): Vanessa Uzonwanne¹; John Obayemi¹; Jingjie Hu²; Ali Salifu¹; Winston Soboyejo¹; ¹Worcester Polytechnic Institute; ²Princeton University

2:40 PM

Nanocomposite Heating Probes for Thermoablation of Cancerous Cells: *Kwabena Kan-Dapaah*¹; Nima Rahbar²; Wole Soboyejo²; ¹Dept. of Biomedical Engineering, University of Ghana; ²Worcester Polytechnic Institute

3:00 PM

An Anatomic Breast Phantom Mimicking Varying Levels of Radiographic Tissue Density for Translational Investigation of Contrast-enhanced Imaging Using Targeted Nanoparticles: *Lisa Irimata*¹; Tyler Finamore¹; Tyler Curtis¹; Tracy Vargo-Gogola¹; Ryan Roeder¹; ¹University of Notre Dame

3:20 PM

Automatic Shape-based Cell Identification in Arabidopsis Thaliana Cotyledons Using 3D Moment Invariants: *Ryan Harrison*¹; Marc De Graef¹; ¹Carnegie Mellon University

3:40 PM Break

3:55 PM

Cryo-drawn of CP Ti: A New Material for Medical Applications: *Mikael Grehk*¹; Pasi Kangas¹; Guocai Chai¹; Lars Wikström¹; ¹Sandvik Materials Technology

4:15 PM

A Novel Approach of Polymer Grafting on Selective Laser Melted Titanium Alloy Hip Implants for Improved Lubricity and Biocompatibility: *Subir Ghosh*¹; Sylvester Abanteriba¹; Shadi Houshyar¹; ¹RMIT University

4:35 PM

Bio-functional Design for Metallic Biomaterials: Cu-bearing Metallic Biomaterials: *Ling Ren*¹; Ke Yang¹; ¹Institute of Metal Research CAS

4:55 PM

The Effect of the Thickness of the Magnetic Biological Patch on the Accumulation Mechanism of Magnetic Particles: *Lanlan Cai*¹; Kai Yang¹; Yongyong Gong¹; Jiaqi Ma²; Zheyong Huang²; Ning Pei¹; ¹Shanghai University; ²Zhongshan Hospital, Fudan University

5:15 PM

A Novel In Vitro Fatigue Test for Biomimetic Implants Made of UHMWPE: Marina Knyazeva¹; Dario Porchetta¹; Ronja Scholz¹; Frank Walther¹; ¹TU Dortmund University

Building an ICME Infrastructure: Developing Tools that Integrate Across Length and Time Scales to Accelerate Materials Design – ICME Gap Analysis: Multiscale Modeling and Characterization of Structural Materials: II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee Program Organizers: Carelyn Campbell, National Institute of Standards and Technology; Mark Carroll, Federal Mogul Powertrain; Adam Hope, Thermo-Calc Software; Hojun Lim, Sandia National Laboratories; Myoung-Gyu Lee, Korea University; Amy Clarke, Colorado School of Mines; Dongwon Shin, Oak Ridge National Laboratory

Wednesday PM Room: 132C March 14, 2018 Location: Phoenix Convention Center

Session Chair: Hojun Lim, Sandia National Laboratories

2:00 PM Invited

Accelerating the Process-structure-property Discovery Cycle: Brad Boyce¹; Joseph Michael¹; ¹Sandia National Laboratories

2:40 PM Invited

Yield Stress, Proportional Limit: Do They Exist?: Robert Wagoner1; 1Ohio State University

3:20 PM Break

3:35 PM Invited

Modeling Plastic Anisotropy of Textured Polycrystalline Materials: Oana Cazacu1; Nitin Chandola1; 1University of Florida

4:15 PM Invited

Prediction of Hole Expansion Ratio Using Microstructure Based Dualscale Finite Element Approach: Heung Nam Han1; Siwook Park1; Jinwook Jung¹; Sung Il Kim²; Seok-Jong Seo²; Myoung-Gyu Lee³; ¹Seoul National University; ²POSCO; ³Korea University

4:55 PM Invited

Differences between Measured and Simulated Elastic Strain States Using High Energy X-ray Diffraction in Titanium Using Crystal Plasticity Models: Thomas Bieler¹; Chen Zhang¹; Harsha Phukan¹; Philip Eisenlohr¹; Martin Crimp¹; Carl Boehlert¹; Fionn Dunne²; T. Britton²; Armand Beaudoin³; Darren Pagan3; Peter Kenesei4; Jun-Sang Park4; Ruqing Xu4; Wenjun Liu4; ¹Michigan State University; ²Imperial College; ³Cornell High Energy Synchrotron Source; ⁴Argonne National Laboratory

Bulk Metallic Glasses XV – Structures and Mechanical Properties II

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Wednesday PM	Room: 122A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Juergen Eckert, Montanuniversität Leoben; Jinn Chu, National Taiwan University of Science and Technology

2:00 PM Invited

Manipulating Structures and Mechanical Properties in Metallic Glasses: Juergen Eckert¹; ¹Montanuniversität Leoben

2:20 PM

Dynamics of Inherent Structure Energy Evolution in Metallic Glasses: Yue Fan1; 1University of Michigan, Ann Arbor

2:40 PM Invited

Intermediate Temperature Brittleness in Metallic Glasses: Jianzhong Jiang¹; Chao Wang¹; Qingping Cao¹; Xiaodong Wang¹; Dongxian Zhang²; Upadrasta Ramamurty3; Ramasubramanian Lakshmi Narayan4; 12hejiang University; 2State Key Laboratory of Modern Optical Instrumentation, Zhejiang University; 3Department of Materials Engineering, Indian Institute of Science; 4Carnegie Mellon University

3:00 PM Invited

On the Effect of Sample Size on the Fracture Toughness of Bulk Metallic Glasses: Bernd Gludovatz¹; Jamie Kruzic¹; *Robert Ritchie*²; ¹UNSW Sydney; ²Lawrence Berkeley National Laboratory

3:20 PM Invited

Effects of Annealing and Irradiation on the Mechanical and Microstructural Properties of Bulk Metallic Glass Alloys: Jamieson Brechtl¹; Miguel Crespillo¹; Hui Wang¹; Tengfei Yang¹; Luis Mora²; Yanwen Zhang¹; Hongbin Bei2; Yongqiang Wang3; Joerg Neuefeind2; Wojciech Dmowski2; Takeshi Egami²; Peter Liaw¹; Steven Zinkle²; ¹University of Tennessee; ²Oak Ridge National Laboratory; 3Los Alamos National Laboratory

3:40 PM Break

3:55 PM Invited

Density Evolution, Strain Hardening, and Plastic Flow of a Metallic Glass in a Notched Tensile Test: Yonghao Sun¹; Mantong Zhao¹; Peter Kenesei²; Jun-Sang Park²; Todd Hufnagel¹; ¹Johns Hopkins University; ²Argonne National Laboratory

4:15 PM Invited

Thin-film Metallic Glass with Ultra-high Plasticity under Shearing and Nanoindentation at Room Temperature: Chia-Chi Yu1; Jinn Chu1; J. E. Greene²; Peter K. Liaw³; ¹National Taiwan University of Science and Technology; ²University of Illinois at Urbana-Champaign; ³The University of Tennessee

4:35 PM Invited

Strain Delocalization and Fracture Behaviors of Laminated Metallic Glass Composites: Xinghang Zhang¹; Zhe Fan¹; Jian Wang²; Jin Li¹; Haiyan Wang¹; ¹Purdue University; ²University of Nebraska, Lincoln

4.55 PM Invited

Strengthening and Toughening via Phase Separation and Beta Relaxation in Zr-based Bulk Metallic Glasses: Xidong Hui1; Tuo Wang1; Yanhui Liu2; ¹University of Science and Technology Beijing; ²Institute of Physics, Chinese Academy of Sciences

5:15 PM Invited

Tailoring Crystallization Pathways of Metallic Glass Nanorods via Nucleus Starvation: Sungwoo Sohn¹; Yujun Xie¹; YeonWoong Jung²; Jan Schroers¹; Judy Cha1; 1Yale University; 2University of Central Florida

Cast Shop Technology: Fundamentals of Aluminum Alloy Solidification Joint Session – Cast Shop **Technology: Fundamentals of Aluminum Alloy** Solidification Joint Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizers: Andre Phillion, McMaster University; Mark Badowski, Hydro Aluminium; Mohsen Asle Zaeem, Missouri University of Science and Technology

Wednesday PM	Room: 222A
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Andre Phillion, McMaster University

2:00 PM Introductory Comments

2:05 PM Invited

In-situ Study of Solidification Kinetics of Al-Cu and Al-Ce Alloys with Application of Neutron Diffraction: Joshua Stroh¹; Tyler Davis¹; Alexandra McDougall1; Dimitry Sediako1; 1University of British Columbia

TECHNICAL PROGRAM

2:30 PM

Quantifying Effects of Grain Refiner Addition on Fe-rich Intermetallics Solidification of Al-Si-Cu Alloys Using In Situ Synchrotron X-ray Tomography: Surada Chuaypradit¹; Chedtha Puncreobutr¹; André Phillion²; Julie Fife3; Peter Lee4; ¹Chulalongkorn University; ²McMaster University; ³Paul Scherrer Institut; ⁴The University of Manchester

2:55 PM

An Investigation on Si Refinement Mechanism of Hypereutectic Al-Si via Applying Ultrasonic Vibrations: Reza Haghayeghi¹; Leandro De Paula²; Eugenio Zoqui²; ¹Islamic Azad University; ²University of Campinas

3:20 PM

Observations of Microhardness and Evolution of Constituents in Al-Zn and Zn-Al Specimens with Columnar-to-Equiaxed Grain Transition: Roberto Rozicki¹; Alex Kociubczyk²; Gustavo Kramer²; Alicia Ares²; ¹FCEQyN-UNaM; ²CONICET/FCEQyN-UNaM

3:45 PM Break

4.00 PM

Impact of Inlet Flow On Macrosegregation Formation Accounting for Grain Motion and Morphology Evolution in DC Casting Of Aluminium: Akash Pakanati¹; Knut Omdal Tveito¹; Mohammed M'Hamdi²; Hervé Combeau3; Miha Založnik3; 1NTNU; 2SINTEF; 3Institut Jean Lamour

4:25 PM

Effects of Microstructure on Hot Cracking Behavior in Al-Zn-Mg-Cu Alloys: David Gildemeister1; 1Arconic Technology Center

4:50 PM

Effective Nanoparticles Feeding Treatment in Casting of A356/ZrO2 Nano-reinforced Composite: H. Toweri¹; W. Hoziefa²; Adel El-Shabasy¹; Iman El Mahallawi3; 1Ain Shams University; 2Al-Azhar; 3Cairo University

Characterization of Minerals, Metals, and Materials – Characterization Methods II

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, AI Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Wednesday PM March 14, 2018

Room: 122C Location: Phoenix Convention Center

Session Chairs: Juan Escobedo-Diaz, University of New South Wales; Jeongguk Kim, Korea Railroad Research Institute

2:00 PM Introductory Comments

2:05 PM Invited

Design of Road Defect Scanning System through Multiple Application of Nondestructive Evaluation (NDE) Techniques: Jeongguk Kim¹; Jaesun Lee¹; ¹Korea Railroad Research Institute

2:25 PM Invited

Towards High throughput Quantitative Metallography for Complex Microstructures with Deep Semantic Segmentation Models: A Case Study in Ultrahigh Carbon Steel: Brian DeCost¹; Toby Francis¹; Elizabeth Holm¹; ¹Carnegie Mellon University

2:45 PM

Microbeam X-ray Laue Diffraction Analysis of a Fatigue Crack Interaction with Microstructure in Duplex Stainless Steel Using a pnCCD Detector: Ali Abboud¹; Ullrich Pietsch¹; Hans-Juergen Christ¹; Jean-Sébastien Micha²; Lothar Strüder³; Benjamin Dögnes¹; ¹University of Siegen; ²CEA-GrenobleINACSprAM; 3PNSensor GmbH

3:05 PM

Study on the Toughening Mechanisms of Collagenous Materials by Using Real-time X-ray Characterization and Imaging: Wen Yang1; Haocheng Quan1; Elizabeth Zimmermann2; Eric Schaible2; Marc Meyers1; Robert Ritchie³; ¹University of California, San Diego; ²Lawrence Berkeley National Laboratory; 3University of California, Berkeley

3:25 PM

In Situ Diagnostics of Melting/Solidification and Segregation during Crystal Growth by Energy-resolved and Conventional Neutron Imaging: Sven Vogel¹: Anton S. Tremsin²: Drew Onken³: Didier Perrodin⁴: Adrian S. Losko¹; Greg Bizarri⁴; Edith Bourret-Courchesne⁴; ¹Los Alamos National Laboratory; ²UC Berkeley; ³Wake Forest University; ⁴Lawrence Berkeley National Laboratory

3:45 PM Break

4:00 PM

AstroEBSD: A Novel EBSD Pattern Indexing Routine Launched from an Astronomical Approach: Vivian Tong¹; Jim Hickey¹; Alex Foden¹; Angus Wilkinson²; T Ben Britton¹; ¹Department of Materials, Imperial College; ²Department of Materials, University of Oxford

4:20 PM

Non-destructive Characterization Techniques for Identification of Metal Inclusions in Plastic-bonded Explosives: Genevieve Watt¹; Adrian Losko¹; Amanda Duque¹; Sven Vogel¹; John Yeager¹; ¹Los Alamos National Laboratory

4:40 PM

Exploring Thermal Loading of Composites by the Acoustic Emission Technique: Frantisek Chmelik¹; Michal Knapek¹; Patrik Dobron¹; ¹Charles University

5:00 PM

Computational Polarized Light Microscopy Technique for Determining the C-axis Orientation of Uni-axial Materials: Ke-Wei Jin¹; Marc De Graef¹; ¹Carnegie Mellon University

Characterization of Minerals, Metals, and Materials -Characterization of Powder Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Wednesday PM March 14, 2018

Room: 125A Location: Phoenix Convention Center

Session Chairs: Chenguang Bai, Chongqing University; Rajiv Soman, Purity Survey Analysis

2:00 PM Introductory Comments

2.05 PM

Three Dimensional Characterization of Powder Al Alloys and the Effects of Thermal Processing: Caitlin Walde1; Danielle Cote1; Victor Champagne2; Richard Sisson¹; ¹WPI; ²US Army Research Laboratory

2:25 PM

Characterization of HPGR Pre-treated Sinter Feed: Mingming Zhang¹; Kodukula Bhaskar1; Marcelo Andrade1; 1ArcelorMittal Global R&D

2:45 PM

Thermogravimetric Analysis on Reduction Behavior of Powdery Dicalcium Ferrite: Chengyi Ding¹; Xuewei Lv¹; Gang Li¹; Chenguang Bai¹; Senwei Xuan¹; Kai Tang¹; Yang Xu¹; ¹Chongqing University

TECHNICAL PROGRAM

3:05 PM

MC Carbide Characterization in a High Refractory Content Powder Processed Ni-based Superalloy: *Stoichko Antonov*¹; Sammy Tin¹; ¹Illinois Institute of Technology

3:25 PM Break

3:40 PM

Study on Application of Iron Ore Fine in Pelletizing: *Gele Qing*¹; Yunqing Tian¹; Weidong Zhang¹; Xiangjuan Dong¹; Wenbin Huang¹; Yan Zhang¹; ¹Shougang Research Institute of Techonogly

4:00 PM

Research with Scanning Rate on SLM Property of 316L Stainless Steel Metal Powder: Junfu Chen¹; ¹Huazhong University of Science and Technology

Characterization of Minerals, Metals, and Materials – Mechanical Behaviors of Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Wednesday PM	Room: 126B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Donato Firrao, Politecnico di Torino - DISAT; Tomoko Sano, U.S. Army Research Laboratory

2:00 PM Introductory Comments

2:05 PM

Advanced Mechanical Characterization for High Temperature Materials: Philip Blosser¹; Andrew Rosenberger²; *Michael Shepard*³; Jonathan Spowart²; Larry Zawada⁴; ¹University of Dayton Research Institute; ²US Air Force Research Laboratory; ³MTS Systems Corporation; ⁴Universal Technology Corporation

2:25 PM

Characterization of Deformation Mechanisms of Stainless Steels Assisted by Phase Transformation by Means of EBSD Analysis Combined with Nanoindentation: *Marina Knyazeva*¹; David Nowak¹; Frank Walther¹; ¹TU Dortmund University

2:45 PM

In-situ TEM Study of Precipitation Behavior in Alloy 690-based MA Powders: *Man Wang*¹; Heung Nam Han²; Hee-Suk Chung³; Young Bum Chun¹; Chang Hee Han¹; Jinsung Jang¹; ¹KAERI; ²Seoul National University; ³Korea Basic Science Institute

3:05 PM

Determination of Microstructure-based Constitutive Models Using Temperature Rise Distribution in Plane Strain Machining: Sepideh Abolghasem¹; Juan Camilo Osorio Pinzon¹; Juan Pablo Casas Rodriguez¹; ¹Universidad de los Andes

3:25 PM Break

3:40 PM

Mechanical Properties and Time-dependent Behavior of Vapor-deposited TPD Glass: *Chaiyapat Tangpatjaroen*¹; Diane Walters¹; Jaritza Gómez¹; David Grierson¹; Mark Ediger¹; Izabela Szlufarska¹; ¹University of Wisconsin - Madison

4:00 PM

Precipitating Behaviour of Second Phase Particles in Lightweight Fe-Mn-Al-C-N Stainless Steel: *Wei Hou*¹; Jingtao Wang¹; Xiaoyu Han¹; Jun Bao¹; ¹Chongqing Universitity

4:20 PM

Local Texture Evolution and Mechanical Performance of Ultra-High-Speed Friction Stir Weld of AA 6111-T4 Sheets: *Jingyi Zhang*¹; Yuri Hovanski²; Piyush Upadhyay³; David Field¹; ¹Washington State University; ²Brigham Young University; ³Pacific Northwest National Laboratory

4:40 PM

Bending Mechanical Behavior of Epoxy Matrix Reinforced with Fique Fabric: *Marcos Vinícius Ferreira*¹; Rúben Jesus Sánchez Rodríguez¹; Maria Carolina Andrade Teles¹; Gilson Vieira Fernades¹; Felipe Perissé Duarte Lopes¹; Sérgio Neves Monteiro²; Frederico Margem¹; ¹State University of the Northern Rio de Janeiro - UENF; ²Military Institute of Engineering - IME

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Diffusion II Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Wednesday PM	Room: 131A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Qing Jiang, Jilin University; Graeme Murch, The University of Newcastle

2:00 PM Invited

Determination of the Diffusion Mechanisms in Liquid Alloys: *Graeme Murch*¹; Irina Belova¹; ¹The University of Newcastle

2:30 PM

First Principles Molecular Dynamics Study for Oxidation on Ti Surface at Elevated Temperature: *Somesh Bhattacharya*¹; Ryoji Sahara¹; Kyosuke Ueda²; Takayuki Naushima²; ¹National Institute for Materials Science; ²Tohoku University

2:50 PM

Properties of Liquid TiAl Alloys from Classical MD Simulation and Comparison to Electrostatic Levitation (ESL) Experiments: *Brian Novak*¹; Jonathan Raush²; Xiaoman Zhang¹; Wenjin Meng¹; Shengmin Guo¹; Dorel Moldovan¹; ¹Louisiana State University; ²University of Louisiana at Lafayette

3:10 PM

Mass and Heat Transport in Ternary Liquid Alloys: *Irina Belova*¹; Graeme Murch¹; ¹University of Newcastle

3:30 PM Break

3:45 PM Invited

Design of Fast Ion Conducting Electrode Materials: *Qing Jiang*¹; ¹Jilin University

4:15 PM

Theoretical Investigation of Ag-Li-Sb System as the Anode Materials for Lithium-ion Batteries: *Marcela Trybula*¹; Monika Bugajska²; Przemysław Fima²; ¹Institute of Metallurgy and Materials Science Polish Academy of Sciences, Krakow, Poland; Department of Materials Science and Engineering, Division of Materials, KTH Royal Institute of Technology, Stockholm, Sweden; ²Institute of Metallurgy and Materials Science Polish Academy of Sciences

4:35 PM

The Effect of Chemical Doping on the Lithiation Processes of the Crystalline Si Anode: A First-principles Study: *Chin-Lung Kuo*¹; ¹National Taiwan University

4:55 PM

Protein Dynamics under Nanoconfinement and Its Contribution to the Toughness of Nacre: Arvand Navabi¹; Nima Rahbar¹; ¹Worcester Polytechnic Institute

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations -Microstructure and Processing Simulations II

Sponsored by: Chinese Society for Metals Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Wednesday PM Room: 131B March 14, 2018

Location: Phoenix Convention Center

Session Chairs: Alan Luo, The Ohio State University; Yongwoo Kwon, Hongik University

2:00 PM

Sintering Dynamics in Direct Write Additive Manufacturing Processes: A Phase Field Model: Fadi Abdeljawad¹; Dan Bolintineanu¹; Adam Cook¹; Harlan Brown-Shaklee1; Daniel Kammler1; 1Sandia National Laboratories

2.20 PM

Multi-scale Phase-field Modeling of Microstructure Evolution of Additively Manufactured Metals: Lei Chen¹; Zhuo Wang¹; ¹Mississippi State University

2.40 PM

Smoothed Particle Hydrodynamics Simulation of Impact Welding Process: Ali Nassiri¹; Tim Abke²; ¹The Ohio State University; ²Honda R&D Americas, Inc.

3:00 PM

WEDNESDAY PM

Study on the Effects of Die Coating Thickness on the Interfacial Heat Transfer Coefficient in Squeeze Casting of Aluminum Alloy: Feifan Wang¹; Xuyang Wang¹; Keyan Wu¹; *Zhiqiang Han*¹; ¹Tsinghua University

3:20 PM

Phase Field and Atomistic Simulation to Study Solidification in Undercooled Titanium: Sepideh Kavousi¹; Brian Novak¹; Mohammad Dodaran1; Dorel Moldovan1; 1Louisiana State University

3:40 PM Break

4:00 PM

CALPHAD Coupled Phase Field Modeling of Sigma Phase Precipitation in Commercial 2507 Super Duplex Stainless Steel Alloy: Amer Malik1; Jan Jonson²; Joakim Odqvist³; Staffan Hertzman¹; ¹Swerea KIMAB AB; ²Outokumpu Stainless AB; ³KTH Royal Institute of Technology

4:20 PM

Multi-scale Materials Modeling to Study the Influence of Microscopic Parameters on the Mechanical Properties of DP Steels under Different Strain Rates: Parametric Study and Optimization: Tarek Belgasam¹; Hussein Zbib1; 1Washington State University

4:40 PM

2D Simulation of Gradient Zone Formation in Cemented Carbides with Conventional and Alternative Binders: Armin Salmasi¹; Henrik Larsson¹; Stella Sten1; Andreas Blomqvist2; 1KTH Royal institute of technology; ²Sandvik Coromant R&D

5:00 PM

Continuum Scale Modelling of Diffusion-reaction Processes during Coating Deposition: Axel Forslund¹; Henrik Larsson¹; ¹KTH Royal Institute of Technology

Computational Design and Simulation of Materials (CDSM 2018): Computational Design of Materials -**Computational Design: Tools and Data**

Sponsored by: Chinese Society for Metals

Program Organizers: Alan Luo, The Ohio State University; Suveen Mathaudhu, University of California, Riverside; Yong Du, Central South University; Raymundo Arroyave, Texas A & M University; Dianzhong Li, Institute of Metal Research, Chinese Academy of Sciences; Zi-Kui Liu, The Pennsylvania State University

Wednesday PM	Room: 131C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Yu Zhong, Worcester Polytechnic Institute; Alex Greaney, University of California, Riverside

2:00 PM Invited

Automated Computer Design of Kinematically Active Molecular Materials: Charles Manion¹; Laura de Sousa Oliveira²; Brady Gibbons¹; Matthew Campbell¹; P Greaney²; ¹Oregon State University; ²University of California, Riverside

2:30 PM

SEGROcalc: A Software Tool for Integrated Computational Grain Boundary Engineering: Daniel Scheiber¹; Anatol Drlicek¹; Nada Kulo¹; Jürgen Spitaler¹; Vsevolod Razumovskiy¹; Lorenz Romaner¹; ¹Materials Center Leoben Forschungs GmbH

2:50 PM

Error Analysis of Interdiffusion Coefficients from Diffusion Couple Experiments: Zhangqi Chen1; Ji-Cheng Zhao1; 1The Ohio State University

3:10 PM

Computational Microstructure Characterization and Reconstruction for Multi-scale Analysis of Multi-phase AHSS: Hongshan Zhao¹; Han Dong¹; Wei Li²; Xuejun Jin²; ¹Shanghai University; ²Shanghai Jiao Tong University

3:30 PM Break

3:50 PM

Quantitative Defect Chemistry Analysis of (La1-xCax)yFeO3±d Perovskite: Shadi Darvish1; Yu Zhong2; 1Florida International University; ²Worcester Polytechnic Institute

4:10 PM

Theoretical Investigation of Vacancy Concentration and its Effect on the Kinetics of B2 – L2, Ordering in Ni-Co-Mn-In MetaMagnetic

Shape Memory Alloys: Yuhao Wang¹; Daniel Salas¹; Bharat Medasani²; Ibrahim Karaman¹; Thien Duong¹; Raymundo Arroyave¹; ¹Texas A&M University; ²Pacific Northwest National Laboratory

4:30 PM

Separation Oxide and Fluride and Sulfur Gases with Hydrogen in Aluminium Industry by Carbon Nano Tube (Monte Carlo Simulation): Mohsen Amerisiahooei1; Khirollah Baharvand1; Mohammad Yousefi1; 1Islamic Azad University

4:50 PM

Design of a New Multi-element Beta Titanium Alloy Based on D-electron Method: Saeed Sadeghpour1; Seyed Mahdi Abbasi1; Maryam Morakabati1; ¹Malek Ashtar University of Technology

Computational Materials Science and Engineering for Nuclear Energy – Fundamentals of Radiation Effects I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Haixuan Xu, University of Tennessee; Michael Tonks, Pennsylvania State University; Blas Uberuaga, Los Alamos National Laboratory; James Morris, Oak Ridge National Laboratory

Wednesday PM	Room: 102B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Sergei Dudarev, Culham Centre for Fusion Energy (CCFE); James Morris, Oak Ridge National Laboratory

2:00 PM Invited

Evolution of Grain Boundary Structure and Composition in Irradiated SiC: *Izabela Szlufarska*¹; Xing Wang²; Hao Jiang¹; Tomonori Baba¹; ¹University of Wisconsin; ²Oak Ridge National Laboratory

2:30 PM

Effects of Oxygen on the Density of States and Elastic Properties of Hafnium—First Principles Calculations: *Yang Zhang*¹; Yajie Wen¹; Naimeng Liu¹; Hao Guo¹; Ye Cui¹; Dan Chen¹; Zhongwu Zhang¹; ¹Harbin Engineering University

2:50 PM

Quantitative Phase Field Modeling of Void Growth in Irradiated Solids: *Anter El-Azab*¹; ¹Purdue University

3:10 PM

Multiscale Simulations of Sequential Dislocation/Obstacle Interactions in FCC Metals: *Shuozhi Xu*¹; David McDowell²; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Georgia Institute of Technology

3:30 PM Break

3:50 PM

Thermomechanical Analysis of the Multi-metallic Layered Composite Fuel Cladding for Improved Accident Tolerance of LWRs: *Aashique Rezwan*¹; Michael Tonks¹; Michael Short²; ¹The Pennsylvania State University; ²Massachusetts Institute of Technology

4:10 PM

The Thermodynamic and Kinetic Properties of Spinels as They Relate to CRUD: Ghanshyam Pilania¹; *Blas Uberuaga*¹; David Andersson¹; ¹Los Alamos National Laboratory

4:30 PM

Computer Simulations of Dislocation-obstacle Interactions in the Hardening and Recovery of BWR-irradiated 304L SS: Justin Hesterberg¹; Jesse Carter²; Denise Paraventi²; Richard Smith²; Gary Was¹; ¹University of Michigan; ²Naval Nuclear Laboratory

4:50 PM Invited

Interstitial-mediated Diffusion and Aggregation Mechanism for Transmutation Elements Rhenium and Ormium Precipitation in Tungsten: *Guanghong Lu*¹; Hongbo Zhou¹; Yuhao Li¹; ¹Beihang University

Computational Method and Experimental Approaches for Model Development and Validation, Uncertainty Quantification, and Stochastic Predictions – Development, UQ and Validation of Classical Potential

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers*: Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory; Richard Hennig, University of Florida; Avinash Dongare, University of Connecticut; Shawn Coleman, U.S. Army Research Laboratory; Niaz Abdolrahim, University of Rochester; Joseph Bishop, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Li Ma, National Institute of Standards and Technology

Wednesday PM	Room: 132B
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Fadi Abdeljawad, Sandia National Laboratories

2:00 PM Invited

Machine Learning Methods for Interatomic Potentials: Application to Boron Carbide: *Michael Widom*¹; ¹Carnegie Mellon University

2:30 PM

Machine Learnt Interatomic Potentials for Stanene and Germanene to Study Thermal Conductivity and Growth: *Mathew Cherukara*¹; Badri Narayanan¹; Alper Kinaci²; Kiran Sasikumar¹; Stephen Gray¹; Maria Chan¹; Subramanian Sankaranarayanan¹; ¹Argonne National Lab; ²Northwestern University

2:50 PM Invited

New Advances in Semi-empirical Interatomic Potentials - the Modified Embedded Atom Method (MEAM): *Michael Baskes*¹; ¹Mississippi State University; Los Alamos National Laboratory; UCSD; University of North Texas

3:20 PM Break

3:40 PM Invited

Errors of Molecular Dynamics Simulations, and Development of "Accurate" Analytical Bond Order Potentials for Al-Cu-H and Mg-H Systems: *Xiaowang Zhou*¹; Brandon C. Wood²; Foster E. Michael¹; Mark. D. Allendorf¹; Tae Wook Heo²; Shinyoung Kang²; ¹Sandia National Laboratories; ²Lawrence Livermore National Laboratory

4:10 PM

Development of a Semi-empirical Potential for Simulation of Ni Solutes Segregated in Ag Grain Boundaries: *Mikhail Mendelev*¹; Valery Borovikov¹; Zhiliang Pan²; Frederic Sansoz²; ¹Ames Laboratory; ²University of Vermont

4:30 PM

Calibration of a Titanium Modified Embedded Atom Method Potential to High Temperature Behavior: *Doyl Dickel*¹; Mark Tschopp²; Mark Horstemeyer¹; ¹Mississippi State University; ²Army Research Laboratory

Computational Thermodynamics and Kinetics – Thermochemistry and Thermomechanics

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Elif Ertekin, University of Illinois; Shawn Coleman, U.S. Army Research Laboratory; Brent Fultz, California Institute of Technology; Richard Hennig, University of Florida; Suveen Mathaudhu, University of California, Riverside

Wednesday PMRoom: 128AMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Maria Chan, Argonne National Laboratory; Shawn Coleman, U.S. Army Research Laboratory

2:00 PM Invited

Oxygen Off-stoichiometry and Defect Entropies in Solar Thermochemical Water Splitting Materials: Chris Wolverton¹; ¹Northwestern University

2:30 PM

Computationally Tractable Methods for Studying the Roles of Water Molecules on Aqueous Phase Heterogeneous Catalysis: *Tianjun Xie*¹; Rachel Getman¹; ¹Clemson University

2:50 PM

Density Functional Theory Study of Oxygen Reduction Reaction on Non-precious Transition Metal/Nitrogen Doped Carbon Electrocatalysts: *Guofeng Wang*¹; Kexi Liu¹; ¹University of Pittsburgh

3:10 PM

WEDNESDAY PM

Thermodynamic Stabilization of Precipitates through Interface Segregation: Chemical Effects: Sourabh Kadambi¹; Srikanth Patala¹; ¹North Carolina State University

3:30 PM Break

3:50 PM Invited

Towards Accurate First Principles Energetics in Transition Metal Compounds: Yi Xia¹; Liang Li¹; Maria Chan¹; ¹Argonne National Laboratory

4:20 PM

Investigation of the Effect of Sintering Aids and Impurities on the Sintering of B4C by Applying the CALPHAD Approach: *Mohammad Asadikiya*¹; Yu Zhong¹; ¹Florida International University

4:40 PM

Investigation of the Thermodynamic Stability of LSM-YSZ Mixture by Applying the CALPHAD Approach: *Mohammad Asadikiya*¹; Yu Zhong¹; ¹Florida International University

5:00 PM

Optimization of Thermo-mechanical Properties of Alloy Systems via a Computational Strengthening Model: *Derek Tsaknopoulos*¹; Bryer Sousa¹; Danielle Cote¹; Richard Sisson¹; Victor Champagne¹; ¹Worcester Polytechnic Institute

Coupling Advanced Characterization and Modeling Tools for Understanding Fundamental Phase Transformation Mechanisms: An MPMD Symposium in Honor of Hamish Fraser – Session IV

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Integrated Computational Materials Engineering Committee *Program Organizers:* Gregory Thompson, University of Alabama; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; Soumya Nag, GE Global Research; Rajarshi Banerjee, University of North Texas

Wednesday PM	Room: 127A
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Yunzhi Wang, The Ohio State University

2:00 PM Invited

Applications of Ordering Tie Lines to Represent ALCHEMI Data in Intermetallic Compounds and Complex Oxides: *Mark Aindow*¹; Louis Gambino²; Yanling Hu³; Lichun Zhang¹; ¹University of Connecticut; ²Johnson Matthey; ³Xiamen University of Technology

2:30 PM Invited

Coupled Characterization and Modeling of the Crystallography of Phase Transformations: *Eric Payton*¹; Stephen Niezgoda²; Adam Pilchak¹; Gert Nolze³; Victoria Yardley⁴; ¹Air Force Research Laboratory; ²Ohio State University; ³Federal Institute for Materials Research and Testing (BAM); ⁴Ruhr-Universitaet Bochum

3:00 PM Invited

Effects of Ternary Element Additions on the Precipitation of α and ω Phases in Ti-Mo Alloys: Mariana de Mello¹; Camilo Salvador¹; Kaio Campo¹; *Rubens Caram*¹; ¹University of Campinas

3:30 PM Break

3:50 PM Invited

Progress in the Application of ICME in the Titanium Industry: Stephen Fox¹; ¹Titanium Metals Corporation

4:20 PM Invited

Phase and Intrinsic Stress Stability in Thin Multilayered Films: Gregory Thompson¹; Li Wan¹; Qianying Guo¹; Xiao-xiang Yu¹; ¹University of Alabama

4:40 PM Invited

Advances in TiAl- based Alloys: Soumya Nag¹; Akane Suzuki¹; Manuel Acosta²; Michael Weimer²; Bernard Bewlay¹; ¹GE Global Research; ²GE Aviation

5:00 PM Invited

How I Learned to Stop Worrying and Love the Metallurgical Play Pen: Peter Collins¹; ¹Iowa State University

Deformation and Damage Mechanisms in High Temperature Ni, Co and Fe-based Superalloys – 6A:Ni-based Superalloy Development & Properties. 6B: Microstructure & Properties of Co-based Superalloys

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials; Chantal Sudbrack, QuesTek Innovations, LLC; Michael Titus, Purdue University; Kinga Unocic, Oak Ridge National Laboratory; Yukinori Yamamoto, Oak Ridge National Laboratory

Wednesday PM	Room: 126A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Kevin Bockenstedt, ATI Specialty Materials; Michael Titus, Purdue University

2:00 PM Invited

Design Approaches for Advanced Polycrystalline Ni-base Superalloys: Sammy Tin¹; ¹Illinois Institute of Technology

2:30 PM

Accelerated Design and Testing of New Nickel Superalloys with Increased Creep Resistance: Sabin Sulzer¹; *Roger Reed*¹; Angus Wilkinson¹; ¹University of Oxford

2:50 PM

On the Role of Environmental Damage in Selected Ni-based Superalloys: *Gopal Viswanathan*¹; Michael Mills¹; David Mills²; ¹The Ohio State University; ²Rolls-Royce Corporation

3:10 PM

The Extent of Individual Strengthening Mechanisms in Model Quinary Nickel-based Superalloys: *Amy Goodfellow*¹; Katerina Christofidou¹; Enrique Galindo-Nava¹; Nick Jones¹; Chad Boyer²; Mark Hardy³; Howard Stone¹; ¹University of Cambridge; ²Canadian Neutron Beam Centre; ³Rolls-Royce plc

3:30 PM Break

3:50 PM Invited

Mechanical Properties and Deformation Mechanisms of Polycrystalline L1₂-strengthened Co-based Superalloys: *Steffen Neumeier*¹; Lisa Freund¹; Mathias Göken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

4:20 PM

Investigation of Deformation Pathways of Gamma' Phase in Ni-, Co- and Co-Ni-base Superalloys: *Longsheng Feng*¹; Duchao Lv²; Robert Rhein³; Michael Titus⁴; Tresa Pollock³; Yunzhi Wang¹; ¹The Ohio State University; ²Computherm Llc; ³University of California, Santa Barbara; ⁴Purdue University

4:40 PM

Grain Boundary Environmental Cracking Resistance in Co/Ni Superalloys: Lucy Reynolds¹; Ioannis Bantounas¹; Mark Hardy²; David Dye¹; ¹Imperial College; ²Rolls-Royce plc

5:00 PM

Lattice Misfit and In Situ Synchrotron Creep Deformation of \947/\947\8242 Co-Al-W-Ta Superalloy Single Crystals: *Christopher Zenk*¹; Michael Mills¹; Mathias Göken²; Steffen Neumeier²; ¹The Ohio State University; ²FAU Erlangen-Nürnberg

5:20 PM

Effect of Tertiary Gamma Prime on Dwell Crack Growth Performance of a Recently Developed Co:Ni-base Superalloy: *Ioannis Bantounas*¹; Vassili Vorontsov¹; Suyang Yu²; Hangyue Li²; Paul Bowen²; Mark Hardy³; David Dye¹; ¹Imperial College London; ²The University of Birmingham; ³Rolls-Royce Plc

Deriving Value from Challenging Waste Streams: Recycling and Sustainability Joint Session – Urban Mining and Electronic Waste

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee, TMS: Pyrometallurgy Committee

Program Organizers: Elsa Olivetti, Massachusetts Institute of Technology; John Howarter, Purdue University; Fiseha Tesfaye, Åbo Akademi University

Wednesday PM March 14, 2018 Room: 224B Location: Phoenix Convention Center

Session Chairs: Fiseha Tesfaye, Abo Akademi University; Dirk Verhulst, Consultant, Extractive Metallurgy

2:00 PM Keynote

Novel Technologies for Technospheric and Urban Mining of Rare Earth Elements from Phosphogypsum, Red Mud, Hybrid Car Batteries, and Wind Turbine Magnets: Yuxiang Yao¹; Sable Reid¹; Mugdha Walawalkar¹; Nina Farac¹; Feixiong Zhang¹; Brittny Carter¹; *Gisele Azimi*¹; ¹University of Toronto

2:30 PM Invited

Recovery of REE from the Ferrous Fraction of Processed WEEE: *Gabriella Tranell*¹; ¹Norwegian University of Science & Technology

2:55 PM Invited

Urban Mining for a Circular Economy: Activities at SINTEF: Anne Kvithyld¹; Ana Maria Martinez¹; ¹SINTEF

3:20 PM Invited

Recovery of Copper from Industrial Waste Water by Electrowinning: *Mari Lundström*¹; ¹Aalto University

3:40 PM Break

3:55 PM

Towards Commercialization of Indium Recovery from Waste Liquid Crystal Display Screens: *Thomas Boundy*¹; Patrick Taylor¹; ¹Colorado School of Mines

4:15 PM

Comminution and Separation of Photovoltaic Panel Materials for Recycling: Pamela Bogust¹; York Smith; ¹University of Utah

4:35 PM

Recovery of Gallium and Arsenic from Gallium Arsenide Semiconductor Scraps: Dachun Liu¹; Guozheng Zha¹; Liang Hu¹; *Wenlong Jiang*¹; ¹Kunming University of Science and Technology

4:55 PM

Engineering, Scientific, and Policy Inputs for Developing a Levelized Cost of Energy Storage Model: John Howes¹; *Timothy Ellis*²; ¹Redland Energy Group; ²RSR Technologies, Inc.

5:15 PM

Investigation into the Recovery of Valuable Metals from Waste Mobile Phone Printed Circuit Boards (PCBs) – a Feasibility Study: Maryam Ghodrat¹; Bijan Samali¹; ¹Western Sydney University Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Saryu Fensin, Los Alamos National Laboratory; George Gray, Los Alamos National Laboratory; Naresh Thadhani, Georgia Institute of Technology; Kenneth Vecchio, University of California, San Diego; Marc Meyers, University of California, San Diego

Wednesday PM March 14, 2018

Room: 127B Location: Phoenix Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Characterization of Defect Motion at High Strain Rate In Situ inside a **TEM**: *Thomas Voisin*¹; Michael Grapes¹; Tian Li¹; Jonathan Ligda²; Nicholas Lorenzo²; Brian Schuster²; Melissa Santala¹; Yong Zhang³; Xiaolong Ma³; Geoffrey Campbell¹; Timothy Weihs³; ¹Lawrence Livermore National Laboratory; ²Army Research Laboratory; ³Johns Hopkins University

2.40 PM

A Low-cost, Laboratory-scale Method to Identify Regions of Microstructural Changes in Response to Dynamic Loading Conditions: Benjamin Lund1; Judith Schneider1; 1University of Alabama in Huntsville

3.00 PM

WEDNESDAY PM

Viscous Sliding Flow of Shear Bands in Metals: Dinakar Sagapuram¹; Koushik Viswanathan²; ¹Texas A&M University; ²Purdue University

3:20 PM Break

3:40 PM Invited

Using Dynamic X-ray Imaging to Reveal the Mesoscale of Shockcompressed Granular Materials: Daniel Eakins¹; ¹Imperial College London

4:00 PM

Spall Failure Mediated by Vacancy Clustering and Subsequent Nano-void Growth: Sara Adibi1; Justin Wilkerson1; 1University of Texas at San Antonio

4:20 PM

The Search for the Elusive Supersonic Dislocation: Marc Meyers¹; Carlos Ruestes²; Eric Hahn³; Shiteng Zhao¹; ¹University of California, San Diego; ²University of Cuyo; ³Los Alamos National Laboratory

4:40 PM

Amorphization-induced Fragmentation in Ballistically-impacted Boron Carbide: Jerry LaSalvia1; V. Domnich2; Christopher Marvel3; S.D. Walck1; Martin Harmer3; 1U.S. Army Research Laboratory; 2Rutgers University; ³Lehigh University

5:00 PM

Shear Localization and Microstructural Evolution in Dynamic Deformation Process: Na Yan¹; Zezhou Li²; Shiteng Zhao²; Yongbo Xu³; Conger Bai⁴; Marc Meyers²; ¹Northwestern Polytechnical University; University of California, San Diego; ²University of California, San Diego; ³Institute of Metal Research, Chinese Aacademy of Science; 4Zhejiang University

Electrode Technology Symposium for Aluminum Production – Anode Forming and Baking

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xianan Liao, Elkem Carbon

Wednesday PM March 14, 2018

Room: 222C Location: Phoenix Convention Center

Session Chair: Marc Dupuis, GeniSim Inc

2:00 PM Introductory Comments

2:05 PM

3D Transient Modelling of a Complete Fire Line for Anode Baking Furnace Design and Optimization: Arnaud Bourgier1; Sandra Besson1; Jean-Philippe Schneider1; 1Rio Tinto Aluminium

2:30 PM

A Study of Anode Baking Gas Composition: Thor Anders Aarhaug¹; Trond Brandvik²; Heiko Gaertner¹; Ole Sigmund Kjos¹; Arne Petter Ratvik¹; ¹SINTEF Materials and Chemistry; ²NTNU

2:55 PM

Improved Compaction Method for the Production of Large Scale Anode Paste Samples for Thermo-mechanical Characterization: Bowen Chen¹; Donald Picard¹; Soufiane Zaglafi¹; Houshang Alamdari¹; Donald Ziegler¹; Mario Fafard¹; ¹Laval University

3:20 PM

Systemic Analysis for the Selection of Anode Baking Furnace Refractories: Mariana Braulio1; Valerie MacNair2; Victor Pandolfelli3; 14Cast - Technical Consultancy on Refractories; ²Alcoa; ³Federal University of São Carlos

3:45 PM Break

4:00 PM

Numerical Investigation of the Thermomechanical Behaviour of Anode Butt: Simon-Olivier Tremblay¹; Daniel Marceau¹; Patrick Coulombe²; Jules Côté²; Duygu Kocaefe¹; ¹University of Québec at Chicoutimi; ²Aluminerie Alouette Inc

4:25 PM

Method of Defining the Degree of Impregnation of the Dry Aggregate with Pitch in the Process of Anode Production: Viktor Buzunov¹; Sergey Khramenko1; Semyon Zykov1; 1RUSAL "Engeneering and Technological Center"

4:50 PM

Research and Application for Large Scale, High Efficiency and Energy Saving Baking Furnace Technology: Liu Chaodong1; Cui Yinhe1; Zhou Shanhong1; Xu Haifei1; Sun Yi1; 1Shenyang Aluminium and Magnesium Engineering and Research Institute Co. Ltd

5.15 PM

Opportunities and Challenges Associated to Green Anode Plant Upgrade for Smelter Amperage Creeping: Christophe Bouche¹; Bertrand Somnard¹; Pasquale Calo1; Fabienne Virieux1; 1Fives Solios

Environmentally Assisted Cracking: Theory and Practice – Environmental Degradation of Structural Materials

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Bai Cui, University of Nebraska–Lincoln; Raul Rebak, GE Global Research; Sebastien Dryepondt, Oak Ridge National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Wednesday PM	Room: 105A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Yiren Chen, Argonne National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

2:00 PM Invited

Cracking Behavior and Fracture Toughness of Irradiated Austenitic Stainless Steels in LWR Environments: *Yiren Chen*¹; Bogdan Alexandeanu¹; Ken Natesan¹; Yong Yang²; Appajosula Rao³; ¹Argonne National Laboratory; ²University of Florida; ³Nuclear Regulatory Commission

2:40 PM

Environment Induced Degradation in Maraging Steel Grade 18Ni1750: *Ramkumar Devendranath*¹; Gopi G²; Trilochana Jena²; Ravi Prasad Valluri²; Nageswara Muktinutalapati¹; ¹VIT University; ²DRDL, Hyderabad

3:00 PM

Influence of MC Carbides and γ' on Hydrogen Trapping in Nickel Alloys and Superalloys: Experiment and Alloy Design: *Franck Tancret*¹; Miles Stopher²; Edern Menou³; Gérard Ramstein¹; Pedro Rivera-Díaz-del-Castillo⁴; ¹Université de Nantes; ²University of Cambridge; ³CNRS; ⁴University of Lancaster

3:20 PM Break

3:40 PM

Correlative 3D Imaging of Iodine-induced Stress Corrosion Cracks in Zr Alloys: *Alistair Garner*¹; Conor Gillen¹; Philipp Frankel¹; ¹University of Manchester

4:00 PM

Effect of Frequency on Corrosion Fatigue Behavior of Steel 1.4016 in E85 Biofuel up to the Very High Cycle Fatigue Regime: *Sven Kaefer*¹; Tobias Melz¹; ¹Technische Universität Darmstadt

4:20 PM

Phase Field Modeling of Pitting & Crevice Corrosion: San-Qiang Shi¹; ¹The Hong Kong Polytechnic University

4:40 PM

Role of Nitrogen on Hydride Nucleation and Stability in Pure Niobium by First-principles Calculations: *Pulkit Garg*¹; Ilaksh Adlakha¹; Kiran Solanki¹; ¹SEMTE

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention – Fatigue Behaviors in Engineering Materials

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Ashley Spear, University of Utah; Jean-Briac le Graverend, Texas A&M University; Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky

Wednesday PMRoom: 125BMarch 14, 2018Location: Phoenix Convention Center

Session Chair: Tongguang Zhai, University of Kentucky

2:00 PM

Subcycle Fatigue Crack Growth Formulation under Positive and Negative Stress Ratios: Karthik Rajan Venkatesan¹; *Yongming Liu*¹; ¹Arizona State University

2:20 PM

Fatigue-assisted Discontinuous Grain Growth in Al Alloys: *Ramasis Goswami*¹; C Feng¹; Syed Qadri¹; Chandra Pande¹; ¹Naval Research Laboratory

2:40 PM

Low Cycle Fatigue of Friction Stir Welded Aluminum Lithium 2099: *Abby Cisko*¹; Brian Jordon²; Zackery McClelland¹; Paul Allison²; Dustin Avery²; ¹U.S. Army Engineer Research and Development Center; ²University of Alabama

3:00 PM

Fatigue of a Transient Liquid Phase Bonded Superalloy for Use in a Microchannel-heat Exchanger: *Kyle Rozman*¹; Monica Kapoor¹; Sajedur Akanda¹; Omer Dogan¹; Jeffrey Hawk¹; ¹NETL

3:20 PM Break

3:40 PM

3-D Understanding of Fatigue Crack Initiation from Inclusions in Inconel 718 Alloy: *Pei Cai*¹; Yan Jin¹; Alfonso Ngan²; Tongguang Zhai¹; ¹University of Kentucky; ²The University of Hong Kong

4:00 PM

Crack Growth under Rolling Contact Fatigue: 3D Characterisation and Modelling: *Pedro Rivera-Diaz-del-Castillo*¹; Jakub Rydel²; Gael Guetard³; Hanwei Fu¹; Haiwen Luo⁴; ¹Lancaster University; ²University of Cambridge; ³Erasteel Kloster AB; ⁴University of Science & Technology Beijing

4:20 PM

Modelling Microstructural Alterations in Bearing Steels under Rolling Contact Fatigue: *Hanwei Fu*¹; Wenwen Song²; Enrique Galindo-Nava³; Pedro Rivera-Díaz-del-Castillo¹; ¹Lancaster University; ²RWTH Aachen University; ³University of Cambridge

Federation of European Materials Societies (FEMS) Keynote Symposium: Energy and Transportation from a European Materials Perspective – Keynote Session II

Sponsored by: Federation of European Materials Societies (FEMS) Program Organizer: Brett Suddell, Federation of European Materials Societies (FEMS)

Wednesday PM Room: 228A March 14, 2018 Location: Phoenix Convention Center

Session Chair: Brett Suddell, Federation of European Materials Societies (FEMS)

2:00 PM Introductory Comments

2:05 PM Invited

Magnesium Alloys in Transportation: Hidden Champions?!: Karl Kainer¹; Norbert Hort2; ¹Helmholtz-Zentrum Geesthacht, Gemany; ²Helmholtz-Zentrum Geesthacht

2:35 PM Invited

Recent Advances in Aluminum Product Development for Transportation: Timothy Warner¹; ¹Constellium C-TEC, France

3:05 PM Invited

Challenges for the Design of Ni-based SX Superalloys Components: Jonathan Cormier1; 1Institut Pprime, ISAE-ENSMA, France

3:35 PM Break

3:55 PM Invited

Integrated Computational Materials Engineering (ICME) and Business Decision Support Systems (BDSS) in the Context of Open Innovation and Interdisciplinary Collaboration: Donna Dykeman¹; James Goddin¹; Najib Baig¹; Will Marsden¹; David Cebon¹; ¹Granta Design, United Kingdom

4:25 PM Panel Discussion

This discussion will be moderated by Pedro Dolabella Portella.

Frontiers in Solidification Science and Engineering Effect of Microgravity and/or Convection on Solidification

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Damien Tourret, IMDEA Materials Institute; Mohsen Eshraghi, California State University, Los Angeles; Johannes Hötzer, University of Applied Science Karlsruhe

Wednesday PM	Room: 126C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Amber Genau, University of Alabama at Birmingham; Mohsen Asle Zaeem, Missouri University of Science and Technology

2:00 PM

Anomalous Dendrite Growth in Undercooled Al-Ni Melts: Dieter Herlach1; Marcus Reinartz²; Peter Galenko²; Markus Rettenmayr²; ¹Deutsches Zentrum für Luft- und Raumfahrt; ²Friedrich Schiller Universität

2:20 PM

Investigation of the Columnar-to-equiaxed Transition during Solidification in Microgravity: Emine Gulsoy¹; Yuze Li²; Thomas Cool¹; Zachary Thompson¹; Nathalie Mangelinck-Noel²; Henri Nguyen-Thi²; Gerhard Zimmenmann³; Laszlo Sturz³; ¹Northwestern University; ²Institut Materialux Microelectronique Nanosciences de Provence; 3ACCESS e.V

2:40 PM

Liquid Demixing in Undercooled Co-Cu Alloys: Matthias Kolbe¹; Christoph Dreissigacker¹; Stefan Burggraf¹; Mareike Wegener¹; Florian Kargl¹; ¹German Aerospace Center

3:00 PM

In Situ Observations and Phase-field Modeling of Three-dimensional Grain-boundary Instability and Solitary Cell Dynamics during Directional Solidification of Binary Alloys: Younggil Song¹; Fatima Lisboa Mota²; Jorge Pereda²; Jean-Marc Debierre²; Nathalie Bergeon²; Rohit Trivedi³; Bernard Billia2; Alain Karma1; 1Northeastern University; 2Aix-Marseille Université and CNRS; 3Iowa State University

3:20 PM

Modeling Dendritic Solidification in Microgravity and Terrestrial Conditions: Ryan Lenart¹; Mohsen Eshraghi¹; Sergio Felicelli²; ¹California State University, Los Angeles; ²The University of Akron

3:40 PM Break

4.00 PM

Modeling of TEMHD Flow Velocities and Its Influence on Dendritic Growth Velocities in Free Solidification of Pure Metals under Static Magentic Fields: Jianrong Gao¹; Rijie Zhao¹; Andrew Kao²; Koulis Pericleous²; ¹Northeastern University; ²University of Greenwich

4:20 PM

A Lattice Boltzmann Model with Multiple Grids and Time Steps for Dendritic Solidification: Elaheh Dorari¹; Mohsen Eshraghi²; Sergio Felicelli¹; ¹University of Akron; ²California State University, Los Angeles

4:40 PM

Permeability Prediction of Dendrite Structure by Large-scale Phase-field Lattice Boltzmann Simulation: Tomohiro Takaki¹; Shinji Sakane¹; Munekazu Ohno²; Yasushi Shibuta³; Takashi Shimokawabe³; Takayuki Aoki⁴; ¹Kyoto Institute of Technology; ²Hokkaido University; ³The University of Tokyo; ⁴Tokyo Institute of Technology

5:00 PM

A Phase-field Lattice Boltzmann Model for Bubble-dendrite Interaction during Solidification of Binary Alloys: Seyed Amin Nabavizadeh1; Mohsen Eshraghi2; Sergio Felicelli1; 1The University of Akron; 2California State University

High Entropy Alloys VI – Mechanical and Other **Properties I**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Wednesday PM Room: 121B March 14, 2018 Location: Phoenix Convention Center

Session Chairs: Jeffrey Hawk, National Energy Technology Lab; Hyoung Kim, POSTECH

2:00 PM

Investigation of Phase Behavior in Al-Cr-Co-Ni-Ti Multi-principal Element Alloys Using the CALPHAD Approach with Key Experiments: Wei Xiong¹; Yunhao Zhao¹; ¹University of Pittsburgh

2:20 PM Invited

Structures, Thermodynamics, and Kinetics of Liquid High-entropy Alloys: Michael Gao¹; Mike Widom²; Lizhi Ouyang³; Jeffrey Hawk¹; ¹National Energy Technology Lab; ²Carnegie Mellon University; ³Tennessee State University

2:40 PM

Microstructural Evolution and Mechanical Behavior of NbTaTiV Refractory High-entropy Alloy at Elevated Temperatures: Chanho Lee1; Gian Song²; Michael Gao³; Rui Feng¹; Peiyong Chen¹; Yan Chen²; Ke An²; Wei Guo⁴; Jonathan Poplawsky4; Song Li5; Alice Hu5; Wei Chen6; Hahn Choo1; Peter Liaw1; ¹University of Tennessee; ²Chemical and Engineering Materials Division, Oak Ridge National Laboratory; 3National Energy Technology Laboratory/AECOM; ⁴Center for Nano-phase Materials Sciences, Oak Ridge National Laboratory; ⁵The City University of Hong Kong; ⁶The Illinois Institute of Technology

TECHNICAL PROGRAM

3:00 PM Invited

Strain Rate Dependent Deformation Mechanism of CoCrFeMnNi Highentropy Alloy: Hyoung Seop Kim1; Jongun Moon1; Sun Ig Hong2; Jae Wung Bae1; Min Ji Jang1; Dami Yim1; 1POSTECH; 2Chungnam National University

3:20 PM Invited

Microstructure and Mechanical Properties of a Nanostructured High Entropy Alloy Processed via Severe Plastic Deformation: Yaojun Lin¹; Zhigang Yan2; Fei Chen1; Enrique Lavernia3; 1Wuhan University of Technology; ²Yanshan University; ³University of California, Irvine

3:40 PM Break

4:00 PM Invited

Microstructures and Properties of As-Cast AlCrFeMnV, AlCrFeTiV, and AlCrMnTiV High Entropy Alloys: Keith Knipling1; Prithvi Narayana2; Lily Nguyen1; 1U.S. Naval Research Laboratory; 2Thomas Jefferson High School for Science and Technology

4:20 PM

Hydrogen Resistance of C-doped and Undoped CoCrFeMnNi Highentropy Alloys: Hong Luo1; Zhiming Li1; Dierk Raabe1; 1Max-Planck-Institut für Eisenforschung

4:40 PM

Mechanical Behavior and Thermal Stability of a Dual-phase Complex High Entropy Alloy: Benjamin MacDonald¹; Zhiqiang Fu¹; Zhiming Li²; Weiping Chen3; Yizhang Zhou1; Dierk Raabe2; Horst Hahn4; Enrique Lavernia1; ¹University of California Irvine; ²Max-Planck-Institut Für Eisenforschung; ³South China University of Technology; ⁴Karlsruhe Institute of Technology

High Entropy Alloys VI - Structures and **Characterization II**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Wednesday PM	Room: 121A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: David Shifler, Office of Naval Research; Jeff DeHosson, University of Groningen

2:00 PM Invited

Polymorphism in a High-entropy Alloy: Qiaoshi Zeng1; 1Center for High Pressure Science & Technology Advanced Research

2:20 PM Invited

Twin and Dislocation Evolution for Interrupted Compression Experiments of Alx(CrCoFeNi)1-x High Entropy Alloys (HEAs): Omar Rodriguez¹; Haoyan Diao2; Peter Liaw2; Lin Li3; Paul Allison3; 1NASA MSFC; 2University of Tennessee; 3The University of Alabama

2:40 PM Invited

Deformation Mechanism of Transformation-induced Plasticity-assisted, Dual-phase High-entropy Alloy (TRIP-DP-HEA) by In-situ Neutron Diffraction: Sichao Fu¹; Hongbin Bei¹; Ke An¹; ¹Oak Ridge National Laboratory

3:00 PM Invited

Abstract Title: Advanced Scanning Electron Microscopy Characterization of the Microstructure of High Entropy Alloys: Václav Ocelík1; Jeff DeHosson1; 1University of Groningen

3:20 PM

Combinatorial Assessment of FeMnCoCrAl High Entropy Alloy: Marshal Amalraj¹; Pradeep Konda Gokuldoss¹; Jochen Schneider¹; ¹Materials Chemistry, RWTH Aachen University.

3:40 PM Break

4:00 PM

Diffusion in CoCrFeNi Based High Entropy Alloys: Abhishek Mehta1; Le Zhou1; Esin Schulz1; Yongho Sohn1; 1University of Central Florida

4:20 PM

Microstructural Evolution and Resulting Mechanical Behavior in Nanocrystalline CoCrCuFeNi High-entropy Alloys after Heat Treatments: Seungjin Nam¹; Moon Kim²; Jun Yeon Hwang³; Hyunjoo Choi¹; ¹Kookmin University; ²The University of Texas at Dallas; ³Korea Institute of Science and Technology

4:40 PM Invited

Effect of Extreme Disorder on the Lattice Dynamics and Phonon Scattering in Concentrated Solid Solution Alloys: G. Malcolm Stocks¹; Sai Mu¹; Raina Olsen¹; Biswanath Dutta²; German Samolyuk¹; Tom Berlijn¹; Lucas Lindsay¹; Tilmann Hickel²; Bennett Larson¹; ¹Oak Ridge National Laboratory; ²Max-Planck-Institut fur Eisenforschung GmbH

5:00 PM

Processing, Microstructure and Mechanical Characterization of MgAlLiZnCaCu High Entropy Alloy: K. Tun¹; Tirumalai Srivatsan²; A. Yadav³; A. Sharma³; *Manoj Gupta*; ¹National University of Singapore; ²University of Akron; ³National Institute of Technology

5:20 PM

Combinatorial Exploration of High Entropy Alloys: Sebastian Kube¹; Sungwoo Sohn¹; Punnathat Bordeenithikasem¹; Yanhui Liu²; Ellen Scanley³; Christine Broadbridge3; Jan Schroers1; 1Yale University; 2Chinese Academy of Sciences; ³Southern Connecticut State University

High Temperature Corrosion of Structural Materials - Fe-base Alloys, Effect of CO₂, and Coatings

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and **Environmental Effects Committee**

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; David Shifler, Office of Naval Research; Mark Weaver, University of Alabama; Steve Coryell, Special Metals; James Earthman, University of California, Irvine

Wednesday PM	Room: 227C
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Mark Weaver, University of Alabama; Stephen Coryell, Special Metals Corporation

2:00 PM Invited

Long-term Behavior of Structural Allovs in Supercritical CO, at 750°C: Bruce Pint¹; Robert Brese¹; James Keiser¹; ¹Oak Ridge National Laboratory

2:30 PM

Oxidation Resistance of FeCrAl Alloys in Air and Steam from 800 to **1300°C**: *Raul Rebak*¹; Vipul Gupta¹; ¹GE Global Research

3:00 PM

A New Facility for Comparing Water Treatments in Ultra-supercritical Steam Boilers: Stephen Raiman¹; Bruce Pint¹; ¹Oak Ridge National Laboratory

3:20 PM Break

3:40 PM

The Influence of External Stress on High Temperature Hydrogen Attack (HTHA) Cracking: Raymond Thompson¹; Dustin Nolen¹; ¹Vista Engineering

4:00 PM Invited

Electroless Ni-plating in Combination with Diffusion Coatings for Corrosion Protection of Steels for SO2 and Cl-rich High Temperature Environments: Tobias Meissner1; Xabier Montero1; Diana Faehsing1; Mathias Galetz1; 1Dechema Forschungsinsitut

4:30 PM

Thermocouples in Gas Turbines: The Oxidation of Materials for Sensors in Thermal Cyclic Conditions: Michele Scervini¹; ¹University of Cambridge

Hume-Rothery Award Symposium: Computational Thermodynamics and Its Implications to Kinetics, Properties, and Materials Design – Early Career Scientist

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Suveen Mathaudhu, University of California, Riverside; Michael Gao, National Energy Technology Lab; Chelsey Hargather, New Mexico Institute of Mining and Technology; Richard Hennig, University of Florida; James Saal, QuesTek Innovations; Dongwon Shin, Oak Ridge National Laboratory

Wednesday PMRoom: 127CMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Zi-Kui Liu, Penn State University; James Saal, QuesTek Innovations

2:00 PM Invited

Scattering Study of Phonon Confinement in Group IV Materials: Chen Li¹; ¹University of California, Riverside

2:25 PM Invited

Semi-automated CALPHAD Modeling of Alloy Systems: *Richard Otis*¹; Brandon Bocklund²; Zi-Kui Liu²; ¹Jet Propulsion Laboratory; ²Pennsylvania State University

2:50 PM Invited

WEDNESDAY PM

High-throughput CALPHAD and its Applications in Materials Design: Wei Xiong¹; ¹University of Pittsburgh

3:15 PM Invited

Strengthening Mg by Self-dispersed Nano-lamellar Faults: *William Yi Wang*¹; Shun-Li Shang²; Yi Wang²; Kristopher Darling³; Bin Tang¹; Hongchao Kou¹; Xi-Dong Hui⁴; Suveen Mathaudhu⁵; Laszlo Keckes³; Jinshan Li¹; Zi-Kui Liu²; ¹Northwestern Polytechnical University; ²The Pennsylvania State University; ³U.S. Army Research Laboratory; ⁴University of Science and Technology Beijing; ⁵University of California, Riverside

3:40 PM Break

4:00 PM Invited

Solute-induced Solid-solution Softening and Hardening in BCC Tungsten: *Yong-Jie Hu*¹; Michael Fellinger²; Brady Bulter³; Yi Wang⁴; Kristopher Darling³; Laszlo Kecskes³; Dallas Trinkle²; Zi-Kui Liu⁴; ¹University of Michigan; ²University of Illinois at Urbana-Champaign, Urbana; ³U.S. Army Research Laboratory; ⁴The Pennsylvania State University

4:25 PM Invited

Anharmonic Phonons in Cuprite: *Claire Saunders*¹; Dennis Kim¹; Olle Hellman¹; Hillary Smith¹; Tian Lan²; Doug Abernathy³; Brent Fultz¹; ¹California Institute of Technology; ²Ginkgo LLC; ³Oak Ridge National Laboratory

4:50 PM Invited

Diffusion Coefficients of Alloying Elements in Dilute Mg Alloys from Firstprinciples: A Comparative Study of 8-frequency Model, 13-frequency Model, and Kinetic Monte Carlo: *Bi-Cheng Zhou*¹; Irina Belova²; Shun-Li Shang³; Yi Wang³; Graeme Murch²; Zi-Kui Liu³; ¹Northwestern University; ²The University of Newcastle; ³The Pennsylvania State University

Integrative Materials Design III: Performance and Sustainability – Energy and Sustainability Considerations in Integrative Materials Design and Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee *Program Organizers:* Diana A. Lados, Worcester Polytechnic Institute; Brad Boyce, Sandia National Laboratories; Corbett Battaile, Sandia National Laboratories; Anastasios Gavras, Riley Power

Wednesday PM	Room: 132A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Anastasios Gavras, Riley Power, Inc.; Pierre-Marie Nigay, Worcester Polytechnic Institute

2:00 PM Invited

Structure/Property Relationships and Failure Mechanisms in Multifunctional Materials: From Metallic Foams to Metallic Thin Films for Stretchable/Flexible Electronics, Solar Cells/LEDs and MEMS: *Winston Soboyejo*¹; ¹Worcester Polytechnic Institute

2:20 PM Invited

Electric Vehicle Battery Design for Disassembly in Support of Materials Reuse: Mikaela DeRousseau¹; Yan Wang¹; Diran Apelian¹; *Brajendra Mishra*¹; ¹Worcester Polytechnic Institute

2:40 PM Invited

Thermally Reliable Materials of Clay and Organic By-products for Thermal Energy Storage: *Pierre-Marie Nigay*¹; Ange Nzihou²; Claire White³; Winston Soboyejo¹; ¹Worcester Polytechnic Institute; ²Mines Albi; ³Princeton University

3:00 PM Invited

Materials Design for Advanced Energy Generating Systems: *Gabriel llevbare*¹; ¹Idaho National Laboratory

3:20 PM Invited

Characterization of Recycled Additive Manufacturing Product: *Noah Budiansky*¹; Joel Forman¹; Steven Kruzer¹; Theodoros Koutsoukis²; Ryan Spray¹; ¹Exponent; ²IPG Photonics, Corp.

3:40 PM Break

3:55 PM Invited

Cermets as Model Materials for Integrative Materials Design: Sean Agnew¹; Liang Dong¹; Haydn Wadley¹; ¹University of Virginia

4:15 PM Invited

A New Methodology for Design of Cermets: 'Green' Replacement for Cobalt Binder in WC: *Heather Murdoch*¹; Kristopher Darling¹; ¹Army Research Lab

4:35 PM

Improving Power Plants' Reliability through Root Cause Metallurgical Failure Analysis: Anastasios Gavras¹; ¹Riley Power Inc.

4:55 PM Invited

Holistic Assessment of Beneficial Use of Industrial Byproducts in Structural Materials: Elsa Olivetti¹; ¹Massachusetts Institute of Technology

5:15 PM Invited

"Alternative" Materials in the Green Building and Construction Sector: Examples, Barriers, and Environmental Analysis: Gabrielle Gaustad¹; Adam Stoker¹; Kate Krueger¹; ¹Rochester Institute of Technology

5:35 PM

Integration of Materials Properties in an Architecture, Engineering, and Construction Project: *Pnina Ari-Gur*¹; Jiansong Zhang²; Xiaoyun Shao¹; ¹Western Michigan University; ²Purdue University

Magnesium Technology 2018 – Primary Production and Casting

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Wednesday PM	Room: 224A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Neale Neelameggham, Ind LLC; Elsa Olivetti, MIT

2:00 PM Introductory Comments

2:05 PM Invited

Study on Metal Smelting Process under Microwave Irradiation: *Satoshi Fujit*¹; Eiichi Suzuki¹; Naomi Inazu¹; Shuntaro Tsubaki¹; Masahiko Maeda²; Yuji Wada¹; ¹Tokyo Institute of Technology; ²Oricon

2:25 PM

Experimental Study on the Reversion Reaction between Magnesium and CO Vapor in the Carbothermic Reduction of Magnesia under Vacuum: *Yang Tian*¹; Yong Deng¹; Bin Yang¹; Hai Liu¹; ¹Kunming University of Science and Technology

2:45 PM

The Electrolytic Production of Magnesium from MgO: James Withers¹; John Laughlin¹; Jeffery Babis¹; ¹ATS-MER, LLC

3:05 PM

Study on the Production of Metallic Magnesium from Nickel - Containing Serpentine: *Huimin Lu*¹; Wu Guangzhi²; ¹Beihang University; ²Inner Mongolia Xintai Construction and Installation (Group) Co., Ltd

3:25 PM Break

3:45 PM

Fabrication of Mg(OH)2 by Electrolysis Using MgCl2 Aqueous Solution: *Xijuan Pan*¹; Zhang Ting'an¹; Zhihe Dou¹; Yukun Ren¹; Guozhi Lyu¹; Junjie Zhang¹; Long Wang¹; Xiuxiu Han¹; ¹Northeastern University

4:05 PM

The Morphology and Distribution of Al8Mn5 in High Pressure Die Cast AM50 and AZ91: Guang Zeng¹; Xiangzhen Zhu²; Shouxun Ji²; *Christopher Gourlay*¹; ¹Imperial College London; ²Brunel University London

4:25 PM

Thermogravimetric Analysis of Simultaneous Decomposition and Formation of MgB2: *Muhammad Imam*¹; Ramana Reddy¹; ¹The University of Alabama

4:45 PM

Empirical Examination of the Formation of Mechanical Properties of Heated Twin-roll-cast Magnesium Strips: *Claudia Kawalla*¹; Marie Teuber¹; Michael Höck¹; ¹TU Bergakademie Freiberg

5:05 PM

Update on Ballistic Characterization of the Scalability of Magnesium Alloy AMX602: *Tyrone Jones*¹; ¹US Army Research Laboratory

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Structural Materials III

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Wednesday PM March 14, 2018 Room: 104B Location: Phoenix Convention Center

Session Chairs: Tyler Gerczak, Oak Ridge National Laboratory; Brian Cockeram, Bechtel-Bettis

2:00 PM

Advanced Manufacturing of HT9 Steel for Extreme Environments: Niyanth Sridharan¹; Kevin Field¹; Maxim Gussev¹; 'Oak Ridge National Laboratory

2:20 PM

Recrystallization of a Nanostructured Ferritic Alloy after Cold Work: *Clarissa Yablinsky*¹; Eda Aydogan¹; Sven Vogle¹; G. Robert Odette²; David Hoelzer³; Connor Rietema⁴; Kester Clarke⁴; Stuart Maloy¹; ¹Los Alamos National Laboratory; ²University of California, Santa Barbara; ³Oak Ridge National Laboratory; ⁴Colorado School of Mines / Los Alamos National Laboratory

2:40 PM

Characterization of the Microstructure and Grain Boundary Character of 14-YWT Nanostructured Ferritic Alloys Following Different Deformation Processing Paths: *Soupitak Pal*¹; MD Alam¹; Stuart Maloy²; David Hoelzer³; John Lewandowski⁴; G Odette¹; ¹University of California, Santa Barbara; ²Los Alamos National Laboratory; ³Oak Ridge National Laboratory; ⁴Case Western University

3:00 PM

Fabrication of ODS FeCrAl Tube for Accident Tolerant Fuel Cladding Applications: Sebastien Dryepondt¹; Caleb Massey²; Philip Edmondson¹; Maxim Gussev¹; ¹Oak Ridge National Laboratory; ²University of Tennessee

3:20 PM

Additive Stainless Steel for Nuclear: From Material Aspects to Quality Part: *Xiaoyuan Lou*¹; Raul Rebak²; Myles Connor³; Francis Bolger³; David Webber³; Gary Was⁴; Miao Song⁴; Mi Wang⁴; Frederick List⁵; ¹CorroMet LLC; ²GE Global Research; ³GE Hitachi Nuclear Energy; ⁴University of Michigan; ⁵Oak Ridge National Laboratory

3:40 PM Break

4:00 PM Invited

Very High Temperature Steam Oxidation of LWR FeCrAl Fuel Cladding: Bruce Pint¹; ¹Oak Ridge National Laboratory

4:20 PM

A Study on the High Energy Ball Milling and Spark Plasma Sintering of Fe-Cr Based Alloys: *Arnab Kundu*¹; Indrajit Charit¹; Brian Jaques²; Chao Jiang³; ¹University of Idaho; ²Boise State University; ³Idaho National Laboratory

4:40 PM

In-situ Characterization of Dispersoid Evolution during Annealing of ODS FeCrAl Mechanical Alloyed Powders: *Caleb Massey*¹; Sebastien Dryepondt²; Matthew Frith²; Philip Edmondson²; Kurt Terrani²; Steven Zinkle¹; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory

5:00 PM

Development of Laves and B2 Manipulated Advanced Ferritic Alloys: *Tianyi Chen*¹; Lizhen Tan¹; Ying Yang¹; Mo-Rigen He²; Kumar Sridharan²; ¹Oak Ridge National Laboratory; ²University of Wisconsin-Madison

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Structural Materials IV

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Wednesday PMRoom: 103AMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Raul Rebak, GE Global Research; Ramprashad Prabhakaran, Pacific Northwest National Laboratory

2:00 PM

Low Cycle Fatigue Resistance of Zircaloy-4 under Uniaxial and Torsion Loading: *Brian Cockeram*¹; Bruce Kammenzind²; ¹NNL Bettis Laboratory; ²Bechtel-Bettis

2:20 PM

High-temperature Mechanical Properties of Zirconium Hydrides Studied with Nanoindentation: *Mahmut Cinbiz*¹; Mehdi Balooch²; Xunxiang Hu¹; Kurt Terrani¹; Aida Amroussia³; ¹UT-Battelle ORNL; ²University of California, Berkeley; ³UT-Battelle ORNL and Michigan State University

2:40 PM

Mechanical Property Measurements of Zicaloy Hydride Structure by Using Nanoindentation and Nano Mechanical Raman Spectroscopy: *Hao Wang*¹; Vikas Tomar¹; ¹Purdue University

3:00 PM

Ion Irradiation Effects on the Structure and Thermal Properties of Zirconium Diboride: *Joseph Graham*¹; Miguel Crespillo-Almenara²; ¹Missouri University of Science and Technology; ²The University of Tennessee, Knoxville

3:20 PM

Radiation Response of Nanoporous Metals: *Xinghang Zhang*¹; Jin Li¹; Haiyan Wang¹; ¹Purdue University

3:40 PM Break

4:00 PM

Using Synchrotron X-ray Diffraction and Transmission Electron Microscopy to Study the Dislocation Structures Found in Proton Irradiated Zr-Nb Alloys: *Rebecca Jones*¹; Tamas Ungar¹; Philipp Frankel¹; ¹University of Manchester

4:20 PM

Atom Probe Tomography Study of Microstructural Evolution of Cast Duplex Stainless Steels after 10,000 Hour Thermal Aging: *Timothy Lach*¹; Thak Byun¹; Arun Devaraj¹; ¹Pacific Northwest National Laboratory

4:40 PM

In-situ TEM Observation and MD Simulation of the Radiation Defects near Carbon Nanotube in Aluminum: *Kang Pyo So*¹; Penghui Cao¹; Yang Yang¹; Mingda Li¹; Jong Gil Park²; Young Hee Lee²; Long Yan³; Xiaohui Liu⁴; Mike Short¹; Ju Li¹; ¹Massachusetts Institute of Technology; ²Sungkyunkwan University; ³Shanghai Institute of Applied Physics; ⁴Shanghai Jiao Tong University

5:00 PM

TECHNICAL PROGRAM

Effect of Neutron Irradiation on the Mechanical Properties and Microstructure of Friction Stir Processed ODS Alloys: *Ramprashad Prabhakaran*¹; Mychailo Toloczko¹; Yaqiao Wu²; Jatu Burns²; James Cole³; Indrajit Charit⁴; Rajiv Mishra⁵; KL Murty⁶; ¹Pacific Northwest National Laboratory; ²Boise State University; ³Idaho National Laboratory; ⁴University of Idaho; ⁵University of North Texas; ⁶North Carolina State University

Materials for Energy Conversion and Storage – Energy Harvesting I

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Wednesday PM	Room: 229B
March 14, 2018	Location: Phoenix Convention Center

Session Chair: Surojit Gupta, University of North Dakota: UND

2:00 PM Invited

Disordered Structure Oxides for Energy Conversion and Storage: *Ritesh Sachan*¹; William Weber²; Matthew Chisholm³; Yanwen Zhang³; ¹Army Research Office; ²University of Tennessee ; ³Oak Ridge National Laboratory

2:25 PM

Effect of Nano-graphite Dispersion on the Thermal Solar Selective Absorbance of Polymeric-based Coating Material: *Iman El Mahallawi*¹; Ahmed Abdel-Rehim²; N. Khattab³; Nadia Rafat¹; Hussein Badr¹; ¹Cairo University; ²The British University in Egypt; ³National Research Centre

2:45 PM

Elucidating the Tailoring of Electrical Properties of MoOx Carrier Selective Contacts in Silicon Solar Cells Using Density Functional Theory Calculations: Daniel Lambert¹; Patrick Burr¹; Alison Lennon¹; ¹University of New South Wales

3:05 PM

Synthesis of MoAlB Particulates and Their Porous Derivatives by Selective Deintercalation of Al from MoAlB: *Surojit Gupta*¹; Matt Fuka¹; ¹University of North Dakota

3:25 PM Break

3:40 PM

Synthesis, Characterization and Thermoelectric Behavior of Polyaniline and Polyaniline/Nano Filler Material Composites: Mahmoud Sorour¹; Hussein Badr¹; *Iman El Mahallawi*¹; Ahmed Abdel-Rehim²; ¹Cairo University; ²The British University in Egypt

4:00 PM

Comparison of AlN and TiN Solar Selective Absorber Coatings: *Iman El Mahallawi*¹; Hanan Youssef¹; Hisham Mohamed²; Mostafa Shazli²; Waleed Khalifa¹; ¹Cairo University; ²The British University in Egypt

4:20 PM

Nano-structurally Decorated Fuel Cell Membranes for Improved Performance: Leila Ladani¹; *Shiuan Duo Chiang*¹; Kenneth Reifsnider¹; Yanhai Du²; ¹University of Texas at Arlington; ²Kent State University

4:40 PM

Nanogalvanic Aluminum Alloys for Power Generation and Selfcannibalizing Robotic Applications: *Anit Giri*¹; Anthony Roberts¹; Joseph Marsico²; Chad Hornbuckle¹; Scott Grendahl¹; Kris Darling¹; ¹US Army Research Laboratory; ²ORISE

5:00 PM

Structure-Reactivity Relationships in Pt-functionalized Graphitic Carbon Nitrides for Solar Hydrogen Production: *Diane Haiber*¹; Peter Crozier¹; ¹Arizona State University

5:20 PM

Electrochemical Characterization of Capacitive Properties of Silicon Carbide-mullite-carbon Composite Electrodes: *Fatai Aramide*¹; Patricia Popoola²; ¹Federal University of Technology; ²Tshwane University of Technology

Materials Processing Fundamentals – Extractive and Recovery Processing

Sponsored by: TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Guillaume Lambotte, Boston Electromet; Antoine Allanore, Massachusetts Institute of Technology; Jonghyun Lee, Iowa State University; Samuel Wagstaff, Novelis

Wednesday PM	Room: 228B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Antoine Allanore, Massachusetts Institute of Technology; Guillaume Lambotte, Boston Electromet

2:00 PM

A Current Efficiency Prediction Model Based on Electrode Kinetics for Iron and Copper during Copper Electrowinning: Zongliang Zhang¹; Joshua Werner²; Michael Free¹; ¹University of Utah; ²University of Kentucky

2:20 PM

The K₂SO₄-CaSO₄ System and Its Role in Fouling and Slagging During High-Temperature Processes: *Fiseha Tesfaye*¹; Daniel Lindberg¹; Leena Hupa¹; ¹Åbo Akademi University

2:40 PM

Waste Lithium-ion Battery Recycling in JX Nippon Mining & Metals Corporation: Yasufumi Haga¹; Kazuhiro Hatano¹; Katsumi Saito¹; ¹JX Nippon Mining & Metals Corporation

3:00 PM

Recovery of Platinum Group Metals Out of Automotive Catalytic Converters Scrap: A Review on Australian Trends and Challenges: Maryam Ghodrat¹; Pezhman Sharafi¹; Bijan Samali¹; ¹Western Sydney University

3:20 PM

Leaching Recovery of Silver from Used Radiographic Films: Abraham Adeleke¹; *Adebayo Adeniyi*¹; B.O Ibitoye¹; K.E. Oluwabunmi²; ¹Obafemi Awolowo University; ²Prototype Engineering Development Institute

3:40 PM Break

4:00 PM

The Study of Copper Leaching from Conichalcite and Chalcopyrite Using Alternative Lixiviants: *Junmo Ahn*¹; Isabel Barton¹; Doyun Shin¹; Jaeheon Lee¹; ¹University of Arizona

4:20 PM

Effect of Chloride Ions on the Copper Extraction Using LIX 984N and Acorga M5910: *Maria Ruiz*¹; Jose Risso¹; Rodrigo Sanchez¹; Rafael Padilla¹; ¹University of Concepcion

4:40 PM

CaCl₂-O₂ Roasting of Stibnite and a Complex Copper Concentrate at 500-650°C: Rafael Padilla¹; Galo Brito¹; Maria Ruiz¹; ¹University of Concepcion

5:00 PM

Research on Sulfur Conversion Behavior in the Oxygen Pressure Acid Leaching Process for the High Indium Sphalerite: *Liu Yan*¹; Yangyang Fan¹; Junfu Qi¹; Lei Tian¹; Zhang Ting'an¹; ¹Northeastern University

Mechanical Behavior at the Nanoscale IV – Damage, Failure and Fracture

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Wednesday PM March 14, 2018

Room: 101C Location: Phoenix Convention Center

Session Chairs: Josh Kacher, Georgia Tech; Jonathan Zimmerman, Sandia National Laboratories

2:00 PM Invited

Multiscale In Situ Electron Microscopy Investigation of Deformation in Al 6061: *Josh Kacher*¹; Yung Suk Yoo¹; John Emery²; Jay Carroll²; ¹Georgia Tech; ²Sandia National Laboratories

2:30 PM

Nanoscale Deformation Behavior in Aluminum Alloys Using Micromechanical Testing and Transmission X-ray Microscopy (TXM): C. Shashank Kaira¹; Tyler Stannard¹; Vincent De Andrade²; Francesco De Carlo²; *Nikhilesh Chawla*¹; ¹Arizona State University; ²Argonne National Laboratory

2:50 PM

Microstructure and Fracture Toughness of Electrodeposited Ni-W Thick Films Using In-situ Microcantilever Bend Tests: *Denise Yin*¹; Christopher Marvel²; Richard Vinci²; Martin Harmer²; ¹Lehigh University; Currently at the U.S. Army Research Laboratory; ²Lehigh University

3:10 PM

Failure Behavior and Flaw Tolerance of Polycrystalline Yttria-Stabilized Tetragonal Zirconia Nanopillars under Compressive Deformation: Ning Zhang¹; *Mohsen Asle Zaeem*¹; ¹Missouri University of Science and Technology

3:30 PM Break

3:50 PM

Investigation of Grain Growth in Nanocrystalline Alloys through Coupled In-situ TEM Fatigue and Crystallographic Orientation Mapping: *Christopher Barr*¹; Daniel Bufford¹; William Mook¹; Brad Boyce¹; Khalid Hattar¹; ¹Sandia National Laboratories

4:10 PM

Estimating the Fracture Toughness of Complex Thermoelectric Materials from Ideal Stress-strain Calculations: *Matthias Agne*¹; Guodong Li¹; G. Jeffrey Snyder¹; ¹Northwestern University

4:30 PM

Art Skilled Mechanical Behaviors of the Structural Calcites, Aragonites and Organics within Indonesia White-pearl Oyster: *Guowei Chen*¹; ¹Beihang University

4:50 PM

Mechanical Behavior of Nanolaminates with Alternating Oxide Layers: Jeong-Hyun Woo¹; Ju-Young Kim¹; ¹UNIST

Multi-material Additive Manufacturing: Processing and Materials Design – Extrusion, Stereolithography, Binder Jetting, and Others

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Hang Yu, Virginia Tech; Nanci Hardwick, Aeroprobe Corporation; Steven Boles, Hong Kong Polytechnic University; Blake Barnett, Army Research Laboratory; Michael Gibson, Desktop Metal

Wednesday PMRoom: 232CMarch 14, 2018Location: Phoenix Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Machine, Material, and Toolpath Design for High-throughput Extrusion Additive Manufacturing: A. John Hart¹; ¹MIT

2:30 PM Invited

Liquid-solid Phase Metamaterials Fabricated by Two-photon Lithography: Matthew Berwind¹; Felix Schiebel²; *Chris Eberl*¹; ¹University of Freiburg; ²Fraunhofer IWM

3:00 PM

Extrusion of Direct-write Inks with Particle Gradients: *Leanne Friedrich*¹; Matthew Begley¹; ¹University of California, Santa Barbara

3:20 PM Break

3:40 PM Invited

Realizing Multi-functional Products via Multi-material Additive Manufacturing Processes: *Christopher Williams*¹; ¹Virginia Tech

4:10 PM Invited

Fabrication of WC-Co Metal Matrix Composites via Melt Infiltration Using Binder Jet Additive Manufacturing: Corson Cramer¹; Peeyush Nandwana¹ Amy Elliott¹; Derek Siddel¹; Christopher Shafer¹; Richard Lowden¹; ¹Oak Ridge National Laboratory

4:40 PM

Processing of High Melting Temperature Polymer with Ceramic Particles as Processing Aid in Selective Laser Sintering: *Jian Yu*¹; Lisa Willis²; Ricardo Rodriguez³; ¹US Army Research Laboratory; ²Navajo Technical University; ³3D Systems

5:00 PM

Dynamic Microstructural Control in Printable Colloidal Structures via Acoustic Focusing: *Drew Melchert*¹; Leanne Friedrich¹; Rachel Collino¹; Tyler Ray²; Matthew Begley¹; Daniel Gianola¹; ¹University of California, Santa Barbara; ²Northwestern University

Perfluorocarbon Generation and Emissions from Industrial Processes – PFC Emissions Accounting Methods and Global Inventory

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizers: Pascal Lavoie, Light Metals Research Centre - The University of Auckland; David Wong, University of Auckland; Pernelle Nunez, International Aluminium Institute

Wednesday PM	Room: 222B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Michael Czerniak, Edwards; Pernelle Nunez, International Aluminium Institute

2:00 PM Introductory Comments

2:05 PM

Attributing PFC Emissions to Different Industries: How Bottom-up Trends Can Complicate Top-down Analyses: Deborah Ottinger¹; Stephanie Bogle¹; ¹USEPA

2:30 PM

Challenges in Estimating Global CF4 and C2F6 Emissions: *Eleni Michalopoulou*¹; ¹University of Bristol

2:55 PM

Fluorinated Gas Production: Underestimated Source of PFCs?: *Deborah Ottinger*¹; Karen Schaffner²; ¹USEPA; ²RTI International

3:20 PM

An Estimation of PFC Emission by Rare Earth Electrolysis: Hanno Vogel¹; Bernd Friedrich²; ¹TRIMET Aluminium SE; ²IME Process Metallurgy and Metal Recyling, RWTH Aachen University

3:45 PM Break

4:00 PM

Updated Factors for Calculating PFC Emissions from Primary Aluminum Production: *Jerry Marks*¹; Pernelle Nunez²; ¹J Marks & Associates; ²International Aluminium Institute

4:25 PM

PFCs from the Chinese Aluminium Sector – Challenges in Emissions Accounting and Further Characteristics: *David Wong*¹; Xiping Chen²; Bofeng Cai³; Xin Bo³; Pernelle Nunez⁴; ¹University of Auckland; ²Central South University Institute; ³Ministry for Environmental Protection; ⁴International Aluminium Institute

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XVII – Electromigration and Stability of Electronic Materials

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Chih-Ming Chen, National Chung Hsing University; Thomas Reichmann, Karlsruhe Institute of Technology; Yu Zhong, Worcester Polytechnic Institute; Hiroshi Nishikawa, Osaka University; Shien Ping Feng, The University of Hong Kong; Yee-Wen Yen, National Taiwan University of Science & Technology; Song-Mao Liang, Clausthal University of Technology

Wednesday PMRoom: 227AMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Ming-Tzer Lin, National Chung Hsing University; Chih-Ming Chen, National Chung Hsing University

2:00 PM Invited

Structural Stability and Chemical Reactivity of Nanoscale Twinning Structure in Copper Nanowires: Wei-Lun Weng¹; Jheng-Syun Lee¹; *Chien-Neng Liao*¹; ¹National Tsing Hua University

2:25 PM

Alloy Phase Stability under Electric Currents: *Shih-kang Lin*¹; Yu-chen Liu¹; ¹National Cheng Kung University

2:50 PM

Electric Current-induced Slip/Twin Transition: An In Situ EBSD Study: *Yu-chen Liu*¹; Shih-kang Lin¹; ¹National Cheng Kung University

3:10 PM

The Investigation of Electromigration Defects on Cu/Sn and Cu/Ag IMC due to Currents Stress and Temperature: De-Yu Tseng¹; Wei-Jhen Chen¹; Ti-Yuan Wu¹; *Ming-Tzer Lin¹*; ¹National Chung Hsing University

3:30 PM Break

3:50 PM

A Phase-field Model on Electromigration-induced Transgranular Void Migration in Interconnects: *Jaykumar Santoki*¹; Daniel Schneider¹; Arnab Mukherjee²; Michael Selzer²; Britta Nestler¹; ¹Karlsruhe Institute of Technology (KIT); ²Karlsruhe University of Applied Sciences

4:10 PM

Microstructure Evolution of Al Wire Bonded on Cu Metallization under Electromigration Test: *Lu Yu Hsien*¹; Tsau Yan-Wen¹; Ouyang Fan-Yi¹; ¹National Tsing Hua University

4:30 PM

On the Existence of a Two-phase Field in Binary α-Cu(Al) Solid Solutions: *Valery Ouvarov-Bancalero*¹; Choong-Un Kim¹; ¹The University of Texas at Arlington

Phase Transformations and Microstructural Evolution – Phase Transformations in Titanium II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee *Program Organizers:* Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Torac: Turbar Portac Clavaland State University: Hai Chan

North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Wednesday PMRoom: 129AMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: S. Suresh Babu, University of Tennessee; Yufeng Zheng, The Ohio State University

2:00 PM

On the Deformation Mechanisms of a New Metastable Beta Titanium Alloy with High Strength and High Strain Hardening Rate: Junheng Gao¹; Mark Rainforth¹; ¹University of Sheffield

2:20 PM

Dynamic Transformation of Ti-6Al-4V Alloy in theTwo-phase Region: *Baoqi Guo*¹; Clodualdo Aranas Jr¹; John Jonas¹; ¹McGill University

2:40 PM

On Dual-phase "Strain-transformable" Titanium Alloys for Enhanced Mechanical Properties: Design Principles, Microstructural Optimization and Deformation Mechanisms: Lola Lilensten¹; Yolaine Danard¹; Jean-Marc Joubert²; Fan Sun¹; Cédrik Brozek¹; Loïc Perrière²; Philippe Vermaut¹; Frédéric Prima¹; ¹Chimie ParisTech — CNRS, Institut de Recherche de Chimie Paris; ²ICMPE - UMR7182 CNRS-UPEC

3:00 PM

Influence of Sn on Martensitic Phase Transformation and Super-elasticity of Beta Ti Alloys: *Song Cai*¹; J Schaffer¹; ¹Fort Wayne Metals Research Products Corp.

3:20 PM Break

3:40 PM

Isothermal Omega Phase Formation in Ti-Nb-Fe Alloys: *Camilo Fernandes Salvador*¹; Mariana Dal Bó¹; Yufeng Zheng²; Éder Lopes¹; Rubens Caram¹; Hamish Fraser²; ¹University of Campinas; ²The Ohio State University

4:00 PM

Complexion-mediated Martensitic Phase Transformation in Titanium: *Jian Zhang*¹; Xiangdong Ding¹; Dierk Raabe²; Jun Sun¹; ¹Xi'an Jiaotong University; ²Max-Planck-Institut für Eisenforschung

4:20 PM

Detailed Investigation of Alpha Phase Formation in Metastable Beta Ti Alloys Using Advanced Characterization Techniques: *Petr Harcuba*¹; Jana Smilauerova¹; Jozef Vesely¹; Pavel Zhanal¹; ¹Charles University in Prague

4:40 PM

Using Multiparadigmatic Approach in Microstructure Evolution Prediction of Two-Phase Titanium Alloys: Linking Artificial Neural Networks, 2-point Statistics, Multiphase-field Methods and Self-consisting Analytical Models. Building Integrated Computational Materials Engineering (ICME) and Materials Data Infrastructure (MDI): Anton Ektov¹; Surya R. Kalidindi²; Yuksel C. Yabansu²; Xinyi Gong²; Jeoung-Han Kim³; ¹VSMPO-AVISMA Corp.; ²Georgia Institute of Technology; ³Hanbat National University

Phase Transformations and Microstructural Evolution – Special Topics in Phase Transformations II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Wednesday PM March 14, 2018 Room: 124B Location: Phoenix Convention Center

Session Chair: Gregory Thompson, University of Alabama

2:00 PM

B19' Strain Glass Transition and Associated Phase Diagram in Deformed TiNi SMA with Unique Properties: *Qianglong Liang*¹; Dong Wang¹; Jian Zhang¹; Xiaobing Ren²; Yunzhi Wang³; ¹Xi'an Jiaotong University; ²National Institute for Materials Science (NIMS); ³The Ohio State University

2:20 PM

Evolution of Microstructure and Hardness in Ni-rich NiTi Shape Memory Alloy at Various Thermal Conditions: *Ben Fraj Boutheina*¹; Slim Zghal²; Zoubeir Tourki¹; ¹Mechanical Laboratory of Sousse; ²Laboratory of Multifunctional Materials and Applications

2:40 PM

Effect of Wire Diameter on Phase and Kirkendall Pore Evolution in Titanium Coated Nickel Wires: *Dinc Erdeniz*¹; Arun Bhattacharjee²; Aaron Yost¹; David Dunand¹; Ashley Paz y Puente²; ¹Northwestern University; ²University of Cincinnati

3:00 PM

Tuning Microstructure and Composition of (La0.8Sr0.2)0.98CrxFe1xO3±d with Using Thermodynamic Modelling: *Hooman Sabarou*¹; Yu Zhong¹; ¹Florida International University

3:20 PM

Sublimation and Self Freezing of Planar Surfaces in Rarefied Atmospheres: *Rahul Basu*¹; ¹VTU

Powder Metallurgy of Light, Reactive and Other Nonferrous Metals – Powder Metallurgy Processes of Various Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Ma Qian, RMIT University (Royal Melbourne Institute of Technology); Zak Fang, University of Utah; Bowen Li, Michigan Technological University

Wednesday PM	Room: 225A
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Fei Yang, University of Waikato; Pei Sun, University of Utah

2:00 PM

On the Synthesis of Lithium Boron Nitride (Li3BN2): Challenges and Opportunities: Karan Sahni¹; Maziar Ashuri¹; Satyanarayana Emani¹; James Kaduk¹; Károly Németh¹; Leon Shaw¹; ¹Illinois Institute of Technology (IIT)

2:20 PM

Optimization of Manufacturing Process for the High Magnetic Properties of Nd-Fe-B Bonded Magnets Using High-energy Compaction Method: *Dong-won Shin*¹; Dong-soo Kim²; Jar-myung Koo¹; Soon-jik Hong¹; ¹Kongju National University; ²Convergence Research Center for Development of Mineral Resources

2:40 PM

The Mechanism and Characteristics of Mn-Zn Ferrite Powder Compacts Heated by Microwave: *Jiamin Zhang*¹; Jianhong Yi¹; Guoyou Gan¹; Kun Ma¹; Wenjin Ma¹; ¹Kunming University of Science and Technology

3:00 PM

Effect of Minor Titanium Addition on Copper/Diamond Composites Prepared by Hot Forging: *Fei Yang*¹; Wei Sun¹; Ajit Singh¹; Leandro Bolzoni¹; ¹The University of Waikato

3:20 PM

Characterization of the Liquid Phase Sintered Tungsten Heavy Alloys Prepared by an Electrochemically Produced Tungsten Powder: Mahmut Erol¹; *Metehan Erdogan*¹; Ishak Karakaya²; ¹Yildirim Beyazit University; ²Middle East Technical University

3:40 PM Break

4:00 PM

Leaching Characteristics of Non Ferrous Metals Recovery from Korean Municipal Solid Waste Incineration Bottom Ash Samples: Thriveni Thenepalli¹; *Ahn Ji Whan*²; ¹Hanil Cement Co Ltd.,; ²Korea Research Institute of Geoscience and Mineral Resources(KIGAM)

4:20 PM

Implementation of a Multi-physics Model for Simulating Microstructural Evolution during Sintering: Sudipta Biswas¹; Daniel Schwen²; *Hao Wang*¹; Vikas Tomar¹; ¹Purdue University; ²Idaho National Laboratory

4:40 PM Invited

Fabrication of Functional Materials Powder by Powder Metallurgical Process, and Investigation of their Bulk Properties: Babu Madavali¹; Chul-Hee Lee¹; Peyala Dharmaiah¹; Kap-Ho Lee²; Jar-Min Koo¹; Soon-Jik Hong¹; ¹Kongju National University and Institute for Rare Metals; ²Chungnam National University

5:10 PM

Mechanism and Characteristics of Mn-Zn Ferrite Powder Compacts

Heated by Microwave: *Jiamin Zhang*¹; Jianhong Yi¹; Guoyou Gan¹; Kun Ma¹; Wenjin Ma¹; ¹Kunming University of Science and Technology

Recent Advances in Functional Materials for Printed, Flexible and Wearable Electronics – Printed Electronics and Additive Manufacturing

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Pooran Joshi, Oak Ridge National Laboratory; Nuggehalli Ravindra, New Jersey Institute of Technology; Jud Ready, Georgia Institute of Technology; Amit Pandey, LG Fuel Cell Systems Inc.; Suresh Sitaraman, Georgia Institute of Technology

Wednesday PM March 14, 2018 Room: 226B Location: Phoenix Convention Center

Session Chairs: Pooran Joshi, Oak Ridge National Laboratory; Nuggehalli Ravindra, New Jersey Institute of Technology; Pavel Dutta, University of Houston

2:00 PM Invited

Additive Manufacturing with Aerosol Jet: From Prototyping to Production: *Kelley McDonald*¹; M. Schrandt¹; M. Renn¹; ¹Optomec, Inc.

2:30 PM Invited

Printable Functional Materials for Smart Fabrics: *Chih-hung Chang*¹; Rajiv Malhotra²; ¹Oregon State University; ²Rutgers University

3:00 PM

Recent Advancement on Printed, Stretchable, and Wearable Electronics in 2D Materials: *Barbara Nichols*¹; Madan Dubey¹; Robert Burke¹; Matthew Chin¹; Alin Chipara¹; Alex Mazzoni¹; Sina Najmaei¹; Eugene Zakar¹; ¹U.S. Army Research Laboratory

3:20 PM Break

3:40 PM Invited

3D Printing of Soft Ionic Actuators/Sensors for Soft Robotic Applications: *Kwang Kim*¹; Sarah Trabia¹; Zakai Olsen¹; ¹University of Nevada

4:10 PM Invited

Textile-enabled Wearable Energy Storage Devices: *Xiaodong Li*¹; ¹University of Virginia

4:40 PM Invited

3D Printing of Metals and Metal Oxides from Solution for Energy and Biomedical Applications: *Konstantinos (Kostas) Sierros*¹; ¹West Virginia University

5:10 PM Invited

3D Electronics and Sensor Circuits by Combining Conventional PCB Technology with Low Temperature Embedding and Forming: Bart Plovie¹; Frederick Bossuyt¹; Jan Vanfleteren¹; ¹Centre for Microsystems Technology, IMEC and Ghent University

Solar Cell Silicon – Silicon Photovoltaics

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Neale Neelameggham, Ind LLC; York Smith, University of Utah

Wednesday PM March 14, 2018 Room: 223 Location: Phoenix Convention Center

Session Chairs: Shadia Ikhmayies, Al Isra University; Neale Neelameggham, Ind LLC

2:00 PM Invited

Enhancement of Efficiency in Nanostructured-Si Solar Cells by Employing Doped-graphene Transparent Conductive Electrodes: *Suk-Ho Choi*¹; ¹Kyung Hee University

2:40 PM

Influence of Chemical and Heat Treatment on the Properties of Disi Raw Sandstones in Jordan: *Shadia Ikhmayies*¹; Abdulkader Abed²; Belal Amireh²; ¹Al Isra University; ²University of Jordan

3:00 PM

Three-dimensional Crystal-plasticity based Model for Intrinsic Stresses in Multi-junction Photovoltaic: Khaled Khafagy¹; *Tarek Hatem*¹; ¹British University in Egypt

3:20 PM

Ultrathin Crystalline Silicon Solar Cell Preparation through Molten Salt Electrolysis: *Ji Zhao*¹; Donald Sadoway¹; ¹MIT

Thermal and Mechanical Stability of Nanocrystalline Materials – Joint Session with Non-equilibrium Features of Grain Boundaries

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jason Trelewicz, Stony Brook University; Daniel Bufford, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Jessica Krogstad, University of Illinois, Urbana-Champaign; Christian Brandl, Karlsruhe Institute of Technology

Wednesday PM	Room: 128B
March 14, 2018	Location: Phoenix Convention Center

Session Chairs: Timofey Frolov, Lawrence Livermore National Laboratory; Jason Trelewicz, Stony Brook University

2:00 PM Invited

Impact of Segregation on Grain Boundary Motion: Stephen Foiles¹; David Jacobson²; Fadi Abdeljawad¹; Gregory Thompson²; ¹Sandia National Laboratories; ²University of Alabama

2:30 PM

The Influence of Grain Boundary Segregation on the Mechanical Behavior

of Nanocrystalline Metals: Yang Zhang¹; Wenbo Wang¹; Jason Trelewicz¹; ¹Stony Brook University

2:50 PM

Sub-ablation Femtosecond Laser Processing of Nanocrystalline Alloys: *Glenn Balbus*¹; McLean Echlin¹; Charlette Grigorian²; Timothy Rupert²; Tresa Pollock¹; Daniel Gianola¹; ¹University of California, Santa Barbara; ²University of California, Irvine

3:10 PM Invited

Grain Boundary (GB) Complexions: From Developing GB 'Phase' Diagrams to Understanding Embrittlement and Stabilizing Nanoalloys: *Jian Luo*¹; ¹University of California, San Diego

3:40 PM Break

4:00 PM Invited

Grain Boundary Phase Transformations and their Impact on Thermodynamics and Kinetics: J. Hickman¹; Yuri Mishin¹; ¹George Mason University

4:30 PM

Probing the Interfacial-driven Radiation Tolerance of Nanocrystalline Metals: *Jacob Gruber*¹; Greg Vetterick²; Pranav Suri²; Mitra Taheri²; Garritt Tucker²; ¹Colorado School of Mines; ²Drexel University

4:50 PM Invited

Irradiation Creep in Nanostructures Measured Using In-situ TEM: Shen Dillon¹; Khalid Hattar²; ¹University of Illinois at Urbana-Champaign; ²Sandia National Laboratories

Thermo-mechanical Response of Materials with Special Emphasis on In-situ Techniques – Nanomechanics with Synchrotron Diffraction

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee, TMS: Chemistry and Physics of Materials Committee *Program Organizers*: Amit Pandey, LG Fuel Cell Systems Inc.; Sanjit Bhowmick, Bruker Nano Surfaces; Jeff Wheeler, ETH Zurich; María Teresa Pérez Prado, IMDEA Materials Institute; Dongchan Jang, Korea Advanced Institute of Science and Technology; Robert Wheeler, MicroTesting Solutions LLC; Josh Kacher, Georgia Tech

Wednesday PM March 14, 2018

Room: 101A Location: Phoenix Convention Center

Session Chairs: Bob Wheeler, Micotesting Solutions; Josh Kacher, Georgia Tech

2:00 PM Invited

Experimental Techniques to Asses Long Range Internal Stresses in Plastically Deformed Crystalline Solids: *Michael Kassner*¹; Lyle Levine²; ¹University of Southern California; ²NIST

2:30 PM Invited

Mechanical Behavior of Stainless Steel 709 through In-situ Synchrotron Diffraction: Ryan Smith¹; *Djamel Kaoumi*¹; Mahmut Cinbiz²; Jun-Sang Park³; Jonathan Almer³; ¹North Carolina State University; ²Oak Ridge National Laboratory; ³Argonne National Laboratory

3:00 PM

Phase Transformation during Thermal Treatment of Medium Mn Steels Studied by In-situ Synchrotron Experiments and Thermodynamic Modeling: Xiaohua Hu¹; Kyoo Sil Choi¹; Guang Cheng¹; Xin Sun²; Josh Mueller³; Emmanuel de Moor³; Jon Speer³; David Matlock³; ¹Pacific Northwest National Laboratory; ²Oak Ridge National Lab; ³Colorado School of Mines

3:20 PM

"In Situ" Measurement of Electrical Resistivity, Dilatometry and Thermal Analyses of Cast Iron: Primoz Mrvar¹; Mitja Petric¹; ¹University of Ljubljana

3:40 PM Break

4:00 PM Invited

Studying the Micromechanics of Martensitic Phase Transformatons Using High Energy Diffraction Microscopy: *Aaron Stebner*¹; Ashley Bucsek¹; Jinesh Dahal¹; Harshad Paranjape¹; Branden Kappes¹; ¹Colorado School of Mines

4:30 PM

Emergence and Progression of Abnormal Grain Growth in Minimally Strained Nickel-200: Jonathan Madison¹; Olivia Underwood¹; Gregory Thompson²; ¹Sandia National Laboratories; ²University of Alabama

4:50 PM

Order-disorder Transition in 18-carat Gold Studied by In Situ X-ray Scattering: *Marina Garcia-Gonzalez*¹; Steven Van Petegem¹; Ana Diaz¹; Fanny Lalire²; Helena Van Swygenhoven¹; ¹Paul Scherrer Institut; ²Varinor

Ultrafine-grained Materials X – Radiation Tolerance and Particulate Approaches

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Wednesday PM Room: 102C March 14, 2018 Location: Pho

Room: 102C Location: Phoenix Convention Center

Session Chair: Zhiqiang Fu, University of California, Irvine

2:00 PM Invited

On Interfaces and Radiation Damage: *Blas Uberuaga*¹, ¹Los Alamos National Laboratory

2:30 PM Invited

Development and Characterization of Nanostructured Steels for Nuclear Applications: *Haiming Wen*¹; Andrew Hoffman¹; Rinat Islamgaliev²; Marina Nikitina²; ¹Missouri University of Science and Technology; ²Ufa State Aviation Technical University

3:00 PM

WEDNESDAY PM

TEM In-situ Mechanical Testing of Proton Irradiated Nanocrystalline Copper Tantalum Alloy: *Priyam Patki*¹; Janelle Wharry¹; Yaqiao Wu²; ¹Purdue University; ²Boise State University

3:20 PM Break

3:40 PM Invited

Manufacturing Fine-Grained Mg Rods Utilizing Multi-Pass Caliber-Rolling at Warm Temperatures: *Taekyung Lee*¹; Sung Hyuk Park²; Jeong Hun Lee³; Chong Soo Lee⁴; ¹Pusan National University; ²Kyungpook National University; ³Korea Institute of Industrial Technology; ⁴POSTECH

4:10 PM

Microstructural Evolution and Mechanical Behavior of a TiC/FeCoNi Composite Fabricated through In Situ Reinforcement Formation: *Zhiqiang Fu*¹; Benjamin MacDonald¹; Zhenfei Jiang¹; Weiping Chen¹; Julia Ivanisenko¹; Yizhang Zhou¹; Horst Hahn¹; Enrique Lavernia¹; ¹University of California, Irvine

4:30 PM

Zirconia Ceramic Toughened Nanocrystalline Iron: Guibin Shan¹; Yuzeng Chen¹; Feng Liu¹; ¹Northwestern Polytechnical University

4:50 PM

Mechano-chemical Synthesis of Nb-oxide Cu Nanocomposites: *Qun Li*¹; Xuekun Shang²; Robert Averback¹; Pascal Bellon¹; ¹UIUC; ²University of Science and Technology Beijing

Ultrafine-grained Materials X – Surface Processing and Twinning Phenomena

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Wednesday PMRoom: 103BMarch 14, 2018Location: Phoenix Convention Center

Session Chairs: Xinkun Zhu, Kunming University of Science and Technology; Alexander Zhilaev, Fundació CTM Centre Tecnològic

2:00 PM Invited

Surface Structure Transitions during Sliding Contact of Nanostructured Metals: *Timothy Rupert*¹; ¹University of California, Irvine

2:30 PM Invited

Nanocrystalline Cu Deformation Characterization Simulations: Shawn Coleman¹; Daniel Foley²; Garritt Tucker³; Mark Tschopp¹; ¹U.S. Army Research Laboratory; ²Drexel University; ³Colorado School of Mines

3:00 PM

The Mechanical Properties of Cu-Ni Multilayer Composite Materials: *Xinkun Zhu*¹; ¹Kunming University of Science and Technology

3:20 PM Break

3:40 PM Invited

Crystal Plasticity of Microstructural Evolution via Twin Boundary Migration in Nanotwinned Metals: *Shailendra Joshi*¹; Kartikey Joshi¹; ¹National University of Singapore

4:10 PM

Fracture Behavior of Bulk Cu with Nanoscale Twins: S.S. Luo¹; Z.S. You²; *Lei Lu*¹; ¹Institute of Metal Research, CAS; ²Nanjing University of Science and Technology

4:30 PM

Study on the Interface of ECAP Cold-welded Cu-Al and Ni-Cu Rods: *Alexander Zhilyaev*¹; Th. Werner²; Jose-Maria Cabrera²; ¹Fundació CTM Centre Tecnològic; ²Universitat Politècnica de Catalunya

4:50 PM

Production of Bulk Nanograined Si by High-pressure Torsion at Various Pressures: Yoshifumi Ikoma¹; Terumasa Yamasaki¹; Katsuhiko Saito²; Qixin Guo²; Zenji Horita¹; ¹Kyushu University; ²Saga University

9th International Symposium on High Temperature Metallurgical Processing – Ironmaking, Steelmaking and Casting

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Thursday AMRoom: 227BMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Onuralp Yücel, Istanbul Technical University; Ender Keskinkilic, Atilim University

8:30 AM Introductory Comments

8:35 AM

Optimization of Exothermic Riser Sleeve Design Parameters: *Onuralp Yücel*¹; Ahmet Turan²; K. Can Candeger³; ¹Istanbul Technical University; ²Yalova University; ³Smart Engineering

8:55 AM

Assessment of Gas-Slag-Metal Interaction during a Converter Steelmaking Process: *Lingling Cao*¹; Yannan Wang²; Qing Liu¹; Lefei Sun³; Sangsang Liao³; Weida Guo⁴; Keshe Ren⁴; Bart Blanpain²; Muxing Guo²; ¹University of Science and Technology Beijing; ²KU Leuven; ³Xinyu Iron and Steel Group Co.Ltd; ⁴Shandong Iron and Steel Group

9:15 AM

On the Role of Nb on the Texture and Microstructure of a Novel As-rolled Medium Carbon Wear Resistant Slurry Pipeline Steel: Vahid Javaheri¹; Tun Tun Nyo¹; David Porter¹; *Satish Kumar Kolli*¹; ¹University of Oulu

9:35 AM

Role of Burden Distribution in Blast Furnace under Reduced Coke Consumption: Jae Kwon¹; Ji Lee¹; Jeong Han¹; ¹Inha University

9:55 AM Break

10:15 AM

Viscosity of CaO-SiO₂-based Mold Flux with CeO₂ for Continuous Casting of RE Alloyed Heavy Rail Steels: Zeyun Cai¹; Bo Song¹; Zhen Liu¹; Xiaokang Cui¹; Lei Wang¹; ¹University of Science and Technology Beijing

10:35 AM

A Statistical Analysis of Process Abnormalities in Slab Casting: Ender Keskinkilic¹; ¹Atilim University

10:55 AM

Effect of Density Difference on Particle Segregation Behaviors at Bellless Top Blast Furnace with Parallel-type Hopper: *Yang Xu*¹; Kaihui Ma¹; Chengfeng Sun¹; Zhehan Liao¹; Jian Xu¹; Liangying Wen¹; Chenguang Bai¹; ¹Chongqing University

11:15 AM

The Effect of Austenitizing Temperature on Hardenability, Precipitation and Mechanical Properties of Boron Bearing Cr-Mo Alloy Steel: Yaxu Zheng¹; Fuming Wang¹; Changrong Li²; Dan Wu²; Xi Chen¹; Shuai Liu¹; ¹School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing; ²School of Materials Science and Engineering, University of Science and Technology Beijing

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – Additive Manufacturing of Advanced Light-weight Materials

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Thursday AMRoom: 231ABMarch 15, 2018Location: Photo

Location: Phoenix Convention Center

Session Chairs: Judy Schneider, University of Alabama in Huntsville; Alex Plotkowski, Oak Ridge National Laboratory

8:30 AM

Al-Ce Alloys for Additive Manufacturing: *Alex Plotkowski*¹; Orlando Rios¹; Zach Sims²; Sarah Foster²; Hunter Henderson¹; Ryan Ott³; Suresh Babu²; Ryan Dehoff¹; ¹Oak Ridge National Laboratory; ²University of Tennessee - Knoxville; ³Ames Laboratory

8:50 AM

Microstructure and Properties of Additively Manufactured Aluminum Alloy 2139: Craig Brice¹; Milo Kral²; Catherine Bishop²; Ma Qian³; Milan Brandt³; Martin Leary³; ¹Lockheed Martin Space Systems Company; ²University of Canterbury; ³RMIT University

9:10 AM

Parametric Study on Direct Energy Deposition of Aluminum Alloys: Parnian Kiani¹; Jessica Bui¹; Kaka Ma²; Julie Schoenung¹; ¹University of California, Irvine; ²Colorado State University

9:30 AM

Progresses in Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloys Using Modern CMT Deposition System: *Amin S. Azar*¹; Hans Fostervoll¹; Ragnhild Aune¹; Spyros Diplas¹; Anette Gunnæs²; Martin Løvøy²; Tore Andre Kristensen¹; Mohammed M'Hamdi¹; ¹SINTEF; ²UiO

9:50 AM Break

10:10 AM

Additive Manufacturing of L12 Strengthened Aluminum Superalloy Addalloy[™]: Seth Griffiths¹; Christian Leinenbach¹; Nhon Vo²; Joe Croteau²; David Seidman³; David Dunand³; ¹EMPA; ²NanoAl LLC; ³Northwestern University

10:30 AM

The Possibility of Improving the Performance Characteristics of Synthesized Products from Aluminum Alloy Powders: *Ivan Redkin*¹; Vladimir Korolev¹; Aleksandr Evgenov¹; Dmitriy Ryabov¹; ¹RUSAL Global Management B. V.

10:50 AM

Heat Resistant Ti Based Alloy with Dispersed TiB Particles Utilizing Additive Manufacturing by Selective Electron Beam Melting: *Tadashi Fujieda*¹; Yujie Cui²; Kenta Aoyagi²; Yuichiro Koizumi²; Akihiko Chiba²; ¹Hitachi, Ltd.; ²Tohoku University

11:10 AM

Additive Manufacturing of Niobium Carbide Reinforced Ti6Al4V Metal Matrix Composites Using LENS: Jose Avila¹; Thomas Gualtieri¹; Amit Bandyopadhyay¹; ¹Washington State University

Additive Manufacturing: Building the Pathway towards Process and Material Qualification – Qualification in Additive Manufacturing

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Additive Manufacturing Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas - Austin; Christian Leinenbach, Empa-Swiss Federal Laboratories for Materials Science and Technology; James Sears, Carpenter Technology Coporporation; Christopher Tuck, University of Nottingham

Thursday AM	Room: 230
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Wesley Everhart, Kansas City National Security Campus; John Carpenter, LANL

8:30 AM Invited

A Methodology for Statistics Based Qualification for Selective Laser Melting of Metals: *Wesley Everhart*¹; Elizabeth Fitzgerald¹; Jordan Herrema¹; ¹Kansas City National Security Campus

9:00 AM

From Art-to-part: Multidisciplinary Virtual Toolset for Laser Powderbed Fusion Additive Manufacturing and Multi-Step Post Processing Certification: Lang Yuan¹; Sam Anand²; Santanu Chaudhuri³; Susan Moehring⁴; Pinghai Yang¹; Tyler Nelson¹; Archak Goel²; Omkar Ghalsasi²; Botao Zhang²; Brian Mercer³; Dansong Zhang³; Pikee Priya³; Dan Scherrer⁴; Radu Pavel⁴; ¹GE Global Research; ²University of Cincinnati; ³University of Illinois at Urbana-Champaign; ⁴TechSolve

9:20 AM

Material Qualification for Desktop Metal's AM Processing: *Michael Gibson*¹; Nihan Tuncer¹; Brian Kernan¹; Jesse Cataldo¹; Shashank Raghu¹; Anna Trump¹; Christopher Schuh²; Animesh Bose¹; ¹Desktop Metal; ²MIT

9:40 AM

Design-to-component, Closed-loop ICME Research and Development for Additively Manufactured Alloys: Yongho Sohn¹; Ranganathan Kumar¹; Kevin Coffey¹; Tengfei Jiang¹; Rajiv Mishra²; ¹University of Central Florida; ²University of North Texas

10:00 AM Break

10:20 AM Invited

Qualification of Wire + Arc Additive Manufacture: Challenges and Outlook: Paul Colegrove¹; Stewart Williams¹; *Filomeno Martina*; ¹Cranfield University

10:50 AM

Additive Manufacturing of Aluminosilicate-polymer and Carbon Composites: *Pratish Rao*¹; Krishna Muralidharan¹; Moe Momayez¹; Douglas Loy¹; ¹University of Arizona

11:10 AM

Reshaping Casting Industry by Additive Manufacturing: *Jinwu Kang*¹; Chengyang Deng¹; Haolong Shangguan¹; Yongyi Hu¹; ¹Tsinghua University

11:30 AM

Process-structure-property Relationships of Additively Manufactured Model Sandstone: Kevin Hodder¹; *John Nychka*¹; Rick Chalaturnyk¹; ¹University of Alberta

11:50 AM

Additive Manufacturing of Three-dimensional Carbon Microlattices: *Akira Kudo*¹; Federico Bosi¹; Julia Greer¹; ¹California Institute of Technology

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Constitutive Behavior II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Thursday AM	Room: 122B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Rodney McCabe, Los Alamos National Laboratory; Benjamin Eftink, Los Alamos National Laboratory

8:30 AM

In-TEM Observation on Twinning in Nano-sized BCC Crystal: Scott Mao¹; Jiangwei Wang¹; Christopher Weinberger²; Ting Zhu³; ¹University of Pittsburgh; ²Drexel University; ³Georgia Institute of Technology

8:50 AM

Mechanical Fields due to Double Twinning in Magnesium Alloy AZ31 as Revealed by Explicit Modeling of Twin Lamellae Using a Crystal Plasticity Finite Element Model: *Milan Ardeljan*¹; Marko Knezevic¹; ¹University of New Hampshire

9:10 AM

Intermittent Plasticity Associated with Collective Motion of Dislocation in bcc Alloys: *Takahito Ohmura*¹; Takuya Suzuki¹; ¹National Institute for Materials Science

9:30 AM

Effect of Local Stress on Fault Formation and Propagation within HCP Materials: *Heather Salvador*¹; Christopher Lee¹; Suveen Mathaudhu¹; ¹University of California, Riverside

9:50 AM Break

10:10 AM

A Micromechanical Study for Twin Nucleation in hcp Metals: Development of Analytical Solution to Study Twin Bands Formation: Yub Raj Paudel¹; Christopher Barrett¹; Mark Tschopp²; Kaan Inal³; Haitham El Kadiri¹; ¹Mississippi State University; ²US Army Research Laboratory; ³University of Waterloo

10:30 AM

Quantifying Microstructural Deformation in Cold Sprayed Aluminumcopper Alloy Coatings: *Tian Liu*¹; Luke Brewer¹; Jeffrey Bunn²; E. Payzant²; Lindsay Kolbus²; ¹University of Alabama; ²Oak Ridge National Lab

10:50 AM

Impact of Microstructural Features on the Grain-orientation Dependent Strain Hardening and Softening Mechanisms in Al-Cu Alloys: *Brian Milligan*¹; Dong Ma²; Lawrence Allard¹; Amit Shyam¹; ¹Materials Science and Technology Division, Oak Ridge National Laboratory; ²Chemical and Engineering Materials Division, Oak Ridge National Laboratory

11:30 AM

Slip System Kinematic Hardening-based Simulation of Reverse Plasticity in Nanoindentation of ß-tin: *Zhuowen Zhao*¹; Aritra Chakraborty¹; Martin Crimp¹; Thomas Bieler¹; Philip Eisenlohr¹; ¹Michigan State University

11:10 AM

Delayed Cracking and Earing Phenomena in Deep-drawn Stainless Steel Alloys: Interplay among Microstructure, Texture, Transformation Kinetics, Residual Stress, and Load Partitioning: *Peijun Hou*¹; Yuan Li¹; Dongchul Chae²; Yang Ren³; Ke An⁴; Hahn Choo¹; ¹University of Tennessee; ²POSCO Technical Research Laboratory; ³Argonne National Laboratory; ⁴Oak Ridge National Laboratory

TECHNICAL PROGRAM

Advanced High-strength Steels – Bainitic and Stainless Steels

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Thursday AM	Room: 121C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Hung-Wei Yen, National Taiwan University; Mingxin Huang, The University of Hong Kong

8:30 AM

Resetting Aged Duplex Stainless Steels to Hinder Thermal Embrittlement: Jaclyn Cann¹; Cem Tasan¹; ¹Massachusetts Institute of Technology

8:50 AM

Design of Carbide-free Bainite Steels by Cool and Partitioning (C&P): *Kazuhiko Nishioka*¹; Gregory Olson¹; ¹Northwestern University

9:10 AM

Microstructural Characterization of Nanostructured Bainitic Steel under Repeated Frictional Sliding: Kritika Singh¹; Aparna Singh¹; ¹Indian Institute of Technology, Bombay, India

9:30 AM

Thermal Stability of Precipitated Austenite in Fe-10Ni-0.1C Steel: *Ian Harding*¹; Sharvan Kumar¹; ¹Brown University

9:50 AM

Relationship of Grain Size and Deformation Mechanism to the Fracture Behavior in High-strength High-ductility Nanostructured Austenitic Stainless Steel: Devesh Misra¹; Yashwanth Injeti¹; ¹University of Texas at El Paso

10:10 AM Break

10:25 AM

Bio-inspired Hierarchical Steels with Superior Strength and Ductility: *Shan Cecilia Cao*¹; Jiabin Liu²; Jian Lu³; ¹University of California, Berkeley; ²Zhejiang University; ³City University of Hong Kong (CityU)

10:45 AM

Design of Duplex Stainless Steels with TRIP Effect: Link between Composition, Phase Stability and Plasticity: Audrey Lechartier¹; *Alexis Deschamps*²; Marc Mantel¹; Guillaume Parry²; Muriel Veron²; ¹Ugitech; ²Grenoble Institute of Technology

11:05 AM

Wire Drawing at Cryogenic Temperatures: A New Production Rout for High Strength Stainless Steels: *Mikael Grehk*¹; Pasi Kangas¹; Guocai Chai¹; Lars Wikström¹; ¹Sandvik Materials Technology

11:25 AM

Elastoplastic Deformation of Micro-constituents in a Duplex Stainless Steel by Cyclic Nanoindentation: *Yunfei Jia*¹; Yuanyuan Cui¹; Fu-Zhen Xuan¹; ¹East China University of Science and Technology

11:45 AM

Measurements of Mechanical Properties of Age Hardened 18Ni (350) Maraging Steel Using Nanoindentation Stress-strain Analysis: *Ali Khosravani*¹; Sepideh Parvinian¹; Hamid Garmestani¹; Surya Kalidindi¹; ¹Georgia Institute of Technology

12:05 PM

Effects of Matrix Microstructure on the Nanoscale Precipitation and Precipitation Strengthening in an Ultra-high Strength Steel: Songsong Xu¹; Hao Guo¹; Yu Zhao¹; Naimeng Liu¹; Dan Chen¹; Ye Cui¹; Yang Zhang¹; Zhongwu Zhang¹; ⁻¹Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education ,College of Materials Science and Chemical Engineering, Harbin Engineering University

12:25 PM Concluding Comments

Advanced Magnetic Materials for Energy and Power Conversion Applications – Development and Application of Soft Magnetic Materials

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Thursday AMRoom: 229AMarch 15, 2018Location: Phoenix Convention Center

Session Chair: Hunter Henderson, Oak Ridge National Laboratory

8:30 AM Introductory Comments

8:35 AM Invited

Development of Iron-rich (Fe,Ni,Co)-based Nanocrystalline Magnets with Minimized Magnetostriction: Anthony Martone¹; Bowen Dong¹; Song Lan¹; *Matthew Willard*¹; ¹Case Western Reserve University

9:05 AM Invited

Accelerated Discovery of Magnetic Alloys with Decreased Critical Materials: *Ryan Ott*¹; Fanqiang Meng¹; Emrah Simsek¹; Matthew Besser¹; Matthew Kramer¹; ¹Ames Laboratory (USDOE)

9:35 AM Invited

Imaging of Magnetic Domain Dynamics at Power Frequency: *Rudolf Schaefer*¹; ¹Leibniz Institute for Solid State and Materials Research (IFW) Dresden

10:05 AM Break

10:25 AM Invited

Processing of Magnetic Materials Enhanced by Magnetic Fields or Electric Currents: *Konstantin Skokov*¹; Oliver Gutfleisch¹; ¹Technische Universität Darmstadt

10:55 AM

Crystallization Kinetics in (Fe70Ni30)80Nb4Si2B14 Metal Amorphous Nanocomposites (MANCs): *Natan Aronhime*¹; Michael McHenry¹; ¹Carnegie Mellon University

11:15 AM

Magnetic Domains and Microstructure in Nanocrystalline Soft Magnetic Fe-Si Alloys: *Trevor Clark*¹; XiuJuan Jiang²; Nicole Overman²; Suveen Mathaudhu¹; ¹University of California, Riverside; ²Pacific Northwest National Laboratory

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder – Pb Free Solder Alloy II

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee *Program Organizers:* Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Thursday AM Room: 226C March 15, 2018 Location: Phoenix Convention Center

Session Chairs: Kazuhiro Nogita, The University of Queensland; Sergey Belyakov, Imperial College London

8:30 AM

Interfacial Reaction of 68In32Bi and 33In67Bi Low Melting Alloy on Cu Substrate: *Albert T. Wu*¹; Jyun-Jhe Huang¹; Chih-Hao Chen¹; Hsiang-Chuan Chen²; Chang-Meng Wang²; ¹National Central University; ²SHENMAO Technology Inc.

8:50 AM

High Temperature Lead-free Die Attach Materials - a Review: HongWen Zhang¹; Ning-Cheng Lee¹; Jonathan Minter¹; ¹Indium Corporation

9:10 AM

Sintered Silver-Indium Bonding Materials for High Temperature Applications: *Chun An Yang*¹; C. Robert Kao¹; Hiroshi Nishikawa²; ¹National Taiwan University; ²Osaka University

9:30 AM

Properties of Joints Formed With Cu-Ni/Sn High Temperature Pb-free Composite Solder Paste: Stephanie Choquette¹; Iver Anderson¹; ¹Ames Lab

9:50 AM

The Microstructure and Tensile Properties of Zn-25Sn-xCu-yTi High Temperature Pb-Free Solder Alloy: *Jeng Chi Lin*¹; Kwang-Lung Lin¹; ¹National Cheng Kung University

10:10 AM Break

10:30 AM

High Temperature Mechanical Properties of Zn-based High Temperature Lead-free Solders: Che-Wei Chang¹; Kwang-Lung Lin¹; ¹National Cheng Kung University

10:50 AM

The Wetting and IMC Growth Behaviors between Zn-25Sn-xCu-yTi High Temperature Pb-free Solder Alloys and Cu: Darwin Sarwono¹; Kwang-Lung Lin¹; ¹National Cheng Kung University

11:10 AM

Nucleation, Growth, and Structure of Beta-tin in Tin-based Solders: *Kathlene Reeve*¹; Samuel Reeve¹; Carol Handwerker¹; ¹Purdue University

Advanced Real Time Optical Imaging – Iron and Steelmaking II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee

Program Organizers: Jinichiro Nakano, US Department of Energy National Energy Technology Laboratory; David Alman, National Energy Technology Laboratory; II Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology

Thursday AMRoom: 123March 15, 2018Location: Phoenix Convention Center

Session Chairs: Hiroyuki Shibata, Tohoku University; Jinichiro Nakano, US DOE National Energy Technology Laboratory

8:30 AM Invited

Wetting, Spreading and Penetrating Behavior of Slags in Contact with Refactory Ceramics: Yongsug Chung¹; ¹Korea Polytechnic University

9:00 AM Invited

Current State Art of Double Hot Thermocouple Technology—Novel Way for the Study of Mold Flux High-temperature Properties: *Wanlin Wang*¹; Lei Zhang¹; Lejun Zhou¹; ¹Central South University

9:30 AM Invited

In Situ Observation of Dissolution of Oxide Inclusions in Steelmaking Slags: Neslihan Dogan¹; ¹McMaster University

10:00 AM Break

10:20 AM Invited

Investigation of Integrated Recycling Waste Heat and Slag Resources Using Single Hot Thermocouple Technique: Zuotai Zhang¹; Yongqi Sun¹; ¹Southern University of Science and Technology

10:50 AM Invited

In-situ Observation of Reduction or Oxidation of Molten CaO-FeOx-SiO₂ Oxides at 1573 K: *Hiroyuki Matsuura*¹; ¹The University of Tokyo

11:20 AM

Localized Concentration of Metal Cations of Steelmaking Slags and its Visualization Using Confocal Laser Scanning Microscope: *Il Sohn*¹; 'Yonsei University

Advances in Additive Manufacturing of Titanium and Titanium Based Alloys – Emerging Methods and Materials

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Peter Collins, Iowa State University; Leon Prentice, CSIRO; Andrew Baker, The Boeing Company; Craig Brice, Lockheed Martin Space Systems Company

Thursday AM	Room: 231C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Peter Collins, Iowa State University; Craig Brice, Lockheed Martin Space Systems Company; Andrew Baker, The Boeing Company

8:30 AM Invited

Investigation of Fabrication of Ti64 Components Using Hybrid Additive Manufacturing: *Joseph Newkirk*¹; Frank Liou¹; ¹Missouri University of Science and Technology

9:00 AM

Solid-state Additive Manufacturing and Repair of Titanium Alloys: *Nanci Hardwick*¹; Chase Cox¹; ¹Aeroprobe Corporation

THURSDAY AM

9:20 AM

The Effects of Electrically-assisted Ultrasonic Nanocrystal Surface Modification on 3D-printed Ti-6Al-4V Alloy: Hao Zhang¹; Jingyi Zhao¹; Haifeng Qin¹; Zhencheng Ren¹; Gary Doll¹; Yalin Dong¹; *Chang Ye*¹; ¹University of Akron

9:40 AM

Insight on Process Development of Titanium Aluminide Alloy(s) during Laser In-situ Alloying: *Monnamme Tlotleng*¹; Sisa Pityana¹; ¹Additive Manufacturing Research Group, Laser Enabled Manufacturing, CSIR

10:00 AM Break

10:15 AM

Intrinsic Heat Treatment of Titanium Alloys during Selective Laser Melting: *Pere Barriobero-Vila*¹; Joachim Gussone¹; Jan Haubrich¹; Stefanie Sandlöbes²; Julio Da Silva³; Peter Cloetens³; Norbert Schell⁴; Guillermo Requena¹; ¹German Aerospace Center; ²Department and Chair of Physical Metallurgy and Metal Physics, RWTH Aachen University; ³European Synchrotron Radiation Facility (ESRF); ⁴Helmholtz-Zentrum Geesthacht

10:35 AM

Development of Bio-compatible Beta Ti Alloy Powders for Additive Manufacturing of for Application in Patient-specific Orthopaedic Implants: *Eugne Ivanov*¹; Eduardo del-Rio¹; ¹Tosoh

Algorithm Development in Materials Science and Engineering – Experimental and Computational Algorithms

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Mark Tschopp, Army Research Laboratory; Jonathan Zimmerman, Sandia National Laboratories; Ebrahim Asadi, University of Memphis; Mark Horstemeyer, Mississippi State University

Thursday AM	Room: 130
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Jonathan Zimmerman, Sandia National Laboratories; Mohsen Asle Zaeem, Missouri University of Science and Technology

8:30 AM

Data Fusion and Mining of In Situ Monitoring Sensors, Process Modeling, and Defect Characterization in Powder Bed Fusion Additive Manufacturing: *Sean Donegan*¹; Michael Groeber¹; Edwin Schwalbach¹; ¹Air Force Research Laboratory

8:50 AM

Deep Learning and Dynamic Sampling for Smart Data Acquisition in Scanning Electron Microscopy: Yan Zhang¹; G. M. Dilshan Godaliyadda²; Nicola Ferrier¹; Emine Gulsoy³; Charles Bouman²; *Charudatta Phatak*¹; ¹Argonne National Laboratory; ²Purdue University; ³Northwestern University

9:10 AM

Assessment of Heterogeneous Elastic Strains in Polycrystalline Ti-5Al-2.5Sn and Modeling with Taylor Gradient Enhanced Phenomenological Crystal Plasticity Model: *Chen Zhang*¹; Philip Eisenlohr¹; Martin Crimp¹; Carl Boehlert¹; Ruqing Xu²; Thomas Bieler¹; ¹Michigan State University; ²Argonne National Lab

9:30 AM

Segmentation for Large Datasets of X-ray Microscopes by Using a Deep Convolutional Neural Network: *Xiaogang Yang*¹; Vincent De Andrade¹; Francesco De Carlo¹; Nikhilesh Chawla²; C. Shashank Kaira²; William Scullin¹; Doga Gursoy¹; ¹Argonne National Laboratory; ²Arizona State University

9:50 AM Break

10:10 AM

Hierarchical Simplex Sampling: An Efficient Algorithm for Construction of Diverse Microstructural Sets and Delineation of Properties Closures: *Oliver Johnson*¹; Christian Kurniawan¹; Christopher Schuh²; ¹Brigham Young University; ²Massachusetts Institute of Technology

10:30 AM

Developing a Workflow for Process-structure-property Linkage through Monte Carlo and Direct Numerical Simulations: *Theron Rodgers*¹; Joseph Bishop¹; Jonathan Madison¹; ¹Sandia National Laboratories

10:50 AM

Concepts, Data Bases and Analysis Tools for Dislocation Micro Structures Across the Length Scales: *Stefan Sandfeld*¹; ¹TU Freiberg

11:10 AM

PyCAC: The Concurrent Atomistic-Continuum Simulation Environment: *Shuozhi Xu*¹; Thomas Payne²; Hao Chen³; Yongchao Liu²; Liming Xiong³; Youping Chen⁴; David McDowell²; ¹University of California, Santa Barbara; ²Georgia Institute of Technology; ³Iowa State University; ⁴University of Florida

Alloy Development and Powder Manufacture for Additive Manufacturing – Design of Aluminum Allovs

Sponsored by: TMS Materials Processing and Manufacturing Division Program Organizers: Paul Prichard, Kennametal; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; James Foley, Los Alamos National Laboratory

Thursday AM March 15, 2018 Room: 232B Location: Phoenix Convention Center

Session Chair: Paul Prichard, Kennametal

8:30 AM

Aluminium Alloy Design for Selective Laser Melting: Paul Rometsch¹; Kun Yang¹; Qingbo Jia¹; Xinhua Wu¹; ¹Monash University

8:50 AM

Aluminium Alloy Development for Additive Manufacturing: *Qingbo Jia*¹; Paul Rometsch¹; Sheng Cao¹; Kai Zhang¹; John Shurvinton¹; Tom Jarvis¹; Xinhua Wu¹; ¹Monash University

9:10 AM

Bridging the Gap Between Rapid Solidification and the Additive Manufacture of Novel Aluminum Alloys: Joe Croteau¹; Nhon Vo¹; Davaadorj Bayansan¹; David Seidman¹; David Dunand¹; ¹NanoAl LLC

9:30 AM

Preventing the Coarsening of Al₃Sc Precipitates by the Formation of a Zr-rich Shell during Laser Metal Deposition: *Philipp Kürnsteiner*¹; Markus Benjamin Wilms²; Andreas Weisheit²; Eric Aimé Jägle¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Fraunhofer-Institut für Lasertechnik

9:50 AM

Hybrid AM Processing Reduces Stresses and Produces Equiaxed Microstructures: James Withers¹; ¹ATS-MER, LLC

Aluminum Alloys, Processing and Characterization – Emerging Technologies

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Thursday AMRoom: 221BMarch 15, 2018Location: Phoenix Convention Center

Session Chair: Amir Zadeh, Sapa Technology Americas

8:30 AM Invited

In-situ Fitness-for-Service Assessment of Aluminum Alloys Developed for Automotive Powertrain Lightweighting: Ermia Aghaie¹; Joshua Stroh¹; *Dimitry Sediako*¹; Mathew Smith¹; ¹University of British Columbia

9:00 AM Invited

Advances in Aluminum Extrusion Alloys and Processes: David Lukasak¹; Amirreza Sanaty Zadeh¹; ¹Sapa

9:30 AM

Research on the Effect of the Processing Parameters on Susceptibility of Liquation Cracking of Al Alloys during Refilled Friction Stir Spot Welding: *Tao Yuan*¹; Wentao Gong¹; Yinuo Li¹; Shujun Chen¹; ¹Beijing University of Technology

9:50 AM

Factors Influencing the Cast Duration of Horizontal Continuous Ingot Casters: *Benjamin Jaroni*¹; Sascha Werner¹; Elmar Schöll¹; Georg Scheele¹; ¹TRIMET Aluminium SE

10:10 AM Break

10:30 AM

High Volume Production Validation of Aluminum Tailor-welded Blanks: *Yuri Hovanski*¹; Tom Luzanski²; Dustin Marshall²; Piyush Upadhyay³; ¹Brigham Young University; ²TWB Company; ³Pacific Northwest National Laboratory

10:50 AM

On Si Redistribution during Friction Stir Processing of Cast Al-7%Si-0.4%Mg Alloys: *Nelson Affonseca Netto*¹; Murat Tiryakioglu¹; ¹University of North Florida

11:10 AM

THURSDAY AM

Equal Channel Angular Pressing of a Newly Developed Precipitation Hardenable Scandium Containing Aluminum Alloy: Jahanzaib Malik¹; Bilal Mansoor²; Wahaz Nasim¹; Ibrahim Karaman¹; Dinc Erdeniz³; David Seidman³; David Dunand³; ¹Texas A&M University; ²Texas A&M University at Qatar; ³Northwestern University

11:30 AM

Stiffness Improvement Through Alloying Elements in Al Alloys: Sajjad Amirkhanlou¹; Shouxun Ji¹; ¹Brunel University London

Aluminum Reduction Technology – Environment, Gas Treatment & Alumina Transport

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Abdalla Zarouni, Emirates Global Aluminium

Thursday AM March 15, 2018 Room: 221C Location: Phoenix Convention Center

Session Chair: To Be Announced

8:30 AM Introductory Comments

8:35 AM Improved Abart Gas Treatment and Alumina Handling at the Karmøy

Technology Pilot (KTP): Anders Sorhuus¹; Sivert Ose¹; ¹GE Power

9:00 AM SPL: An Update: *Rudolf Pawlek*¹; ¹TS+C

9:25 AM

Bubble Dispersion States in the Zinc Oxide Desulfurization Injection Blow Tank: *Xuejiao Cao*¹; Zhang Ting'an¹; Yan Liu¹; Yuhao Zhang¹; Weiguang Zhang¹; Dongxing Wang¹; Kun Wang¹; ¹Northeastern University

9:50 AM

Decision Criteria for Pneumatic Conveying and Distribution of Material: Arne Hilck¹; *Jan Paepcke*¹; Michael Altmann-Rinck¹; ¹Claudius Peters Projects

10:15 AM Concluding Comments

Atom Probe Tomography for Advanced Characterization of Metals, Minerals and Materials – Nuclear Materials

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee *Program Organizers:* Haiming Wen, Missouri University of Science and Technology; Simon Ringer, The University of Sydney; Gregory Thompson, University of Alabama; Arun Devaraj, Pacific Northwest National Laboratory; Keith Knipling, U.S. Naval Research Laboratory; Gang Sha, Nanjing University of Science and Technology; David Seidman, Northwestern University; Chantal Sudbrack, QuesTek Innovations, LLC

Thursday AM	Room: 124A
March 15, 2018	Location: Phoenix Convention Center

Funding support provided by: CAMECA Instruments, Inc.

Session Chairs: Arun Devaraj, Pacific Northwest National Laboratory; Haiming Wen, Missouri University of Science and Technology

8:30 AM Invited

From Imaging to Quantitative Atom Probe Tomography of Irradiated Microstructures: *Emmanuelle Marquis*¹; Elaina Anderson¹; G. Robert Odette²; Li-Jen Yu¹; ¹University of Michigan; ²University of California, Santa Barbara

9:05 AM Invited

Perspectives for APT Characterisation of Structural Materials for Nuclear Reactor Applications: *Michael Moody*¹; Paul Bagot¹; ¹University of Oxford

9:40 AM

APT Studies of Cu-Mn-Ni-Si Precipitate Phase Selection for the Wide Range of RPV Steel Compositions Irradiated in UCSB ATR-1 & ATR-2: *Nathan Almirall*¹; Peter Wells¹; Takuya Yamamoto¹; David Gragg¹; Kirk Fields¹; G. R. Odette¹; Randy Nanstad²; Keith Wilford³; Tim Williams³; ¹University of California, Santa Barbara; ²Oak Ridge National Laboratory; ³Rolls Royce

10:00 AM Break

10:20 AM Invited

A Critical Comparison of APT Characterization of Nanoscale Precipitates in Iron Based Alloys with a Range of Other Techniques: G. Robert Odette¹; Peter Wells¹; Nathan Almirall¹; ¹University of California, Santa Barbara

10:55 AM

Atom Probe Tomography and Correlative Microscopy of Uranium-10 wt% Molybdenum Alloy Nuclear Fuels: Arun Devaraj¹; Elizabeth Kautz¹; Curt Lavender¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

Biodegradable Materials for Medical Applications – Biodegradable Metals

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee Program Organizers: Jaroslaw Drelich, Michigan Technological University; Petra Maier, University of Applied Sciences Stralsund; Jan Seitz, Syntellix AG; Norbert Hort, Helmholtz-Zentrum Geesthacht; Huinan Liu, University of California-Riverside

Thursday AM	Room: 226A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Jan-Marten Seitz, Syntellix AG; Petra Maier, University of Applied Sciences Stralsund

8:30 AM Keynote

Fe-based Alloys: A New Class of High Strength Low-degradation Biodegradable Metals for Health Applications: Sergio Loffredo¹; Malgorzata Sikora Jasinska¹; Nicolas Gigueres²; Maurizio Vedani³; *Diego Mantovani*¹; ¹Laval University; ²Quebec Center for Metallurgy; ³Polytechnic of Milan, Italy

9:10 AM Invited

Fundamentals of the Theory of Biodegradable Metals—Definition, Biodegradability and Biosafety Criteria and its Guidance on Material Design: *Yufeng Zheng*¹; ¹Peking University

9:40 AM Invited

Opportunities Offered by Zinc Alloys for Degradable Implants: Recent Trends and Developments: Ehsan Mostaed¹; Malgorzata Sikora-Jasinska¹; Ana Laura Ramirez-Ledesma¹; Lucie Lévesque²; Diego Mantovani²; *Maurizio Vedani*¹; ¹Politecnico di Milano, Dipartimento di Meccanica; ²Laval University

10:10 AM Break

10:30 AM Invited

Progress in Absorbable Wire Technology for Next Generation Devices: *Adam Griebel*¹; Jeremy Schaffer¹; ¹Fort Wayne Metals

11:00 AM

Mechanical Properties of Nanocrystalline Bioresorbable Fe-Mn Alloy: Angi Yu¹; Christian Roach¹; Sina Shahrezaei¹; David Johnson²; Lia Stanciu²; Suveen Mathaudhu³; ¹UCR; ²Purdue university; ³University of California, Riverside

11:20 AM

Effect of Additive Zinc on Mechanical Properties and Degradation Behavior of Magnesium: *Naoko Ikeo*¹; Kengo Fujiwara¹; YooJin Kim²; Toshiji Mukai¹; ¹Kobe University; ²Brown University

11:40 AM

Visualisation of Implant Failure by Synchrotron Tomography: Regine Willumeit-Roemer¹; Julian Moosmann¹; Berit Zeller-Plumhoff¹; Florian Wieland¹; Diana Krüger¹; Björn Wiese¹; Ann Wennerberg²; Niccolò Peruzzi³; Silvia Galli²; Felix Beckmann¹; Jörg Hammel¹; ¹Helmholtz-Zentrum Geesthacht; ²Faculty of Odontology, Malmö University; ³Clinical Sciences, Lund University

Building an ICME Infrastructure: Developing Tools that Integrate Across Length and Time Scales to Accelerate Materials Design – Materials Design Collaboration Platforms and Tools

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee *Program Organizers*: Carelyn Campbell, National Institute of Standards and Technology; Mark Carroll, Federal Mogul Powertrain; Adam Hope, Thermo-Calc Software; Hojun Lim, Sandia National Laboratories; Myoung-Gyu Lee, Korea University; Amy Clarke, Colorado School of Mines; Dongwon Shin, Oak Ridge National Laboratory

Thursday AM March 15, 2018 Room: 132C Location: Phoenix Convention Center

Session Chairs: Mark Carroll, Federal Mogul Powertrain; Chandler Becker, National Institute of Standards and Technology

8:30 AM Invited

The PRISMS Framework: An Integrated Multi-scale Capability for Accelerated Predictive Materials Science: John Allison¹; ¹University of Michigan

9:10 AM

TAMMAL: High throughput Materials Design Suite: Raymundo Arroyave¹; *Anjana Talapatra*¹; Thien Duong¹; Woongrak Son¹; Ruben Villareal¹; ¹Texas A&M University

9:30 AM

Integrated Computational Materials Engineering (ICME) in Support of Business Decision Making and Open Innovation Through Interdisciplinary Collaboration: James Goddin¹; Will Marsden¹; Najib Baig¹; ¹Granta Design Ltd

9:50 AM

TESSRA: A Cloud-based Multiscale Platform for Modern Alloys Design: *Tarek Hatem*¹; Khalil ElKhodary¹; Ahmed Ali¹; Khaled Khafagy¹; AbdelHamid Hamdy¹; Youssef Ibrahim¹; Mohamed Hindy¹; Amir Abdelmawla¹; ¹TESSRA Technologies

10:10 AM Break

10:30 AM

Integrating Materials Microstructure Information into Engineering Design and Manufacturing: *Dennis Dimiduk*¹; Marcus Hanwell²; Bob O'Bara²; TJ Corona²; Michael Jackson¹; Glen Hansen³; Sean Donegan⁴; Michael Groeber⁴; ¹BlueQuartz Software, LLC; ²Kitware, Inc; ³Sandia National Laboratory; ⁴Air Force Research Laboratory

10:50 AM

Enabling Connection of Online Simulation Tools and Databases: nanoHUB. org: *Sam Reeve*¹; David Guzman¹; Ben Haley¹; Karthik Guda Vishnu¹; Austin Zadoks¹; Gustavo Rico¹; Alejandro Strachan¹; ¹Purdue University

11:10 AM

Making Materials Science Resources Discoverable and Accessible with the NIST Materials Resource Registry: *Chandler Becker*¹; Raymond Plante¹; Alden Dima²; Laura Bartolo³; Sharief Youssef²; Andrea Medina-Smith⁴; Zachary Trautt¹; Emily Brown⁵; Benjamin Long²; Robert Hanisch¹; Mary Brady²; James Warren¹; ¹Material Measurement Laboratory, National Institute of Standards and Technology; ²Information Technology Laboratory, National Institute of Standards and Technology; ³Center for Hierarchical Materials Design, Northwestern University; ⁴Information Services Office, National Institute of Standards and Technology; ⁵Chemistry Department, Centre College

11:30 AM

The Materials Commons: A Collaboration Platform and Information Repository for the Global Materials Community: *Brian Puchala*¹; Glenn Tarcea¹; Tracy Berman¹; Terry Weymouth¹; John Allison¹; ¹University of Michigan

11:50 AM

Atomistic Polymer Simulations in the Cloud at nanoHUB.org: Benjamin Haley¹; Lorena Alzate-Vargas¹; Chunyu Li¹; Alejandro Strachan¹; ¹Purdue University

Bulk Metallic Glasses XV – Structures and Modeling

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Thursday AMRoom: 122AMarch 15, 2018Location: Phoenix Convention Center

Session Chair: Alan Needleman, Texas A&M University

8:30 AM Invited

Nanoglass: An Alternative Path to Harden and Toughen Metallic Glasses by Spatial Patterning of Heterogeneities: *Mo Li*¹; ¹Georgia Institute of Technology

8:50 AM Invited

A Combinatorial Approach to Evaluate the Glass-forming Ability of Multicomponent Bulk Metallic Glasses: *Chuan Zhang*¹; Fan Zhang¹; Shuanglin Chen¹; Weisheng Cao¹; Jun Zhu¹; Duchao Lv¹; ¹Computherm

9:10 AM Invited

Effects of Pressure on the Structure and Properties of Metallic Glasses Examined by Computer Simulation: *Jun Ding*¹; Mark Asta²; Robert Ritchie¹; ¹Lawrence Berkeley National Laboratory; ²UC Berkeley

9:30 AM

Composition Dependence and Structural Signature of Beta-relaxation in La-based Metallic Glasses: *Xiaodong Wang*¹; Jin Zhang¹; Qing Yu¹; Qingping Cao¹; Jianzhong Jiang¹; ¹Zhejiang University

9:50 AM Break

10:10 AM Invited

Spatial Correlation of Elastic Heterogeneity Tunes the Deformation Behaviors of Metallic Glasses: Neng Wang¹; Jun Ding²; *Lin Li*¹; ¹University of Alabama; ²Lawrence Berkeley National Laboratory

10:30 AM Invited

Deformation in Amorphous Notched Bars; A Discrete Shear Transformation Zone Plasticity Analysis: *Babak Kondori*¹; Amine Benzerga¹; Alan Needleman¹; ¹Texas A&M University

10:50 AM Invited

The Atomistic Simulation of Stress Relaxation and Creep in a Model Binary Amorphous Solid: Peter Derlet¹; ¹Paul Scherrer Institut

11:10 AM

Dual-Cluster Formulas for Eutectic-Type Zr-Based Bulk Metallic Glasses: *Kaiming Han*¹; Jianbing Qiang¹; Yingmin Wang¹; Z. Wang¹; Qing Wang¹; Chuang Dong¹; ¹Dalian University of Technology

11:30 AM

The Mechanism of Free-volume Concentration by Controlling Shear Bands in Bulk Metallic Glasses: *Zhong Wang*¹; Shuying Chen²; Jiaojiao Li¹; Junwei Qiao¹; Peter K. Liaw²; ¹Taiyuan University of Technology; ²The University of Tennessee

Cast Shop Technology – Casting and Cast House Products

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mark Badowski, Hydro Aluminium

Thursday AM March 15, 2018 Room: 222A Location: Phoenix Convention Center

Session Chair: Samuel Wagstaff, Novelis Switzerland SA

8:30 AM Introductory Comments

8:35 AM

Experimental Study and Numerical Analysis of Cracking during DC Casting of Large Dimension 7075 Aluminium Billets: *Kjerstin Ellingsen*¹; Qiang Du¹; Mohammed M'Hamdi¹; Britt-Elin Gihleengen²; Rune Ledal²; Knut Omdal Tveito³; Arild Håkonsen²; ¹SINTEF; ²Hycast; ³Hydro

9:00 AM

The Benefits of Ultrasonic Treatment of Molten Metal for Slabs Casting at UC RUSAL Facilities: *Igor Kostin*¹; Viktor Mann¹; Aleksandr Krokhin¹; Aleksandr Sidorov¹; Viktor Frolov¹; Sergei Bochvar¹; Mikhail Motkov¹; Igor Bobkov¹; Andrey Danilov¹; ¹UC RUSAL

9:25 AM

Effect of Ultrasonic Melt-treatment and Cooling Rate on Microstructure of Multi-phase Reinforced Al Alloy: *Kwangjun Euh*¹; Jae-Gil Jung¹; Ju-Hye Kim¹; Eun-Ji Baek¹; Jung-Moo Lee¹; ¹Korea Institute of Materials Science

9:50 AM

XPS Examination of the Oxide-Metal Interface of an Aluminum-Magnesium Alloy Containing Beryllium: *Nicholas Smith*¹; Anne Kvithyld²; Gabriella Tranell¹; ¹NTNU; ²SINTEF

10:15 AM Break

10:30 AM

Innovative Technology for a Flawless Rolling Slab Casting Process: *Evgeny Pavlov*¹; Dmitry Ivanov¹; Pavel Gasanov¹; ¹FSAE HE Siberian Federal University; UniMet LLC

10:55 AM

Robustness of Forged Part Mechanical Properties to Casting, Forging and Heat Treating Process Variation: Bill Betts¹; *Lutz Müller*²; ¹Novelis; ²Bharat Forge Aluminiumtechnik GmbH

11:20 AM

Analysis of Laser Marking Performance on Various Non-ferrous Metals: Alex Fraser¹; Martin Hartlieb²; Julie Maltais¹; Guy Robert¹; *Paul Rochette*; ¹Laserax; ²Viami International

11:45 AM

The Comparison of Intensive Riser Cooling of Castings after Solidification in Three Classic Metals: *Haolong Shangguan*¹; ¹Tsinghua University

THURSDAY AM

Characterization of Minerals, Metals, and Materials – Characterization of Ferrous Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Thursday AM	Room: 122C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Jiann-Yang Hwang, Michigan Technological University; Zhiwei Peng, Central South University

8:30 AM Introductory Comments

8:35 AM

Effect of Ball Indentation Test Parameters on Tensile Properties of Grade 92 Steel: *Dipika Barbadikar*¹; ¹BITS Pilani Dubai Campus

8:55 AM

Effect of Heat Treatment condition on the Grain Boundary Characteristic Distribution in a Modified 9Cr-2W Steel: *Hyeongmin Heo*¹; Junhwan Kim²; Sungho Kim²; Jongryoul Kim¹; ¹Hanyang University; ²KAERI

9:15 AM

Effect of Ultra-supercritical Units Precipitated Phase Ferritic Heatresistant Steels B Micro-alloyed: Yu Lin Ma¹; Yue Liu¹; ¹Northeastern University

9:35 AM

High-temperature Magnetic Properties Study of Melt-spun Fe- (3 - 8 wt.%) Si Alloys: Vamsi Meka¹; *Tanjore Jayaraman*¹; Xiujuan Jiang²; Nicole Overman²; Suveen Mathaudhu²; ¹University of Michigan, Dearborn; ²Pacific Northwest National Laboratory

9:55 AM Break

10:10 AM

The Role of Initial Recrystallized Texture on Dynamic Normal Grain Growth in an Interstitial-free Steel Sheet: *Ryann Rupp*¹; Eric Taleff¹; ¹The University of Texas at Austin

10:30 AM

Using Mechanical Serial Sectioning to Characterize AM 316L Stainless Steel: *Lily Nguyen*¹; David Rowenhorst²; Richard Fonda²; ¹National Research Council / Naval Research Laboratory; ²Naval Research Laboratory

10:50 AM

In Situ Lab Scale X-Ray Microtomography of a Cast Duplex Stainless Steel: *Qingdong Zhang*¹; Sridhar Niverty²; Arun Singaravelu²; Jason Williams²; Tao Jing¹; Nikhilesh Chawla²; ¹Tsinghua University; ²Arizona State University

Characterization of Minerals, Metals, and Materials -Mineral Processing and Analysis

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Thursday AM	Room: 125A
March 15, 2018	Location: Phoenix Convention Center

Session Chair: Shaoxian Song, Wuhan University of Technology

8:30 AM Introductory Comments

8:35 AM

Microstructure and Micromechanics of Shale Rock: Case Study on Marcellus Shale: *Hui Du*¹; Mileva Radonjic¹; ¹Louisiana State University

8:55 AM

Temperature Dependence of the AC Conductivity of an Illitic Clay with Calcite Addition: *Csaki Stefan*¹; Ján Ondruška²; Patrik Dobron¹; Viera Trnovcová²; Igor Štubna²; Tomáš Húlan²; Libor Vozár²; ¹Charles University; ²Constantine the Philosopher University

9:15 AM

Humic Acid-based Silica Composite Aerogels--A Preliminary Study: Guihong Han¹; Chaolei Lv¹; *Yongsheng Zhang*¹; Wei Wang¹; ¹Zhengzhou University

9:35 AM

Characterization of Non-covalently Functionalized Halloysite: Danae Francisco¹; Lucilene Paiva²; Wagner Aldeia²; Ademar Lugão¹; *Esperidiana Moura*¹; ¹Instituto de Pesquisas Energéticas e Nucleares; ²Institute for Technological Research of State of São Paulo

9:55 AM Break

10:10 AM

Characterization and Modification of a Brazilian Bentonite for its Use in Natural Rubber Nanocomposites: Adriana Almeida Cutrim¹; Kleberson R. Oliveira Pereira²; Fabio Jose Esper³; Guillermo Ruperto Martin Cortes³; Maria das Gracas Silva Valenzuela²; *Francisco Valenzuela-Diaz*²; ¹Federal University of Campina Grande; ²Universidade de Sao Paulo; ³Centro Universitario Estacio e Universidade de Sao Paulo

10:30 AM

Synchrotron-based XRD and XANES Study of Bornite Leached by Mesophilic Mixed Bacteria: *Xingxing Wang*¹; Jun Wang¹; ¹Central South University

10:50 AM

Adsorption and Surface Area of Bentonite Modified Used as Bleaching Clay: *Christiano Gianesi Bastos Andrade*¹; Samuel Marcio Toffoli¹; Francisco Rolando Valenzuela Diaz¹; ¹University of São Paulo

11:10 AM

Investigation for Removal of Organic Carbon from Carbonaceous Copper Sulphide Ore and Improving the Recovery of Copper through Flotation: *Refilwe Magwaneng*¹; Kazutoshi Haga¹; Altansukh Batnasan¹; Atsushi Shibayama¹; Masato Kosugi²; Ryo Kawarabuki²; Kohei Mitsuhashi²; Masanobu Kawata²; ¹Akita University; ²Nittetsu Mining Co.Ltd

Characterization of Minerals, Metals, and Materials – Nanostructure and Characterization of Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, Al Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Thursday AMRoom: 126BMarch 15, 2018Location: Phoenix Convention Center

Session Chair: Ramasis Goswami, Naval Research Laboratory

8:30 AM Introductory Comments

8:35 AM

Dynamical Diffraction Simulation and Dictionary Indexing of Quasicrystals: Saransh Singh¹; Marc De Graef¹; ¹Carnegie Mellon University

8:55 AM

Determination of the Five Parameter Grain Boundary Character Distribution of Nanocrystalline Alpha-zirconium Thin Films Using Transmission Electron Microscopy: *Iman Ghamarian*¹; Peyman Samimi²; Gregory Rohrer³; Peter Collins²; ¹University of Michigan; ²Iowa State University; ³Carnegie Mellon University

9:15 AM

Investigating Internal Domain Wall Transitions in Perpendicular Co/Ni Superlattices Using Lorentz TEM: *Maxwell Li*¹; Marc De Graef¹; Vincent Sokalski¹; ¹Carnegie Mellon University

9:35 AM

Synthesis of Shuttle-like ZnO Microrods on Glass Substrates Using the Spray Pyrolysis Method: Shadia Ikhmayies¹; ¹Al Isra University

9:55 AM

THURSDAY AM

Overcoming the Challenges in High Temperature Nanomechanics to 1000C: *Ben Beake*¹; Adrian Harris¹; Tim Jochum¹; ¹Micro Materials Ltd

10:15 AM Break

10:30 AM

Preparation of Nanosheet-montmorillonite Hydrogel for Removing Pb(II) from Water: Wei Wang¹; Yunliang Zhao¹; *Shaoxian Song*¹; ¹Wuhan University of Technology

10:50 AM

Microwave Synthesis of Co-Ni Ferrite/Graphene Nanocomposite for Microwave Absorption: *Zhiwei Peng*¹; Jianhui Peng¹; Xiaolong Lin¹; Zhizhong Li¹; Zhongping Zhu¹; Guanghui Li¹; Tao Jiang¹; ¹Central South University

11:10 AM

Evaluation of Urea Encapsulation by Microcapsules of PHB/MMT and PHB/OMMT Nanocomposites: *Jessica Arjona*¹; Francisco Valenzuela-Diaz¹; Helio Wiebeck¹; Wang Hui¹; Maria Silva-Valenzuela¹; ¹São Paulo University

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Defects and Microstructure

Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Thursday AM	Room: 131A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Yasushi Shibuta, The University of Tokyo; Ting Zhu, Georgia Institute of Technology

8:30 AM

In Situ Nanomechanics: Integrating Atomistic Modeling and In Situ Experiment: *Ting Zhu*¹; ¹Georgia Institute of Technology

8:50 AM

Atomistic Simulations of the Mechanism of Twinning in FCC Metals and Microtwinning in 2-phase Superalloys: Satish Rao¹; Wolfram Nohring²; Christopher Woodward³; Triplicane Parthasarathy¹; William Curtin²; ¹UES Inc.; ²EPFL; ³Air Force Research Laboratory

9:10 AM

A Random Walk Model of Screw Dislocation Cross-slip in Face-centered Cubic Solid Solution Alloys: Wolfram Nöhring¹; *William Curtin*¹; ¹École polytechnique fédérale de Lausanne (EPFL)

9:30 AM

First-principles Study of Dislocations in BCC Fe: *Michael Fellinger*¹; Anne Marie Tan¹; Louis Hector²; Dallas Trinkle¹; ¹University of Illinois at Urbana-Champaign; ²General Motors

9:50 AM Break

10:05 AM Invited

Molecular Dynamics Approach to Solidification Microstructure: Yasushi Shibuta¹; Shinji Sakane²; Eisuke Miyoshi²; Shin Okita¹; Tomohiro Takaki²; Munekazu Ohno³; ¹The University of Tokyo; ²Kyoto Institute of Technology; ³Hokkaido University

10:35 AM

Interfacial Structures and Energetics of the Strengthening Precipitate Phase in Creep-resistant Mg-Nd-based Alloys: Deep Choudhuri¹; R Banerjee¹; S Srinivasan¹; ¹University of North Texas

10:55 AM

First Principles Modeling of Non-basal Deformation Modes in Mg-Y Alloys: *Daniel Buey*¹; Maryam Ghazisaeidi¹; ¹The Ohio State University

11:15 AM

Ideal Strength and Ductility in Metals from Second- and Third-order Elastic Constants: *Ian Winter*¹; Daryl Chrzan¹; ¹University of Calfifornia, Berkeley

11:35 AM

Development of Molecular Dynamics Methods for the Thermal Characterization of Materials: Jonathan Severin¹; *Philippe Jund*²; ¹University of Montpellier, Total; ²University of Montpellier

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Mechanical and Process Simulations

Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Thursday AM	Room: 131B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Stephen DeWitt, University of Michigan, Ann Arbor; Fadi Abdeljawad, Sandia National Laboratories

8:30 AM

A Dislocation Density Based Multiscale Characterization of High Pressure Torsion and Cold Rolled Polycrystalline Copper Microstructure: *Mehdi Hamid*¹; Maryam Jamalian¹; Hussein Zbib¹; David Field¹; ¹Washington State University

8:50 AM

Crystal Plasticity Modeling of Precipitate-strengthened Alloys with Enhanced Mechanical Properties: *Benyamin Gholami Bazehhour*¹; C Shashank Kaira¹; Ilaksh Adlakha¹; Nikhilesh Chawla¹; Kiran N. Solanki¹; ¹Arizona State University

9:10 AM

Ductile Fracture of Multiphase Steel Sheets under Bending: *Yu Liu*¹; Alan Needleman¹; Ankit Srivastava¹; ¹Texas A&M University

9:30 AM

Understanding Slip Mediated Plasticity in Hexagonal Close Packed Crystals Using Phase Field Dislocation Dynamics: Claire Weaver¹; ¹University of California, Santa Barbara

9:50 AM Break

10:10 AM

Statistical Behavior of Ideal Grain Growth: An Ultra-large-scale Phasefield Simulation Study: *Eisuke Miyoshi*¹; Tomohiro Takaki¹; Munekazu Ohno²; Yasushi Shibuta³; Shinji Sakane¹; Takashi Shimokawabe³; Takayuki Aoki⁴; ¹Kyoto Institute of Technology; ²Hokkaido University; ³The University of Tokyo; ⁴Tokyo Institute of Technology

10:30 AM

Transient Computational Model for the Prediction of Grain Structure Evolution during Bridgman Solidification of Gamma-TiAl Alloys: Sara Battaglioli¹; Robin Mooney¹; Anthony Robinson¹; Shaun McFadden²; ¹Trinity College Dublin; ²Ulster University

10:50 AM

Scaling of Molecular Dynamics Simulations to the Mesoscales Using Quasi Coarse Grained Dynamics: Sumit Athikavil Suresh¹; Avinash Dongare¹; ¹University of Connecticut

11:10 AM

Effect of Bricks' Waviness on the Mechanical Response of Nacreinspired Composites: *Habibeh Ashouri Choshali*¹; Sina Askarinejad¹; Jessica Rosewitz¹; Nima Rahbar¹; ¹Worcester Polytechnic Institute (WPI)

Computational Materials Science and Engineering for Nuclear Energy – Fundamentals of Radiation Effects II

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Haixuan Xu, University of Tennessee; Michael Tonks, Pennsylvania State University; Blas Uberuaga, Los Alamos National Laboratory; James Morris, Oak Ridge National Laboratory

Thursday AM	Room: 102B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Mike Tonks, University of Florida; Jaime Marian, University of California Los Angeles

8:30 AM Invited

Molecular Dynamics Simulations of Effects of Stacking Fault Energies on Defect Formation Process in FCC Metals: *Taira Okita*¹; Mitsuhiro Itakura²; Daiki Nakanishi¹; Tomoya Kawabata¹; ¹University of Tokyo; ²Japan Atomic Energy Agency

9:00 AM

Morphological Study of Dispersion Phases in Heterogenous Waste Form Materials for Efficient Nuclear Waste Containment: *Krutarth Patel*¹; Fazle Rabbi¹; Kenneth Reifsnider¹; Md Riaz Kayser¹; Rassel Raihan¹; ¹University of Texas at Arlington Research Institute

9:20 AM

Phase Field Modeling of Grain Boundary Evolution in Porous Oxides: Grain Growth and Pore Mobility Effects: *Anter El-Azab*¹; Karim Ahmed¹; ¹Purdue University

9:40 AM

Phase Transformation in Zirconium Oxide – A Mesoscale Study: Mahmood Mamivand¹; Mohsen Asle Zaeem²; Haitham El Kadiri³; ¹Boise State University; ²Missouri University of Science and Technology; ³Mississippi State University

10:00 AM Break

10:20 AM

Grain Growth and Grain Subdivision in Triuranium Disilicide, a Potential Light Water Reactor Fuel: *Amani Cheniour*¹; Michael Tonks¹; Jie Lian²; Yongfeng Zhang³; ¹Pennsylvania State University; ²Rensselaer Polytechnic Institute; ³Idaho National Laboratory

10:40 AM Invited

Using Computational Modeling to Interpret Experimental Measurements of Irradiation Induced Hardening in Metals: *Jaime Marian*¹; ¹University of California, Los Angeles

11:10 AM

Molecular Dynamics Study of Defect-grain Boundary Interactions in Irradiated PyC-like Configuration: *Rong Li*¹; Li Yang²; Bing Liu³; Daniel Schappel²; Brian Wirth⁴; ¹Tsinghua University, University of Tennessee; ²University of Tennessee; ³Tsinghua University; ⁴University of Tennessee, Oak Ridge National Laboratory

Computational Method and Experimental Approaches for Model Development and Validation, Uncertainty Quantification, and Stochastic Predictions – UQ of Quantum Calculations (DFT and Other Approaches)

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers:* Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory; Richard Hennig, University of Florida; Avinash Dongare, University of Connecticut; Shawn Coleman, U.S. Army Research Laboratory; Niaz Abdolrahim, University of Rochester; Joseph Bishop, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Li Ma, National Institute of Standards and Technology

Thursday AMRoom: 132BMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Francesca Tavazza, National Institute of Standard and Technology; Sugata Chowdhury, National Institute of Standard and technology

8:30 AM Invited

Uncertainty Quantification for Solute Transport Modeling: Dallas Trinkle¹; ¹University of Illinois, Urbana-Champaign

9:00 AM

Uncertainty Quantification of the Effect of Charge Noise on Silicon Quantum Dots: Erin Barker¹; Nathan Baker¹; Marvin Warner¹; Jennifer Webster¹; Nicole Nichols¹; Tim Shippert¹; ¹Pacific Northwest National Laboratory

9:20 AM

Utilizing Error in First-principle Lattice Constants to Discover Novel Low-dimensional Materials: *Kamal Choudhary*¹; Francesca Tavazza¹; ¹National Institute of Standards and Technology

9:40 AM Invited

Extending the Reach of DFT to Molecular Simulations Using Neural Networks: John Kitchin¹; ¹Carnegie Mellon University

10:10 AM Break

10:30 AM

THURSDAY AM

Correlations of Numerical Precision in Material Properties Derived from Density Functional Theory: *Joshua Gabriel*¹; Faical Yannick Congo²; Alex Sinnott¹; Kiran Matthew³; Thomas Allison²; Francesca Tavazza²; Richard Hennig¹; ¹University of Florida; ²National Institute of Standards and Technology; ³Lawrence Berkeley National Lab

10:50 AM

Lattice Thermal Conductivity: Uncertainty Quantification in First Principles Predictions and Experimental Validation: Yi Xia¹; James Hodges²; Mercouri Kanatzidis²; *Maria Chan*¹; ¹Argonne National Laboratory; ²Northwestern University

11:10 AM

Benchmarking Density Functional Theory Based Methods to Predict Optical and Electronics Properties of 2H-TaX2 (X=S, Se): Sugata Chowdhury¹; Kamal Choudhary¹; Angela Hight Walker¹; Francesca Tavazza¹; ¹National Institute of Standard and Technology

Computational Thermodynamics and Kinetics – Phase Field

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Elif Ertekin, University of Illinois; Shawn Coleman, U.S. Army Research Laboratory; Brent Fultz, California Institute of Technology; Richard Hennig, University of Florida; Suveen Mathaudhu, University of California, Riverside

Thursday AM	Room: 128A
March 15, 2018	Location: Phoenix Convention Center

Session Chair: Alphonse Finel, ONERA

8:30 AM Invited

A Sharp Interface Phase Field Method: *Alphonse Finel*¹; Yann Le Bouar²; Benoît Dabas¹; ¹ONERA; ²CNRS

9:00 AM

A Phase Field Theory Based Study of the Role of Microalloying Elements in Determining the Microstructural Stability of Al-Cu Alloys: *Patrick Shower*¹; James Morris²; Dongwon Shin²; Balasubramaniam Radhakrishnan²; Lawrence Allard²; Jonathan Poplawsky²; Amit Shyam²; ¹The Bredesen Center for Interdisciplinary Research and Graduate Education at Oak Ridge National Laboratory and the University of Tennessee; ²Oak Ridge National Laboratory

9:20 AM

Effect of Melt Composition on Morphological Evolution during Liquid Metal Dealloying: *Longhai Lai*¹; Bernard Gaskey²; Jonah Erlebacher²; Alain Karma¹; ¹Northeastern University; ²Johns Hopkins University

9:40 AM

Quantitative Evaluation of Interaction between Grain Boundary and Second-phase Particle at the Coherent Interface: *Kunok Chang*¹; Junhyun Kwon¹; Chang-Kyu Rhee¹; ¹Korea Atomic Energy Research Institute

10:00 AM Break

10:20 AM

Phase Field of Modeling of Pore Annihilation in Nickel-base Superalloys during Hot Isostatic Pressing: *Yann Le Bouar*¹; Antoine Ruffini¹; Benoit Dabas¹; Alphonse Finel¹; Alexander Epishin²; Thomas Link²; Gert Nolze³; Bernard Fedelich³; Titus Feldmann³; Bernard Viguier⁴; Dominique Poquillon⁴; ¹LEM, CNRS/ONERA; ²T/U Berlin; ³BAM, Berlin; ⁴CIRIMAT

10:40 AM

Application of Limited Solubility Model for Predicting Physicochemical Properties in Ternary Systems with Miscibility Gap: *Zhigang Yu*¹; Kuo-Chih Chou¹; Haiyan Leng¹; ¹Shanghai University

Deriving Value from Challenging Waste Streams: Recycling and Sustainability Joint Session – Industrial Streams I

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee, TMS: Pyrometallurgy Committee *Program Organizers:* Elsa Olivetti, Massachusetts Institute of Technology; John Howarter, Purdue University; Fiseha Tesfaye, Åbo

Akademi University

Thursday AM	Room: 224B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Mingming Zhang, ArcelorMittal Global R&D; Randolph Kirchain, MIT

8:30 AM Introductory Comments

8:35 AM

Behavior of Co, Ni and Precious Metals in Copper Converting Process: Experimental Study: Keiran Holland¹; *Dmitry Sukhomlinov*¹; Ville Naakka²; Ari Jokilaakso¹; Pekka Taskinen¹; ¹Aalto University; ²Boliden Harjavalta

8:55 AM

Recycling of EAF Dust through Source Separation: *Naiyang Ma*¹; ¹ArcelorMittal

9:15 AM

A Sustainable Methodology for Recycling Electric Arc Furnace Dust: Joseph Hamuyuni¹; Petteri Halli¹; Fiseha Tesfaye²; Maria Leikola¹; Mari Lundström¹; ¹Aalto University ; ²Åbo Akademi University

9:35 AM Invited

Thermal Separation and Leaching of Valuable Elements from Wastederived Ashes: *Daniel Lindberg*¹; Emil Vainio¹; Patrik Yrjas¹; ¹Åbo Akademi University

10:00 AM Break

10:15 AM

Mechanisms for Advancing Recovery of Resources from Small Sized End-of-life (EoL) Equipment: *Fiseha Tesfaye*¹; Azadeh Rostami²; Joseph Hamuyuni²; Daniel Lindberg¹; Guven Akdogan³; Pekka Taskinen²; Leena Hupa¹; ¹Åbo Akademi University; ²Aalto University; ³Stellenbosch University

10:40 AM

Different Methods for the Characterization of Ash Compositions in Cofiring Boilers: *Jan-Erik Eriksson*¹; Tooran Khazraie¹; Leena Hupa¹; ¹Åbo Akademi University

11:00 AM

Upgrading the Copper Value in a Waste Copper Smelter Dust with the Falcon Gravity Concentrator: *Daniel Okanigbe*¹; Abimbola Popoola¹; ¹Tshwane University of Technology

11:20 AM

An Electrochemical Procedure for Copper Removal from Regenerated Pickling Solutions of Steel Plants: *Esra Karakaya*¹; Mustafa Aras²; Sedef Cift Karagul³; Merve Kolay Ersoy³; Ishak Karakaya¹; ¹Middle East Technical University; ²MEGAP Co.; ³Borusan Technology Development and R&D Co.

11:40 AM

Utilization CFA-derived Tobermorite Fiber as Crystallization Revulsive in Autoclaved Concrete Block Production: *Pengxu Cao*¹; Jun Luo¹; Guanghui Li¹; Yijia Dong¹; Mingjun Rao¹; Zhiwei Peng¹; ¹Central South University

Environmentally Assisted Cracking: Theory and Practice – Environmentally Assisted Cracking in Aluminum Alloys

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Bai Cui, University of Nebraska–Lincoln; Raul Rebak, GE Global Research; Sebastien Dryepondt, Oak Ridge National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Thursday AM	Room: 102A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Jennifer Locke, The Ohio State University; Bai Cui, University of Nebraska–Lincoln

8:30 AM Invited

Metallurgical Factors and Changes Driving Susceptibly to Environment Assisted Cracking in Aluminum Alloys: Allison Akman¹; Rebecca Bay¹; Leslie Bland¹; David Schrock¹; *Jennifer Locke*¹; ¹The Ohio State University

9:10 AM

Incorporating Detailed Experimental Grain Boundary β-phase (Mg2Al3) Observations to Improve Sensitization Modeling of Aluminum AA5XXX Alloys: *Matthew Steiner*¹; Ruifeng Zhang²; Nick Birbilis²; Sean Agnew³; ¹University of Cincinnati; ²Monash University; ³University of Virginia

9:30 AM

Sensitization Effects on Tensile Behavior in 5XXX Series Aluminum Alloys: Environmentally Enhanced Cracking: *Benjamin Palmer*¹; John Lewandowski¹; ¹Case Western Reserve University

9:50 AM Break

10:10 AM

Effect of 3D Crystallographic Orientation and Microstructure on the Evolution of Corrosion in Aluminum Alloys: Tyler Stannard¹; Hrishikesh Bale²; Nicolas Gueninchault³; Jeff Gelb²; Arno Merkle²; Erik Lauridsen³; *Nikhilesh Chawla*¹; ¹Arizona State University; ²Carl Zeiss X-Ray Microscopy; ³Xnovo Technology ApS

10:30 AM

Effect of Mechanical Deformation on the Corrosion Behavior in Al 7075 – Ti6Al4V Galvanic Joint: *Chaitanya Kale*¹; Ilaksh Adlakha¹; Soundarya Srinivasan¹; Kiran Solanki¹; ¹Arizona State University

10:50 AM

3D Microstructural and Electrochemical Characterization of Accelerated Corrosion in Aluminum Alloys: *Sridhar Niverty*¹; Chaitanya Kale¹; Ilaksh Adlakha¹; Kiran Solanki¹; Nikhilesh Chawla¹; ¹Arizona State University

11:10 AM Invited

Remote Laser Surface-desensitization of Severely Sensitized Aluminum Alloys: Leimin Deng¹; Chenfei Zhang¹; Shiding Sun¹; Bai Cui¹; *Yongfeng Lu*¹; ¹University of Nebraska, Lincoln

11:50 AM Concluding Comments

Frontiers in Solidification Science and Engineering – Solidification Microstructures, Defects, Processing Methods, and Advanced Imaging

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Damien Tourret, IMDEA Materials Institute; Mohsen Eshraghi, California State University, Los Angeles; Johannes Hötzer, University of Applied Science Karlsruhe

Thursday AM	Room: 126C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Ashwin Shahani, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology

8:30 AM

Solidification, Processing, and Characterization of High Entropy Alloys: Nicholas Derimow¹; Abraham Munitz²; Louis Santodonato³; *Reza Abbaschian*¹; ¹University of California, Riverside; ²Nuclear Research Center-Negev; ³Oak Ridge National Laboratory

8:50 AM

The Elimination of a Surface Defect in Traditional Open Sand Casting of Lead: *Arun Prabhakar*¹; Konstantinos Salonitis¹; Mark Jolly¹; ¹Cranfield University

9:10 AM

Graphite Morphology in Directionally Solidified Cast Iron: *Subhojit Chaktaborty*¹; Amber Genau¹; ¹University of Alabama at Birmingham

9:30 AM

A Novel Counter Gravity Casting Approach with High-energy Efficiency: *Kostas Georgarakis*¹; Jeremy Vian¹; Alan Heaume¹; Emanuele Pagone¹; Konstantinos Salonitis¹; Mark Jolly¹; ¹Cranfield University

9:50 AM

Solidification of Aluminum Alloy A7050 Processed by Spray Forming: From Droplets to Dense Deposits: *Claudemiro Bolfarini*¹; Guilherme Zepon¹; Walter Botta¹; Lucas Otani¹; Claudio Kiminami¹; ¹Universidade Federal de São Carlos

10:10 AM Break

10:30 AM

THURSDAY AM

Solidification of Magma: From Crystal Growth to Bubble Formation: *Peter D. Lee*¹; Biao Cai¹; Matthew Pankhurst¹; ¹The University of Manchester

10:50 AM

Probing the Growth and Dissolution Pathways of Quasicrystals in Real-time: Insung Han¹; Xianghui Xiao²; Ashwin Shahani¹; ¹University of Michigan; ²Argonne National Laboratory

11:10 AM

Application of Fast X-ray Radiography to the In Situ and Real-time Observation of Ni-based Alloy Directional Solidification: *Guillaume Reinhart*¹; Lara Abou-Khalil¹; Vincent Maguin²; Gildas Guillemot³; Charles-André Gandin³; Vincent Fernandez⁴; Elodie Boller⁴; David Grange⁵; Ngadia Taha Niane⁵; Nathalie Mangelinck¹; Henri Nguyen-Thi¹; ¹IM2NP-CNRS-Aixmarseille University; ²SAFRAN, CEMEF, Mines ParisTech; ³CEMEF, Mines ParisTech; ⁴ESRF; ⁵SAFRAN

11:30 AM

Disrupting Solidification Microstructures via Magnet Fields Revealed by High Speed Synchrotron X-ray Tomography: *Biao Cai*¹; Andrew Kao²; Koulis Pericleous²; Peter Lee¹; ¹University of Manchester; ²University of Greenwich

High Entropy Alloys VI – Mechanical and Other Properties II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Thursday AM March 15, 2018 Room: 121A Location: Phoenix Convention Center

Session Chairs: Karin Dahmen, University of Illinois at Urbana Champaign; Xie Xie, FCA US LLC

8:30 AM Invited

Corrosion, Erosion, and Wear Behavior of High Entropy Alloys: Aditya Ayyagari¹; *Sundeep Mukherjee*¹; ¹University of North Texas

8:50 AM Invited

Creep Behavior of Single Phase FCC Medium and High Entropy Alloys: *Kyle Rozman*¹; Martin Detrois¹; Paul Jablonski¹; Jeffrey Hawk¹; ¹NETL

9:10 AM

Serrated Flow and Creep Behavior under Nanoindentation Experiments in an Al0.5CoCrCuFeNi HEA High-entropy Alloy: *Shuying Chen*¹; Xie Xie¹; Weidong Li¹; Jamieson Brechtl¹; Guangfeng Zhao²; Peizhen Li²; Fuqian Yang²; Junwei Qiao³; Karin Dahmen⁴; Peter Liaw¹; ¹University of Tennessee, Knoxville; ²The University of Kentucky; ³Taiyuan University of Technology; ⁴University of Illinois at Urbana Champaign

9:30 AM Invited

Mechanical and Corrosion Properties of CoCrFeNiTi-based High-entropy Alloy Additive Manufactured Using Selective Laser Beam Melting: *Tadashi Fujieda*¹; Meichuan Chen¹; Hiroshi Shiratori¹; Kosuke Kuwabara¹; Kenta Yamanaka²; Yuichiro Koizumi²; Akihiko Chiba²; Seiichi Watanabe³; ¹Hitachi, Ltd.; ²Tohoku University; ³Hokkaido University

9:50 AM Break

10:05 AM Invited

Single-crystal Mechanical Properties of the Equiatomic CrMnFeCoNi High-entropy Alloy with the FCC Structure: *Haruyuki Inui*¹; Norihiko Okamoto²; Easo George³; ¹Kyoto University; ²Tohoku University; ³Oak Ridge National Laboratory

10:25 AM Invited

Fracture Behavior of Nanocrystalline BCC High-entropy Alloys: *Yuan Xiao*¹; Huan Ma¹; Ralph Spolenak¹; Jeffrey Wheeler¹; ¹ETH zürich

10:45 AM

Effect of Ti Addition on Microstructure and Properties of CoCrFeMnNi High Entropy Alloys: Shikai Wu¹; Ye Pan¹; ¹Southeast University

11:05 AM Invited

Oxidation Behavior of High Entropy Materials: *Pratik Ray*¹; Matthew Kramer¹; ¹Ames Laboratory, US-DOE

11:45 AM Invited

Strategies for Design, Modelling and Optimisation of High Entropy Alloys: *Pedro Rivera-Diaz-del-Castillo*¹; Isaac Toda²; Edern Menou³; Gérard Ramstein³; Franck Tancret³; ¹Lancaster University; ²Materalia Group; ³Institut des Matériaux de Nantes - Jean Rouxel

11:25 AM Invited

Elevated-temperature Tensile and Creep Behavior of Equiatomic Ni-Cr-Co: Connor Slone¹; Michael Mills¹; ¹The Ohio State University

High Entropy Alloys VI – Structures and Modeling II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Thursday AM	Room: 121B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: M. Troparevsky, Oak Ridge National Laboratory; G. Stocks, Oak Ridge National Laboratory

8:30 AM Invited

First-principles Phonon Approach to High Entropy Alloys: *Yi Wang*¹; Shun-Li Shang¹; Zi-Kui Liu¹; Long-Qing Chen¹; ¹The Pennsylvania State University

8:50 AM Invited

Melts of High-entropy Alloys: Atomic Diffusion and Electronic/Atomic Structure from Ab Initio Simulation: *Jun Ding*¹; Mark Asta²; Robert Ritchie¹; ¹Lawrence Berkeley National Laboratory; ²University of California, Berkeley

9:10 AM Invited

A Comprehensive Analysis and Modeling of the Serration Behavior in High Entropy Alloys and Other Material Systems: Jamieson Brechtl¹; Xie Xie¹; Shuying Chen¹; Haoyan Diao¹; Bilin Chen¹; Yunzhu Shi¹; Karin Dahmen²; Peter Liaw¹; Steven Zinkle¹; ¹University of Tennessee; ²University of Illinois Urbana-Champaign

9:30 AM

First-principles Calculations of Stacking Fault Energies in Quinary High-entropy Alloy Systems: *Alexandra Scheer*¹; Joshua Strother¹; Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology

9:50 AM

Phonon Broadening in High Entropy Alloys: *Fritz Körmann*¹; Yuji Ikeda²; Blazej Grabowski³; Marcel Sluiter⁴; ¹Delft University of Technology, Max-Planck-Institut für Eisenforschung GmbH; ²Kyoto University; ³Max-Planck-Institut für Eisenforschung GmbH; ⁴Delft University of Technology

10:10 AM Break

10:30 AM Invited

Effect of Extreme Chemical Disordering on Vacancies in a High Entropy Alloy: *Congyi Li*¹; George Stocks²; Brian Wirth³; Steve Zinkle³; ¹Bredesen Center; ²Oak Ridge National Lab; ³University of Tennessee, Knoxville

10:50 AM Invited

Enhancing the Predictive Capabilities of Ab Initio Methods Towards the Search for Novel Multi-component Alloys: *M. Claudia Troparevsky*¹; ¹Oak Ridge National Laboratory

11:10 AM Invited

Short-range Order in Multicomponent Solid-solution Alloys: *Zongrui Pei*¹; Markus Eisenbach¹; G. Malcolm Stocks¹; ¹Oak Ridge National Laboratory

11:30 AM Invited

Multi-functional Optimization for Tailoring Properties in Multicomponent Alloys: *Aayush Sharma*¹; Rahul Singh¹; Ganesh Balasubramanian¹; ¹Iowa State University

11:50 AM Invited

Percolation Effects in Atomic Transport due to Vacancy Diffusion in Random Binary Alloys: *Yury Osetskiy*¹; Laurent Béland²; Alexander Barashev¹; Yanwen Zhang¹; ¹Oak Ridge National Laboratory; ²MIT-CNRS

High Temperature Corrosion of Structural Materials – Hot Corrosion, Materials Developed for Corrosive Environments at Elevated Temperatures, and Tiallovs I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; David Shifler, Office of Naval Research; Mark Weaver, University of Alabama; Steve Coryell, Special Metals; James Earthman, University of California, Irvine

Thursday AM March 15, 2018 Room: 227C Location: Phoenix Convention Center

Session Chairs: James Earthman, University of California, Irvine; David Shifler, Office of Naval Research

8:30 AM Invited

New Insights on Deposit-induced Hot Corrosion: Brian Gleeson¹; Patrick Brennan¹; Emily Kistler¹; ¹University of Pittsburgh

9:00 AM

Evaluation of Hot Corrosion Resistance of Marine Alloys under Burner Rig Test Using Advanced Characterization Techniques: *Maryam Zahiri Azar*¹; Daniel Mumm¹; Kliah Soto Leytan¹; ¹The University of California, Irvine

9:20 AM

Evaluation of Type I Hot Corrosion of Marinized Materials through Low Velocity Burner Rig Testing: *Kliah Soto Leytan*¹; Max Venaas¹; Daniel Mumm¹; Vincent McDonell¹; ¹University of California, Irvine

9:40 AM

Hot Corrosion Degradation of Turbine Materials Subject to Mixed-mode Exposures and Complex Corrosion Environments: Daniel Mumm¹; Kliah Soto Leytan¹; Maryam Azar¹; ¹University of California, Irvine

10:00 AM Break

10:20 AM

Hot Corrosion of Alloy 617 OCC in Simulated USC Power Plant Environment: *Arivazhagan Natarajan*¹; Hari P R¹; Nageswara Rao M¹; Pavan A H V²; ¹VIT University; ²BHEL R&D Hyderabad

10:40 AM

Mechanism of High Temperature Corrosion of Steel by Naphthenic Acids and Sulfidation: *Peng Jin*¹; Winston Robbins¹; Gheorghe Bota¹; ¹Institute for Corrosion and Multiphase Technology (ICMT), Ohio University

11:00 AM

Evolution of Thermally Grown Oxides in Novel Co-based γ-γ' Superalloys: *Colin Stewart*¹; Akane Suzuki²; Tresa Pollock¹; Carlos Levi¹; ¹University of California, Santa Barbara; ²GE Global Research

11:20 AM

Effect of Titanium Addition on Microstructure and Oxidation Behaviour of Nb-Si-Mo Alloys at 1300°C: Kasturi Sala¹; Rahul Mitra¹; ¹IIT Kharagpur

Magnesium Technology 2018 – Deformation Mechanisms

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Thursday AMRoom: 224AMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Vineet Joshi, Pacific Northwest National Laboratory - PNNL; Kristián Máthis, Charles University

8:30 AM Introductory Comments

8:35 AM

In-situ Neutron Diffraction and Acoustic Emission during the Biaxial Loading of AZ31 Alloy: *Jan Capek*¹; Tobias Panzner²; Karl Sofinowski²; Daria Drozdenko¹; Kristián Máthis¹; ¹Charles University; ²Paul Scherrer Institut

8:55 AM

Dislocations in Mg Alloys with Rare-earth Element Addition: *Zhiqing Yang*¹; ¹Institute of Metal Research

9:15 AM

Measurement of Twin Formation Energy Barriers Using Nudged Elastic Band Molecular Statics: *Deepesh Giri*¹; Christopher Barrett¹; Haitham El Kadiri¹; ¹Mississippi State University

9:35 AM

Twin-slip Interaction at Low Stress Stage Deformation in an AZ31 Mg Alloy: *Peng Chen*¹; Bin Li¹; Duke Culbertson¹; Yanyao Jiang¹; ¹University of Nevada, Reno

9:55 AM Break

10:15 AM

Thermo-mechanical Treatment of Extruded Mg-1Zn Alloy: Cluster Analysis of AE Signals: *Patrik Dobron*¹; Daria Drozdenko¹; Marius Hegedus¹; Juraj Olejnák¹; Klaudia Horváth²; Jan Bohlen³; ¹Charles University; ²Czech Academy of Sciences, Nuclear Physics Institute; ³Helmholtz-Zentrum Geesthacht

10:35 AM

THURSDAY AM

The Effect of Initial Texture on Deformation Behaviors of Mg Alloys under Erichsen Test: Jaiveer Singh¹; Min-Seong Kim¹; *Shi-Hoon Choi*¹; ¹Sunchon National University

10:55 AM

Deformation and Recrystallization Mechanisms and their Influence on the Microstructure Development of Rare Earth Containing Magnesium Sheets: *Changwan Ha*¹; Sangbong Yi¹; Jan Bohlen¹; Xiaohua Zhou²; Heinz-Günter Brokmeier²; Norbert Schell¹; Dietmar Letzig¹; Karl Ulrich Kainer¹; ¹Helmholtz-Zentrum Geesthacht; ²Clausthal University of Technology

11:15 AM

Microstructure, Mechanical Properties and Deformation Behavior of Mg-Gd-Y-Zn-Zr Alloy: Devesh Misra¹; Kun Li¹; ¹University of Texas at El Paso

11:35 AM

Acoustic Emission Study of High Temperature Deformation of Mg-Zn-Y Alloys with LPSO Phase: *Klaudia Horváth*¹; Daria Drozdenko¹; Kristián Máthis¹; Gerardo Garcés²; Patrik Dobron¹; ¹Charles University, Prague; ²CENIM-CSIC

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Modeling

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Thursday AM	Room: 103A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Shenyang Hu, Pacific Northwest National Laboratory; Wahyu Setyawan, Pacific Northwest National Laboratory

8:30 AM Invited

A New Physically Based, Quantitatively Predictive Low Flux-high Fluence Model of RPV Embrittlement: *G. Robert Odette*¹; Takuya Yamamoto¹; Peter Wells¹; Nathan Almirall¹; ¹University of California, Santa Barbara

8:50 AM

A Unified Model for Irradiation Creep and Stress-free Growth in Zirconium Alloys: Jesse Carter¹; John Hack²; Richard Smith¹; ¹Bettis Laboratory, NNL; ²Bettis Laboratory, NNL (deceased)

9:10 AM

Dislocation Dynamics of Alloys for High Temperature Nuclear Reactors: *Venkata Annamareddy*¹; Jacob Eapen¹; ¹North Carolina State University

9:30 AM

Kinetic Evolution of Transmutation Helium Accumulation at Y-Ti-O Oxides in Nanostructured Ferritic Alloys under Irradiation: Chris Nellis¹; Celine Hin¹; ¹Virginia Tech

9:50 AM

Effect of Grain Elastic Anisotropy on Stress Intensification at Intergranular Stress Corrosion Cracking Iinitiation Sites in Austenitic Stainless Steels and Nickel-based Alloys in Light Water Reactor Environment: Jean Claude van Duysen¹; Gabriel De Bellefon²; ¹University of Tennessee - Knoxville; ²University of Wisconsin Madison

10:10 AM Break

10:30 AM

Implementation and Validation of a Physically-based Fuel Cladding Oxidation Model in BISON Nuclear Fuel Performance Code: Léo Borrel¹; Adrien Couet¹; ¹University of Wisconsin-Madison

10:50 AM

New Insights on Denuded Zone Formation in Polycrystalline Materials: *Enrique Martinez Saez*¹; Osman El-Atwani¹; Blas Uberuaga¹; Erika Esquivel¹; ¹Los Alamos National Laboratory

11:10 AM

Characterizing and Modelling Precipitation in Zirconium Alloys: *Zaheen Shah*¹; Joseph Robson¹; Michael Preuss¹; Magnus Limbäck²; Mattias Alm³; ¹University of Manchester; ²Westinghouse Electric Sweden AB; ³AB Sandvik Materials Technology

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Structural Materials V

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Thursday AM	Room: 104B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Kumar Sridharan, University of Wisconsin; Matthew Steiner, University of Cincinnati

8:30 AM

Impact of Low Dose Ion Irradiation on Raman Spectra and Thermal Conductivity in 3C-SiC: Vinay Chauhan¹; Xinpeng Du¹; Changdong Wei¹; Ji-Cheng Zhao1; Marat Khafizov1; 1The Ohio State University

8:50 AM

Fabrication of PyC/SiC Diffusion Couples Using Fluidized Bed CVD Techniques for Radiation Enhanced Diffusion Testing: Brian Jolly¹; Tyler Gerczak¹; Anne Campbell¹; Austin Schumacher¹; ¹Oak Ridge National Laboratory

9:10 AM

Corrosion of SiC with Cr, CrN, and TiN Coatings in High Temperature Water: Stephen Raiman1; Peter Doyle2; Caen Ang1; Kurt Terrani1; 1Oak Ridge National Laboratory; ²University of Tennessee

9:30 AM

Creep Related Microstructural Evolution of Alloy 617-based ODS Alloy: Jinsung Jang¹; Man Wang¹; Heung Nam Han²; Chang Hee Han¹; Woo Gon Kim1; 1KAERI; 2Seoul National University

9:50 AM Break

10:10 AM

Multiscale Irradiation Effects of Tungsten Based Materials for Nuclear Power: Osman El-Atwani¹; Erika Esquivel¹; Mert Efe²; Eda Aydogan¹; Stuart Maloy1; 1Los Alamos National laboratory; 2Middle East Technical University

10:30 AM

Investigation on the Damage Mechanism of Plasma-materials Interface by Multi-scale Electron Microscopy Methods: Kun Wang¹; Chad Parish¹; Russell Doerner1; Matthew Baldwin1; Fred Meyer1; 10ak Ridge National Laboratory, UT-Battelle

10:50 AM

Radiation Tolerance of Equiatomic Multicomponent Single Phase Alloys Subjected to Ion Irradiation at 16 K: Gihan Velisa1; Elke Wendler2; Ke Jin¹; Hongbin Bei¹; William Weber³; Yanwen Zhang¹; ¹Oak Ridge National Laboratory; ²Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik; ³University of Tennessee

11:10 AM

Radiation Resistant Elemental Combination High Entropy Complex Concentrated Alloys for Nuclear Applications: James Withers1; 1ATS-MER, LLC

11:30 AM

Investigation of the Role of Cr and Cr Carbides at Grain Boundaries in Alloy 600 for Stress Corrosion Cracking: Hi Vo1; Peter Chou2; Peter Hosemann1; 1University of California, Berkeley; 2Electric Power Research Institute

Materials for Energy Conversion and Storage -Energy Storage III

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Thursday AM March 15, 2018 Room: 229B Location: Phoenix Convention Center

Session Chairs: Partha Mukherjee, Purdue University; Leela Arava, Wayne State University

8:30 AM

Mechanistic Understanding of Transport-mechanics Interactions in Li-S Cathodes: Aashutosh Mistry¹; Partha Mukherjee¹; ¹Purdue University

8:50AM

Monolayers of Transition Metal Diselenides as Anchoring Surface for Lithium-sulfur Batteries: Naresh Thangavel¹; Nirul Masurkar¹; Leela Mohana Reddy Arava1; 1Wayne State University

9:10 AM Invited

Multiparadigm Computational Approaches to Assess and Optimize **Rechargeable Battery Electrodes**: Alejandro Franco¹; ¹Université de Picardie Jules Verne

9:35 AM Invited

Surface Chemistry Evolution on Cathodes Characterized by In Situ XPS and AES: Shen Dillon1; 1University of Illinois at Urbana-Champaign

10:00 AM Break

10:15 AM Invited

The Transition from Unfavorable Lithium Plating to Destructive Lithium Dendrites: Corey Love1; Rachel Carter1; 1U.S. Naval Research Laboratory

10:40 AM Invited

New Challenges to Future Battery System for Automotive Application: Yuichiro Tabuchi1; 1Nissan Motor Co., Ltd

11:05 AM

Electrochemical Characterization of Lithium Diffusion in Ordered Nanoporous Carbons via Voltage-relaxation GITT: Waruni Jayawardana¹; Christopher Carr1; Eric Majzoub1; 1University of Missouri St. Louis

11:25 AM

Electrodeposition of Manganese/Cobalt Alloys for Solid Oxide Fuel Cell Interconnect Application: Junwei Wu; Xingbo Liu¹; ¹West Virginia University

Mechanical Behavior at the Nanoscale IV -Crystallite Effects and the Nanoscale

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Thursday AM March 15, 2018

Room: 101C Location: Phoenix Convention Center

Session Chairs: Marisol Koslowski, Purdue University; Yu Zou, MIT

8:30 AM Invited

Stress Relaxation Mechanisms in Thin Films: Marisol Koslowski1; Xiaorong Cai1; 1Purdue University

TECHNICAL PROGRAM

9:00 AM

Synthesis and Mechanical Characterization of Metallic Films with Precisely Tailored Multimodal Microstructures: *Rohit Berlia*¹; Ehsan Izadi¹; Jagannathan Rajagopalan¹; ¹Arizona State University

9:20 AM

A New Method for Selecting Grain Boundary Sets for Comparison of Decohesion Behavior in Molecular Dynamics Simulations: Doruk Aksoy¹; Remi Dingreville²; Douglas Spearot¹; ¹University of Florida; ²Sandia National Laboratories

9:40 AM

Texture Dependent Grain Rotations in Ultrafine-grained Al Films Revealed by In Situ TEM with Automated Crystal Orientation Mapping: *Ehsan Izadi*¹; Jagannathan Rajagopalan¹; ¹Arizona State University

10:00 AM Break

10:20 AM

ECCI Analysis ff Dislocation Slip Transfer across Grain Boundaries in Commercially Pure Titanium: Songyang Han¹; Martin Crimp¹; ¹Michigan State University

10:40 AM

Mechanical Properties of Nanocrystalline Aluminum: Atomistic Simulations and Experimental Verification: *Wenwu Xu*¹; Xiaoyan Song²; Lilian Dávila³; ¹San Diego State University; ²Beijing University of Technology; ³University of California, Merced

11:00 AM

Effect of Twist Boundary Stability of Dislocation Network under Unloading: Jamie Gravell¹; Ill Ryu¹; ¹University of Texas at Dallas

11:20 AM

THURSDAY AM

Anatomizing Deformation Mechanisms in Metals at the Low End of the Nanoscale: *Rainer Birringer*¹; Christian Braun¹; Michael Deckarm¹; Andreas Leibner¹; ¹Saarland University

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XVII – Phase Stability of Advanced Electronic Interconnection II

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Chih-Ming Chen, National Chung Hsing University; Thomas Reichmann, Karlsruhe Institute of Technology; Yu Zhong, Worcester Polytechnic Institute; Hiroshi Nishikawa, Osaka University; Shien Ping Feng, The University of Hong Kong; Yee-Wen Yen, National Taiwan University of Science & Technology; Song-Mao Liang, Clausthal University of Technology

Thursday AMRoom: 227AMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Jae-Ho Lee, Hongik University; Chao-hong Wang, National Chung Cheng University

8:30 AM Invited

Nanoparticles and Nanowires Based on Ag and Cu in Printed Electronics and Transparent Electrode: *Hyuck Mo Lee*¹; ¹KAIST

8:50 AM

Minor P-doping in the Electroplated Co(P) Layer to Strongly Suppress IMC Formation in Lead-free Solder Joints: *Chao-hong Wang*¹; Che-yang Lin¹; ¹National Chung Cheng University

9:10 AM

TECHNICAL PROGRAM

Fabrication and Characterization of (111)-oriented and Nanotwinned Cu by Periodic Reverse Electrodeposition: *Kuan-Ju Chen*¹; ¹National Chiao Tung University

9:30 AM

Inter-diffusion at Ag/Cu Interface: Erh-Ju Lin¹; Cheng-Yi Liu¹; ¹National Central University

9:50 AM Break

10:10 AM

Effects of Electrochemical Parameters on the Physical Properties of Ni-Co Electroplating: Yong-Su Lee¹; Hong-Wook Chun¹; *Jae-Ho Lee*¹; ¹Hongik University

10:30 AM

Electrochemical Etching of Solder Resist to Improve Adhesion of Electroless Copper Plating in PCB: Jong-Chan Choi¹; Jae-Ho Lee¹; ¹Hongik University

10:50 AM

Dissolution Kinetic of Ni Wire in Sn and Sn3.5Ag Solder: *Jyun Yang Wang*¹; Cheng Yi Liu¹; ¹National Central University

11:10 AM

The Study of Interfacial Reactions between Sn and C194 Alloy: Pei-Yu Chen¹; *Chih-Hung Lin*¹; Yee-Wen Yen¹; ¹National Taiwan University of Science & Technology, Dep. of Materials Sci. & Eng.

11:30 AM

Effect of Ag Additives on Dissolution Kinetic of Cu Wire in Sn and Sn3.5Ag Solder: *YiXuan Lin*¹; ChengYi Liu¹; ¹National Central University

Powder Metallurgy of Light, Reactive and Other Nonferrous Metals – Titanium Powder Metallurgy and Additive Manufacturing I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee *Program Organizers:* Ma Qian, RMIT University (Royal Melbourne Institute of Technology); Zak Fang, University of Utah; Bowen Li,

Institute of Technology); Zak Fang, University of Utah; Bowen Li, Michigan Technological University

Thursday AM	Room: 225A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Dr Ben Thomas, University of Sheffield; Dr Josef Stráský, Charles University

8:30 AM

Characterization and Heat Treatment of Ti-6Al-4V Powders for Use in Cold Spray Deposition: Satish Bhattiprolu¹; Grant Crawford¹; ¹South Dakota School of Mines and Technology

8:50 AM

FAST-forge: From Rutile Sand to Novel Titanium Alloy Aerospace Component in 3 Steps: *Nick Weston*¹; Luke Benson Marshall²; Olga Bylya³; Malgorzata Rosochowska³; Sam Evans⁴; Martin Jackson¹; ¹University of Sheffield; ²Metalysis; ³University of Strathclyde; ⁴Safran Landing Systems

9:10 AM

Densification of Near-net Shape Turbine Blades in TiAl by Spark Plasma Sintering: *Thomas Voisin*¹; Jean-Philippe Monchoux²; Marc Thomas³; Alain Couret²; ¹Lawrence Livermore National Laboratory; ²CNRS; CEMES (Centre d'Elaboration de Matériaux et d'Etudes Structurales); ³ONERA/DMSM

9:30 AM

Cost-effective Titanium Alloy Components for Internal Combustion Engine Valve Trains: *Nick Weston*¹; Ben Thomas¹; Martin Jackson¹; ¹University of Sheffield

9:50 AM Break

10:10 AM Invited

Producing High-quality Titanium Alloy by a Cost-effective Route Combining Fast Heating and Hot Processing: *Fei Yang*¹; Stiliana Raynova¹; Ajit Singh¹; Qinyang Zhao¹; Carlos Romero Villarreal¹; Leandro Bolzoni¹; ¹University of Waikato

10:40 AM Invited

Novel Continuous Extrusion of Titanium Powders for Wire Applications: Ben Thomas¹; Martin Jackson¹; ¹University of Sheffield

11:10 AM

Microstructure and Phase Transformations in Ti15Mo Alloy Prepared by Cryogenic Milling and SPS: *Josef Strásk*ý¹; Jirí Kozlík¹; Petr Harcuba¹; Kristína Václavová¹; Tomáš Chráska¹; Miloš Janecek¹; ¹Charles University

Recent Advances in Functional Materials for Printed, Flexible and Wearable Electronics – 2D/3D Sensors and Devices

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Pooran Joshi, Oak Ridge National Laboratory; Nuggehalli Ravindra, New Jersey Institute of Technology; Jud Ready, Georgia Institute of Technology; Amit Pandey, LG Fuel Cell Systems Inc.; Suresh Sitaraman, Georgia Institute of Technology

Thursday AM	Room: 226B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Jud Ready, Georgia Institute of Technology; Amit Pandey, LG Fuel Cell Systems Inc.; Megan Cordill, Erich Schmid Institute

8:30 AM Invited

Transparent Field Effect Biosensors Printed on Highly Curved Surfaces: Gregory Herman¹; ¹Oregon State University

9:00 AM Invited

Single-crystalline-like Semiconductor Films on Flexible Substrates: A Route towards Roll-to-roll Manufacturing of High-performance Electronic Devices: *Pavel Dutta*¹; M. Rathi¹; D. Khatiwada¹; Yan Yao; Y. Gao¹; S. Sun¹; Y. Li¹; S. Pouladi¹; J. Ryou¹; Eduard Galstyan¹; Venkat Selvamanickam¹; ¹University of Houston

9:30 AM

3-D Printed Polymer-based Gas Sensors: *Patrick Dzisah*¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

9:50 AM Break

10:10 AM Invited

Integrated and Flexible Biosensors for Point-of-care Diagnostics: Vinay Gupta¹; ¹University of Delhi

10:40 AM

High Performance Sensors and Antennas by 2D and 3D Printing of Nanoparticles: *Md Taibur Rahman*¹; Arya Rahimi²; Subhanshu Gupta²; Luke Renaud²; Deuk Heo²; C. V. Ramana³; Rahul Panat¹; ¹Carnegie Mellon University; ²Washington State University; ³University of Texas at El Paso

11:00 AM Invited

Microheater Array Powder Sintering: A New Process for Printed Electronics: Nicholas Holt¹; Lucas Marques¹; Austin Van Horn¹; *Wenchao Zhou*¹; ¹University of Arkansas

11:30 AM Invited

3D Printed Anodes for Al-air Batteries: Y. Yu¹; M. Chen¹; S. Wang¹; C. Hills²; J. Pooran³; *Anming Hu*¹; ¹University of Tennessee; ²Sichuan University; ³Oak Ridge National Laboratory

Solar Cell Silicon – Silicon Recycling, Refining, and Impurity Removal

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Neale Neelameggham, Ind LLC; York Smith, University of Utah

Thursday AM March 15, 2018 Room: 223 Location: Phoenix Convention Center

Session Chairs: Leili Tafaghodi, University of British Columbia; Jijun Wu, Kunming University of Science and Technology

8:30 AM Invited

Review of Solar Silicon Recycling: York Smith1; 1University of Utah

9:10 AM

Removal Impurities from Metallurgical Silicon by Slag Treatment Combined with Acid Leaching: Zhenfei Xia¹; *Jijun Wu*¹; Wenhui Ma¹; Kuixian Wei¹; Yun Lei¹; ¹Kunming University of Science and Technology

9:30 AM

Structure Nature of Boron Removal from Silicon in Slagging Refining: A Raman Spectroscopy and NMR Spectroscopy Study: *Guoyu Qian*¹; Zhi Wang¹; ¹Institute of Process Engineering, Chinese Academy of Sciences

9:50 AM Break

10:10 AM

Boron Removal from Ferrosilicon Alloy via Slag Treatment: *Ali Hosseinpour*¹; Leili Tafaghodi¹; ¹University of British Columbia

10:30 AM

The Mechanism of Boron Removal from Silicon Alloy by Electric Field Using Slag Treatment: Junhao Liu¹; Zhi Wang¹; Zhi Ge¹; Bing Du¹; ¹Institute of Process Engineering, Chinese Academy of Sciences

Thermal and Mechanical Stability of Nanocrystalline Materials – Mechanical Stability and Deformation Behavior

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jason Trelewicz, Stony Brook University; Daniel Bufford, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Jessica Krogstad, University of Illinois, Urbana-Champaign; Christian Brandl, Karlsruhe Institute of Technology

Thursday AM	Room: 128B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Timothy Rupert, University of California Irvine; Christian Brandl, Karlsruhe Institute of Technology

8:30 AM Invited

Modulating Stability and Strength in Nanocrystalline FCC Metals: The Effects of Microstructure, Composition and Interfacial Character: Jacob Gruber¹; *Garritt Tucker*¹; ¹Colorado School of Mines

9:00 AM

Grain Boundary Stability Governs Hardening and Softening in Extremelyfine Nano-grained Metals: Jian Hu¹; *Yinong Shi*¹; Xavior Sauvage²; Gang Sha³; K. Lu¹; ¹Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences; ²Normandie University, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux; ³Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology

9:20 AM

Insights into Deformation Induced Grain Boundary Migration in Ultrafine-grained Metals from a Strain Path Change – Does Texture Play a Role?: Oliver Renk¹; Pradipta Ghosh¹; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

9:40 AM Invited

Effect of Temperature on the Deformation Response of Grain Boundary Networks: Diana Farkas¹; ¹Virginia Tech

10:10 AM Break

10:30 AM

Initiation and Stagnation of Room-temperature Strain-induced Grain Coarsening in Thin Au Films: *Oleksandr Glushko*¹; Rafael Soler²; Gerhard Dehm²; ¹Erich Schmid Institute; ²Max-Planck-Institut für Eisenforschung

11:50 AM Invited

Commonalities in the Structure and Plastic Deformation in Disordered Materials and Interfaces: Glenn Balbus¹; Daniel Strickland²; Daniel Magagnosc²; Robert Ivancic²; Andrea Liu²; *Daniel Gianola*¹; ¹University of California, Santa Barbara; ²University of Pennsylvania

Thermal and Mechanical Stability of Nanocrystalline Materials – Nanotwin and Oxide Induced Stabilization

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jason Trelewicz, Stony Brook University; Daniel Bufford, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Jessica Krogstad, University of Illinois, Urbana-Champaign; Christian Brandl, Karlsruhe Institute of Technology

Thursday AM	Room: 127C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Eric Homer, Brigham Young University; Jessica Krogstad, University of Illinois, Urbana-Champaign

8:30 AM

Effects of Nanotwinning and Nanocrystallinity on the Precipitation Behavior of a Ni-Mo-Cr Superalloy: *Megan Emigh*¹; Jessica Krogstad¹; ¹University of Illinois at Urbana Champaign

8:50 AM

THURSDAY AM

The Mechanism of Anisotropic Single-crystal Growth in Nanotwinned Copper: *I-Hsin Tseng*¹; Chih Chen¹; Yun-Ting Hsu¹; Jih-Perng Leu¹; Tu King-Ning²; ¹National Chiao Tung University; ²University of California, Los Angeles

9:10 AM

Thermal Cycling Test of Integrated Fan-out Wafer Level Package with Highly (111)-oriented Nano-twinned Copper: *Li Yu-Jin*¹; Ying Ju Chen¹; Kuan Ju Chen¹; Chih Chen¹; ¹National Chiao Tung Unirversity

9:30 AM

In-situ TEM Study of the Effects of W Solutes on Irradiation Induced Detwinning in Cu: Gowtham Sriram Jawaharram¹; Khalid Hattar²; Robert Averback¹; Shen Dillon¹; ¹University of Illinois Urbana-Champaign; ²Sandia National Laboratories

9:50 AM Break

10:10 AM Invited

Design Tough Nanoceramics by Reducing Grain Boundary Energy: *Ricardo Castro*¹; ¹University of California, Davis

10:40 AM

Effect of Nanoscale Oxide Dispersion on Thermal Stability of Severely Deformed Fe-Y Alloy: *Anna Weiss*¹; Stephen Kachur¹; Yoosuf Picard¹; Bryan Webler¹; ¹Carnegie Mellon University

11:00 AM

A Microstructural Approach toward Improving the Nano Grain Size Stability of Fe14Cr4Hf Alloy: *Peiman Shahbeigi Roodposhti*¹; Sina Shahbazmohamadi¹; ¹University of Connecticut

Ultrafine-grained Materials X – High Pressure Torsion and Equal Channel Angular Extrusion/ Pressing Studies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Thursday AM	Room: 103B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Megumi Kawasaki, Oregon State University; Güney Güven Yapici, Özyegin University

8:30 AM

Role of Alloy Properties in Forced Chemical Mixing of Cu-X-Mo Ternary Alloys (X=Ni, Ag): *Nisha Verma*¹; Robert S Averback¹; Pascal Bellon¹; ¹University of Illinois, Urbana-Champaign

8:50 AM

Micro-mechanical Response of Gamma-based TiAl Intermetallic Compound Processed by High-pressure Torsion: Megumi Kawasaki¹; Jae-Kyung Han²; Xi Li³; Rian Dippenaar³; Klaus-Dieter Liss⁴; ¹Oregon State University; ²Hanyang University; ³University of Wollongong; ⁴Australian Nuclear Science and Technology Organisation

9:10 AM

High-pressure Torsion of Copper-molybdenum Composites: Julian Rosalie¹; Zaoli Zhang¹; Reinhard Pippan¹; ¹Erich Schmid Institute for Materials Science

9:30 AM

Phase Transformations and Aging Behavior of Pure Ti and Ti-6Al-7Nb Processed by High-pressure Torsion: *Jorge Cubero-Sesin*¹; Joaquín González-Hernández¹; Alejandro Martínez¹; Elena Ulate-Kolitsky¹; Mildred Chaves¹; Fernando Alvarado¹; Héctor Agüero¹; Mauricio Castro¹; Daniela Murillo¹; Jose Vega-Baudrit¹; Kaveh Edalati²; Zenji Horita²; ¹Instituto Tecnológico de Costa Rica; ²Kyushu University

9:50 AM

The Effect of Bismuth on Microstructure Evolution in Ultrafine-grained Copper: Anna Kosinova¹; Boris Straumal²; Askar Kilmametov²; *Eugen Rabkin*¹; ¹Technion; ²Karlsruhe Institute of Technology

10:10 AM Break

10:30 AM

Mechanical Properties and Microstructures of a TiZr Alloy for Dental Implants: *Mathew Hayne*¹; Casey Davis¹; Rilee Meagher¹; Peter Rovira¹; Dean Wenger¹; Gordon Campbell¹; Michaela Rillings¹; Kyle Haines¹; Lenka Kunèická²; Radim Kocich²; Florian Dalla Torre³; Terry Lowe¹; ¹Colorado School of Mines; ²Technical University of Ostrava; ³Institut Straumann AG

10:50 AM

Strategies to Improve the Fatigue Crack Growth Behavior of SPDprocessed Metals: Anton Hohenwarter¹; Thomas Leitner¹; Department of Materials Physics, Montanuniversität Leoben, Austria

11:10 AM

High-pressure Torsion as a Novel Technique for Processing High Strength Zn-based Alloys: David Hernandez Escobar¹; Hakan Yilmazer²; Carl Boehlert¹; Megumi Kawasaki³; ¹Michigan State University; ²Yildiz University; ³Hangyang University

11:30 AM

Effect of Subgrain Structure on Superplasticity of Ultrafine-grained Ti-6Al-4V: *Chong Soo Lee*¹; Daehwan Kim¹; Chan Hee Park²; Jae Keun Hong²; ¹POSTECH; ²KIMS

Ultrafine-grained Materials X – Texture Studies and Microstructural Evolution

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Thursday AM	Room: 102C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Georgy Raab, Ufa State Aviation Technical University; Werner Skrotzki, Dresden University of Technology

8:30 AM

Crystal Plasticity Modeling of Tensile and Cyclic Behavior of Ultrafine Grained Films: Effects of Crystallographic Texture: Saul Opie¹; Ehsan Izadi¹; Jagannathan Rajagopalan¹; *Pedro Peralta*¹; ¹Arizona State University

8:50 AM

Development of Ultrafine Grain Structure with Weak Texture in New Mg-4Li-1Ca Alloy by Equal Channel Angular Pressing (ECAP): Saurabh Nene¹; B Kashyap²; N Prabhu²; Y. Estrin³; T. Al-Samman⁴; ¹IITB-Moansh Research Academy; ²IIT Bombay; ³Moansh University; ⁴RWTH Aachen University

9:10 AM

Effect of Texture on Inhomogeneous Shear in ECAP: Laura Lienshoeft¹; Julius Huhn¹; Philipp Frint²; Martin Franz-Xaver Wagner²; *Werner Skrotzki*¹; ¹Dresden University of Technology; ²Chemnitz University of Technology

9:30 AM

The Influence of Microstructure Characteristics on Plastic Deformation Mechanisms in Severely Deformed Aluminium: *Witold Chrominski*¹; Malgorzata Lewandowska¹; ¹Warsaw University of Technology

9:50 AM

High Shear Deformation to Enhance Properties of a Bioabsorbable Magnesium Alloy: *Casey Davis*¹; Joel Grzenia¹; Jake Edick²; Tamás Ungár³; Terry Lowe¹; ¹Colorado School of Mines; ²nanoMAG LLC; ³Eötvös University

10:10 AM Break

10:30 AM

Effect of SPD Processing Combined with Ultrasound on Structure Transformation in a Low-alloyed Chromium Bronze: *Georgy Raab*¹; Tibor Donic²; Denis Aksenov¹; Rashid Asfandiyarov¹; ¹Ufa State Aviation Technical University; ²University of Žilina

10:50 AM

Structural Stability of Ultra-fine Grained Metastable Beta Titanium Alloys: *Kristina Vaclavova*¹; Josef Strasky¹; Anna Terynkova¹; Josef Vesely¹; Petr Harcuba¹; Irina Semenova²; Veronika Polyakova²; Milos Janecek¹; ¹Charles University; ²Ufa State Aviation Technical University

11:10 AM

Microstructure of Refined Ti15Mo Alloy for Biomedical Use: Anna Terynková¹; Josef Stráský¹; Kristína Václavová¹; *Miloš Janecek*¹; Michal Landa²; Michaela Janovská²; Irina Semenova³; Veronika Polyakova³; ¹Charles University; ²Institute of Thermomechanics; ³Ufa State Aviation Technical University

11:30 AM

Issues of Intermetallic and Precipitates Segregation inside Adiabatic Shear Bands of SPD-processed Al 6061: *Ramatou Ly*¹; Karl T. Hartwig¹; Homero Castaneda¹; ¹Texas A&M University

9th International Symposium on High Temperature Metallurgical Processing – Agglomeration and Direct Reduction of Complex Iron Ores

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Thursday PM	Room: 227B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Tao Jiang, Central South University; Hongming Long, Anhui University of Technology

2:00 PM Introductory Comments

2:05 PM

Carbothermic Direct Reduction of Chromite Using a Segregation Catalyst for the Production of Ferrochrome: *Dawei Yu*¹; Dogan Paktunc¹; ¹CanmetMINING

2:25 PM

Effect of Modified Humic Acid (MHA) Binder on Roasting Behavior Mongolian Tumurtei Iron Concentrate Briquettes: Bayaraa S¹; *Guanghui* Li¹; Mingjun Rao¹; Tao Jiang¹; ¹Central South University

2:45 PM

Enhancement of Yield by Improvement of Iron Ore Sinter Strength of Weak Layer in Sinter Bed: Chong-Lyuck Park¹; Wan-Sung Kim¹; ¹POSCO

3:05 PM

Study on Direct Reduction Melting Separation-leaching Process of Disposal Rare Earth Composite Iron Ore: Tengfei Ma¹; *Xue-feng She¹*; Fu Feng¹; Jiongsong Wang¹; ¹University of Science and Technology Beijing

3:25 PM Break

3:45 PM

Reduction Behavior of Garnierite Using Methane by Roasting-Magnetic Separation Method: Li Bo¹; *Yindong Yang*²; Mansoor Barati²; Alexander McLean²; Yonggang Wei¹; ¹Kunming University of Science and Technology; ²University of Toronto

4:05 PM

Effect of Calculation Method of CaO Addition on Liquid Phase Fluidity: Lixin Qian¹; Tiejun Chun¹; Zhengwei Yu¹; Huan Wang¹; Yifan Wang¹; *Hongming Long*¹; Ping Wang¹; ¹Anhui University of Technology

4:25 PM

Effect of Carbon Coating on Magnetite Reduction: Wu-feng Jiang¹; *Su-ju Hao*²; Yu-zhu Zhang¹; ¹North China University of Science and Technology; ²Michigan Technological University

4:45 PM

Optimization Method for Iron Ore Blending Based on the Sintering Basic Characteristics of Blended Ore: Li Ning¹; Li Jiaxin¹; Long Hongming¹; Chun Tiejun¹; Mu Gutian¹; *Yu Zhengwei*¹; Wang Ping¹; ¹Anhui University of Technology

Characterization and Innovative Applications Sponsored by: TMS Structural Materials Division, TMS: Phase

Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Thursday PMRoom: 231ABMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Eric Lass, National Institute of Standards and Technology; Kathryn Small, Drexel University

2:00 PM

Dynamics of Laser Powder Bed Fusion Additive Manufacturing Process: Qilin Guo¹; Luis Escano¹; Cang Zhao²; Lianghua Xiong¹; Seyed Mohammad Hassan Hojjatzadeh¹; Tao Sun²; *Lianyi Chen*¹; ¹Missouri University of Science and Technology; ²Argonne National Lab

2:20 PM

Effect of Heat Treatment on the Microstructural Evolution of a Nickelbased Superalloy Produced by Powder Bed Fusion Laser Sintering: *Fan Zhang*¹; Lyle Levine¹; Andrew Allen¹; Eric Lass¹; Mark Stoudt¹; Greta Lindwall¹; Michael Katz¹; Maureen Williams¹; Carelyn Campbell¹; ¹National Institute of Standards and Technology

2:40 PM

Porosity Analysis of AM Powder Based on Machine Learning Approach and In-situ Annealing Technique for Observation of Property Evolution of AM Material: *He Liu*¹; Yufeng Shen¹; Ross Cunningham¹; R.M Suter¹; A. D. Rollett¹; ¹Carnegie Mellon University

3:00 PM

Thermally-induced Microstructural Evolution of Additively Manufactured Inconel 718 via In-situ Bragg-edge Neutron Radiography and Diffraction: *Gian Song*¹; Hassina Billeux¹; Jean Bilheux¹; Jiao Lin¹; Qingge Xie¹; Ke An¹; Alexandru Stoica¹; Louis Santodonato¹; Ryan Dehoff¹; Michael Kirka¹; Sarma Gorti¹; Balasubramaniam Radhakrishnan¹; Anton Tremsin²; ¹Oak Ridge National Laboratory; ²University of California, Berkeley

3:20 PM Break

3:40 PM

Residual Strain Characterization of Additively Manufactured Ni Superalloy Using HR-EBSD Analysis: *Kathryn Small*¹; Jacob Hochhalter²; Ryan Carpenter³; Stephen Luckowski³; Matthew Clemente³; Elias Jelis³; Brian Jackson⁴; David Fullwood⁴; Mitra Taheri¹; ¹Drexel University; ²NASA Langley Research Center; ³U.S. Army ARDEC; ⁴Brigham Young University

4:00 PM

Properties and Microstructure in Thick Plate Inconel 718 Produced by Electron Beam Wire Feed: Brent Waters¹; Jill Wen²; *Michael Miles*²; David Fullwood²; ¹Toyota Motor Manufacturing; ²Brigham Young University

4:20 PM

Investigation of the SLM Process to Fabricate Multiperforated Plates in Aeroengines: *Marc Thomas*¹; Cécile Davoine¹; Océane Lambert¹; Fabienne Popoff¹; Philippe Reulet¹; Olivier Léon¹; Axel Vincent¹; ¹ONERA

4:40 PM

Localized Porosity Control for Heat Pipe Manufacturing: *Scott Roberts*¹; Eric Sunada¹; Stefano Cappucci¹; Ben Furst¹; Andre Pate¹; ¹JPL/NASA

Advanced Real Time Optical Imaging – Iron and Steelmaking III

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee

Program Organizers: Jinichiro Nakano, US Department of Energy National Energy Technology Laboratory; David Alman, National Energy Technology Laboratory; II Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology

Thursday PM	Room: 123
March 15, 2018	Location: Phoenix Convention Center

Session Chair: II Sohn, Yonsei University

2:00 PM Invited

Wettability of Graphite-alumina Composites against Molten CaO-SiO₂-Al₂O₃-MgO Slags: Noritaka Saito¹; Kunihiko Nakashima¹; ¹Kyushu University

2:30 PM Invited

In-situ Observation of Sulfide Formation during Solidification in Fe-Cr-Ni-Mn-S Alloys: Kazuo Nakama¹; ¹Sanyo Special Steel

3:00 PM

Observations of Ferrite Formation and Growth in Inclusion-engineered Low Alloy Steels during In-situ Heat Treatments: *Wangzhong Mu*¹; Peter Hedström¹; Hiroyuki Shibata¹; Pär Jönsson¹; Keiji Nakajima¹; ¹KTH Royal Institute of Technology

3:20 PM Panel Discussion

3:40 PM Break

4:00 PM Panel Discussion

Algorithm Development in Materials Science and Engineering – Applications of Microscale Algorithms and Models

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Mark Tschopp, Army Research Laboratory; Jonathan Zimmerman, Sandia National Laboratories; Ebrahim Asadi, University of Memphis; Mark Horstemeyer, Mississippi State University

Thursday PM	Room: 130
March 15, 2018	Location: Phoenix Convention Center

Session Chair: Mark Horstemeyer, Mississippi State University

2:00 PM

A Dislocation-based Finite Element Modelling of Hydrogen Embrittlement in High-strength Steel Alloys: Amir Abdelmawla¹; *Tarek Hatem*¹; Dierk Raabe²; ¹British University in Egypt; ²Max-Planck-Institut fur Eisenforschung

2:20 PM

Simulation of Multi-component Microstructure Evolution Coupling Phase Field and Tensor Decomposition Techniques: *Yuan Yuan*¹; Fusheng Pan¹; Nico Vervliet²; Lieven Delathauwer²; Nele Moelans²; ¹Chongqing University; ²KU Leuven

2:40 PM

Crack-tip Simulation Validations by XGP Multiscale Methods: *Jinghong Fan*¹; Ross Stewart²; Taolong Xu³; ¹Alfred University; ²Corning Inc.; ³Southwest Petroleum University

3:00 PM

Three Dimensional Trefftz Voronoi Cell Finite Elements with Cylindrical Elastic/Rigid Inclusions &/or Voids for Micromechanical Modeling of Heterogeneous Materials: *Guannan Wang*¹; Leiting Dong²; Satya Atluri¹; ¹Texas Tech University; ²Beihang University

3:20 PM

Phase Field Approach to Fracture and Interaction of Fracture and Phase Transformation: *Hossein Jafarzadeh*¹; Valery Levitas²; Gholam Hossein Farrahi¹; Mahdi Javanbakht³; ¹Sharif University of Technology; ²Iowa State University; ³Isfahan University of Technology

Alloy Development and Powder Manufacture for

Additive Manufacturing – Design of Ni and Fe Alloys Sponsored by: TMS Materials Processing and Manufacturing Division Program Organizers: Paul Prichard, Kennametal; Sudarsanam Babu, The University of Tennessee, Knoxville; Peter Collins, Iowa State University; James Foley, Los Alamos National Laboratory

Thursday PM	Room: 232B
March 15, 2018	Location: Phoenix Convention Center

Session Chair: Suresh Babu, Oak Ridge National Laboratory

2:00 PM

Current Understanding and Status of Ni-base Superalloys for Additive Manufacturing: Towards Alloy Development for AM: Michael Kirka¹; 'Oak Ridge National Laboratory

2:20 PM

Microstructure Development in Isolated Melt Pools of Electron Beam Melted Inconel 718: *Andrew Polonsky*¹; Narendran Raghavan²; William Lenthe¹; McLean Echlin¹; Michael Kirka²; Ryan Dehoff²; Tresa Pollock¹; ¹University of California, Santa Barbara; ²Oak Ridge National Laboratory

2:40 PM

Fabrication of Hastelloy X by Electron Beam Melting and Selective Laser Melting: *Sebastien Dryepondt*¹; Mike Kirka¹; Frederic List¹; ¹Oak Ridge National Laboratory

3:00 PM

Alloy Design Strategies for the Adaptation of Non-weldable Compositions for Additive Manufacturing: *Tim Prost*¹; Ralph Napolitano²; Emma White²; Michael Kirka³; Ryan Dehoff³; Iver Anderson²; ¹US DOE Ames Laboratory; ²Iowa State University/Ames Laboratory; ³Oak Ridge National Laboratory

3:20 PM Break

3:40 PM

Laser Engineered Net Shaping (LENS) of High Entropy Alloys: Andrew Kustas¹; Mark Wilson¹; Shaun Whetten¹; Dave Keicher¹; Michael Chandross¹; Ping Lu¹; Allen Roach¹; Nicolas Argibay¹; ¹Sandia National Laboratories

4:00 PM

Designing Fe-Ni-Al and Fe-Ni-Ti Maraging Steels for In-situ Precipitation Hardening during Laser Metal Deposition: *Philipp Kürnsteiner*¹; Markus Benjamin Wilms²; Andreas Weisheit²; Eric Aimé Jägle¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Fraunhofer-Institut für Lasertechnik

4:20 PM

High Entropy Alloys for Additive Manufacturing: *Minh-Son Pham*¹; ¹Imperial College London

Aluminum Reduction Technology – Cell Technology Development

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Abdalla Zarouni, Emirates Global Aluminium

Thursday PM March 15, 2018 Room: 221C Location: Phoenix Convention Center

Session Chair: Sergey Akhmetov, Emirates Global Aluminium

2:00 PM Introductory Comments

2:05 PM

Very Low Energy Consumption Cell Designs: The Cell Heat Balance Challenge: Marc Dupuis¹; ¹GéniSim Inc

2:30 PM

APXe Cell Technology: 7 Years of Low Energy Operation: Sebastien Becasse¹; Bertrand Allano¹; Yves Caratini¹; Olivier Martin¹; Denis Tinka¹; ¹Rio Tinto

2:55 PM

Development and Industrial Application of NEUI600 High Efficiency Aluminum Reduction Cell: *Yungang Ban*¹; Jihong Mao¹; Yu Mao¹; Jing Liu¹; Gaoqiang Chen¹; ¹Northeastern University Engineering & Research Institute Co. Ltd

3:20 PM

RA-550 Cell Technology: UC RUSAL's New Stage of Technology Development: *Andrey Zavadyak*¹; Iliya Puzanov¹; Vitaly Platonov¹; Vitaly Pingin¹; Viktor Mann¹; ¹RUSAL ETC LLC

3:45 PM Break

4:00 PM

DX+ Ultra Industrial Version: Preheat Start up and Early Operation: Michel Reverdy¹; *Abdalla Alzarooni*¹; Nadia Ahli¹; Alexander Arkhipov¹; Sajid Hussain¹; Sergey Akhmetov¹; Kamel Alaswad¹; ¹Emirates Global Aluminium (EGA)

4:25 PM

Selecting Technology for Achieving 300,000 T/Year - Why Do We Need to Compete Pot Technology?: Sahala Sijabat¹; *Rainaldy Harahap*¹; Ari Sukotjo¹; Faisal Hidayat¹; Ivan Yudho¹; ¹PT Inalum (Persero)

4:50 PM

AP44 Development at Alma: Pascal Thibeault¹; *Louis Guimond*¹; Véronique Dassylva-Raymond¹; Joseph Langlais¹; René Gariépy¹; Olivier Martin¹; ¹Rio Tinto

5:15 PM

EGA New D20+ Technology with Reduced Energy Consumption: *Ali Jassim*¹; Ali Alzarouni¹; Sergey Akhmetov¹; Yousuf Ahli¹; Alexander Arkhipov¹; Abdallah Al Jaziri¹; ¹Emirates Global Aluminium

5:40 PM Concluding Comments

Biodegradable Materials for Medical Applications – Polymers and Glasses

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Jaroslaw Drelich, Michigan Technological University; Petra Maier, University of Applied Sciences Stralsund; Jan Seitz, Syntellix AG; Norbert Hort, Helmholtz-Zentrum Geesthacht; Huinan Liu, University of California-Riverside

Thursday PMRoom: 226AMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Huinan Liu, University of California Riverside; Jaroslaw Drelich, Michigan Technological University

2:00 PM Keynote

Development of a Bioresorbable Vascular Scaffold for Treating Coronary Artery Disease: A Case Study: Mary Beth Kossuth¹; ¹Abbott Vascular

2:40 PM Invited

Surface Modification of Biomaterials by Plasma-based Technology: Paul Chu¹; ¹City University of Hong Kong

3:10 PM

Study on Polylactide-coconut Fibre for Biomedical Applications: *Oluwashina Gbenebor*¹; Rasaq Atoba¹; Emmanuel Akpan²; Abraham Aworinde³; Samuel Olaleye¹; Samson Adeosun¹; ¹University of Lagos; ²Institut fur Verbundwerkstoffe; ³Department of Mechanical Engineering, Covenant University

3:30 PM Break

3:50 PM

Biocompatibility of Biodegradable Mg-Zn-Ca Metallic Glass: *Carlos Elias*¹; Daniel Fernandes¹; Celso Resende¹; Ana Almeida¹; Heraldo Elias¹; ¹Instituto Militar de Engenharia

4:10 PM

Biodegradable Borate Glass for Wound Healing and Bone Regeneration Implants via Boronizing: *Bakr Rabeeh*¹; Nora Abu Bakr¹; Mahmoud M. Abu Elkhair¹; ¹German University in Cairo, GUC

4:30 PM

THURSDAY PM

TECHNICAL PROGRAM

Progress on Bioabsorbable Zn Alloys for Vascular Stent Applications: *Ehsan Mostaed*¹; Jaroslaw Drelich¹; ¹Michigan Technological University

Building an ICME Infrastructure: Developing Tools that Integrate Across Length and Time Scales to Accelerate Materials Design – Integration Tools and Methods for Linking Processing-structure-property Relationships

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee Program Organizers: Carelyn Campbell, National Institute of Standards and Technology; Mark Carroll, Federal Mogul Powertrain; Adam Hope, Thermo-Calc Software; Hojun Lim, Sandia National Laboratories; Myoung-Gyu Lee, Korea University; Amy Clarke, Colorado School of Mines; Dongwon Shin, Oak Ridge National Laboratory

Thursday PM	Room: 132C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Adam Hope, Thermo-Calc; Carelyn Campbell, National Institute of Standards and Technology

2:00 PM Invited

Current Status of ICME Infrastructure in the Aerospace Industry: *Vasisht Venkatesh*¹; X. Liu¹; R. Noraas¹; A. Peles¹; S. Mosbah¹; David Furrer¹; ¹Pratt & Whitney

2:40 PM

Modeling the Microstructural Evolution and Yield Strength in an Advanced Die Casting Aluminum Alloy: *Qianying Shi*¹; Tracy Berman¹; John Allison¹; ¹University of Michigan

3:00 PM

A Coupled Experimental and Computational Investigation of Creepresistant Mg-RE-Zn Alloy: *Deep Choudhuri*¹; S Srinivasan¹; M Gibson¹; R Banerjee¹; ¹University of North Texas

3:20 PM

Quantitative Approaches to Identification and Characterization of Microtexture Regions in Titanium Alloys: Sean Donegan¹; Adam Pilchak¹; Ashley Wissel¹; ¹Air Force Research Laboratory

3:40 PM Break

4:00 PM Invited

Integration of ICME Tools for the Design of Co-base Single Crystals: Robert Rhein¹; Colin Stewart¹; Sean Murray¹; Mike Titus¹; Carlos Levi¹; *Tresa Pollock*¹; ¹University of California, Santa Barbara

4:40 PM

Coupled Crystal Plasticity-phase Field Method to Model Crack Initiation and Propagation in Ti64 Alloys: *Jiahao Cheng*¹; Somnath Ghosh¹; ¹Johns Hopkins University

5:00 PM

Uncertainty Quantification and Propagation through CALPHAD Thermodynamics and Integrated Computational Materials Engineering (ICME): *Jeff Doak*¹; Abhinav Saboo¹; Dana Frankel¹; Nick Hatcher¹; James Saal¹; Greg Olson¹; ¹QuesTek Innovations

Bulk Metallic Glasses XV – Modeling and Thermal Properties

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Thursday PM	Room: 122A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Karin Dahmen, University of Illinois at Urbana Champaign; Weidong Li, The University of Tennessee, Knoxville

2:00 PM Invited

Theoretical Analysis of Shear-band Arrangements in Notched Bulk Metallic Glasses: *Weidong Li*¹; Yanfei Gao¹; Hongbin Bei²; ¹The University of Tennessee; ²Oak Ridge National Laboratory

2:20 PM Invited

Influence of Nanoscale Structural Heterogeneity on Shear Banding in Metallic Glasses: *Pengyang Zhao*¹; Ju Li²; Jinwoo Hwang¹; Yunzhi Wang¹; ¹The Ohio State University; ²MIT

2:40 PM Invited

Unique Crystallization Dynamics by Flash DSC in Zn-based Metallic Glass: *Meng Gao*¹; John Perepezko¹; ¹University of Wisconsin-Madison

3:00 PM

Tuning Metallic Glass Characteristics via Manipulating Icosahedral Order and Packing Density: *Geunhee Yoo*¹; Eunsoo Park¹; Ke-Fu Yao²; Chaewoo Ryu¹; Jungsoo Lee¹; JiaLun Gu²; ¹Seoul National University; ²Tsinghua University

3:20 PM Break

3:40 PM

Features of Interfaces in a Cu-Zr-Al Based Metallic Glass Obtained by Densification of Amorphous Powders: *Jean-Marc Pelletier*¹; Sandrine Cardinal¹; Qing Wang²; Guoqiang Xie³; Jichao Q⁴; ¹INSA-Lyon; ²City University; ³Shenzhen Graduate School; ⁴NPWU

4:00 PM

Isochronal Crystallization Kinetics of Fe – Based Amorphous Alloy Powder: Tanaji Paul¹; Archana Loganathan²; Arvind Agarwal²; Sandip Harimkar¹; ¹Oklahoma State University; ²Florida International University

4:20 PM

Relationship between STZ Properties, Beta Relaxation and Ductility of Metallic Glasses: *Tianjiao Lei*¹; Luis DaCosta¹; Michael Atzmon¹; ¹University of Michigan

4:40 PM

Fictive Temperature Controlling Ductility in Metallic Glasses: *Jittisa Ketkaew*¹; Eran Bouchbinder²; Jan Schroers¹; ¹Yale University; ²Weizmann Institute of Science

Bulk Metallic Glasses XV – Structures and Characterization

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Thursday PMRoom: 121CMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Robert Maass, University of Illinois at Urbana-Champaign; Xie Xie, FCA US LLC

2:00 PM Invited

Aging Dynamics around a Shear Band in a Metallic Glass: *Robert Maass*¹; Stefan Kuechemann¹; Chaoyang Liu¹; Eric Dufresne²; Jeremy Shin¹; ¹University of Illinois at Urbana-Champaign; ²Argonne National Laboratory

2:20 PM Invited

A Total Scattering Study of Thermal Expansion of Bulk Metallic Glasses: *Dong Ma*¹; Alexandru Stoica¹; ¹Oak Ridge National Laboratory

2:40 PM Invited

Deformation Induced Structural Relaxation in La-based BMGs: *Hui Wang*¹; Wojciech Dmowski¹; Zengquan Wang¹; Jichao Qiao²; Rongjie Xue³; Meng Gao³; Hongbin Bei⁴; Takeshi Egami⁴; ¹University of Tennessee, Knoxville; ²Northwestern Polytechnical University; ³Chinese Academy of Sciences; ⁴Oak Ridge National Laboratory

3:00 PM Invited

Nanostructure Characterization and Fracture Toughness Properties of a Thermomechanically Processed Zr-based Bulk Metallic Glass: Jamie Kruzic¹; Bosong Li¹; Simon Ringer²; Keita Nomoto²; Shenghui Xie³; ¹UNSW Sydney; ²The University of Sydney; ³Shenzhen University

3:20 PM Break

3:35 PM Invited

Effect of Co Addition on Martensitic Transformation in a B2-containing CuZr-based BMG Composite Revealed by In Situ Neutron Diffraction: *Gian Song*¹; Dong Ma¹; Ke An¹; Chanho Lee²; Shuying Chen²; Peter Liaw²; Sung-Hwan Hong³; Ki Buem Kim³; 'Oak Ridge National Laboratory; ²University of Tennessee, Knoxville; ³Sejong University

3:55 PM Invited

Local Dynamics in Metallic Liquids Studied by Inelastic Neutron Scattering: *Zengquan Wang*¹; Wojciech Dmowski¹; Hui Wang¹; Takeshi Egami¹; Kenneth Kelton²; ¹University of Tennessee, Knoxville; ²Washington University in St. Louis

4:15 PM

DSC Studies of the Transformations of Short-range Orders in Pd-Ni-P BMGs: L. Wang¹; X. Wang¹; Hin Wing Kui¹; ¹The Chinese University of Hong Kong

4:35 PM Invited

Solid State Joining of AMZ4 Bulk Metallic Glass to Crystalline Alloys by Power Ultrasonics: Frank Balle¹; *Michael Becker*¹; Alexander Kuball²; Ralf Busch²; Isabella Gallino²; ¹University of Kaiserslautern; ²Saarland University

4:55 PM

Shear-band Thickness and Cavitation in a Zr-based Metallic Glass: *Chaoyang Liu*¹; Vladimir Roddatis²; Peter Kenesei³; Robert Maass¹; ¹University of Illinois at Urbana-Champaign; ²University of Goettingen; ³Argonne National Laboratory

Cast Shop Technology – Continuous Casting

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mark Badowski, Hydro Aluminium

Thursday PM March 15, 2018 Room: 222A Location: Phoenix Convention Center

Session Chair: Kai Karhausen, Hydro Aluminium Rolled Products GmbH

2:00 PM Introductory Comments

2:05 PM

Continuous Casted Aluminum Flat Products Corrosion Characteristic According to Downstream Process: *Ali Ulus*¹; Gökhan Orhan²; Gökçe Hapçi Agaoglu²; Sadik Kaan Ipek¹; Hamdi Ekici¹; ¹Teknik Aluminium; ²Istanbul University

2:30 PM

Controlling the Microstructural Evolution during Soft Annealing of Cold Rolled Twin-roll Cast AlMnMg Alloys by Homogenization Heat Treatment: *Onur Meydanoglu*¹; Cemil Isiksaçan¹; Mert Günyüz¹; Hatice Mollaoglu Altuner¹; ¹Assan Alüminyum San. ve Tic. A.S.

2:55 PM

Investigation of Elemental Distribution in the Sheet Sections after Aluminum Continuous Sheet Casting, Cold Rolling and Heat Treatment Processes: *Ali Ulus*¹; Ebubekir Koç²; Zafer Çagatay Öter²; Sadik Kaan Ipek¹; Hamdi Ekici¹; ¹Teknik Aluminium; ²Fatih Sultan Mehmet University

3:20 PM

Tailoring the Materials Properties with a Holistic Approach From Casting to Back Annealing: *Cemil Isiksaçan*¹; Onur Meydanoglu¹; Onur Birbasar¹; Mert Gülver¹; ¹Assan Alüminyum San. ve Tic. A.S.

Characterization of Minerals, Metals, and Materials – Thermal Processing and Analysis

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, AI Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Thursday PM	Room: 122C
March 15, 2018	Location: Phoenix Convention Center

Session Chair: John Carpenter, Los Alamos National Laboratory

2:00 PM Introductory Comments

2:05 PM Invited

Buildup Formation Mechanism of Carbon Sleeve in Continuous Annealing Furnace for Silicon Steel: *Mingsheng He*¹; Guohua Xie¹; Xuecheng Gong¹; Wangzhi Zhou¹; Jing Zhang¹; Jian Xu¹; ¹Wuhan Iron & Steel Co., Ltd. TECHNICAL PROGRAM

2:25 PM

Effect of Casting Speed on Hot Ductility and Precipitation Kinetics of Micro-alloyed Steels during Continuous Casting: Hossam Ibrahim¹; Heinz Palkowski1; 1Clausthal University of Technology

2:45 PM

In-situ Measurement System for Prediction of the Hot Tearing Tendency of Steel: Michel Wurlitzer1; Babette Tonn1; 1Clausthal University of Technology

3:05 PM

Pulse Parameter Characterization in Microdrilling of Maraging Steel 300 Alloy: Shivraj Naravan Yeole¹; Nunna Nagabhushana Ramesh²; Banoth Balu Naik³; Ramya Alluru¹; ¹VNR Vignana Jyothi Institute of Engineering & Technology; ²Anurag Group of Institutions; ³JNTU College of Engineering

3:25 PM

Physical and Chemical Properties of Melt-spun $Fe_{bal}Si_x$ (x = 3-8 wt. %) Soft Magnetic Ribbons: Nicole Overman¹; Xiujuan Jiang¹; Ravi Kukkadapu¹; Trevor Clark2; Timethy Roosendaal1; Gregory Coffey1; Jeffrey Shield3; Suveen Mathaudhu1; 1Pacific Northwest National Laboratory; 2University of California-Riverside; 3University of Nebraska-Lincoln

3:45 PM Break

4:00 PM

Interpretation of Coal Quality Using Laboratory Based Features over VNIR Bands: Nafisa Begum¹; Debashish Chakravarty¹; Bhabani Das¹; ¹IIT Kharagpur

4:20 PM

Characterization of Coke-making Coals of High Reactivity from Northwest China: Qiang Wu¹; Zizong Zhu¹; Guojing Shi¹; Feng Wang¹; Yangyang Xie¹; ¹Chongqing University

4:40 PM

Spherical Nanoindentation Investigation on Ti-Pt-Ni-Hf Shape Memory Alloys: Ali Khosravani¹; Manu Mohan²; Dipankar Banerjee²; Surya Kalidindi¹; ¹Georgia Institute of Technology; ²Indian Institute of Science

5:00 PM

The Anodic Behavior of Electro-Deoxidation of Titanium Dioxide in Calcium Chloride Molten Salt: Pingsheng Lai¹; Meilong Hu¹; Leizhang Gao¹; Zhengfeng Qu¹; Chenguang Bai¹; ¹Chongqing University

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Thermodynamics

Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Thursday PM	Room: 131A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Ying Chen, Tohoku University; Joerg Neugebauer, Max-Planck-Institut fuer Eisenforschung

2:00 PM Invited

Modelling Structural Materials in Realistic Environments by Ab Initio Thermodynamics: Joerg Neugebauer¹; Fritz Koermann¹; Blazej Grabowski¹; Tilmann Hickel1; Mira Todorova1; 1Max-Planck-Institut fuer Eisenforschung

2:30 PM

Improvement of Energy Models for Magnetic Alloys and Nanoalloys: Christine Goyhenex1; Mariem Sansa2; Jacques René Eone II1; Guy Tréglia3; Bernard Legrand⁴; Adnene Dhouib⁵; Fabienne Ribeiro⁶; ¹Institut de Physique et Chimie des Matériaux de Strasbourg; ²LSAMA; ³CINaM; ⁴CEA, DEN, Service de Recherches de Métallurgie Physique; 5College of Science, Dammam; 6IRSN

2:50 PM

Absolute Value Estimation of Thermodynamic Properties in Ni-Al Alloys Using a First Principles Renormalized Potential: Ryoji Sahara1; Toshio Osada1; Swastibrata Bhattacharyya2; Kaoru Ohno2; 1National Institute for Materials Science; ²Yokohama National University

3:10 PM

Phase Stability and Martensitic Transitions in NiTi from First Principles Simulations: Justin Haskins1; John Lawson2; 1AMA Inc, NASA Ames Research Center; 2NASA Ames Research Center

3:30 PM Break

3:45 PM

Phase Stability and Chemical Composition of Nanoprecipitates: A First Principles Study for the Example of Kappa Carbides: Tilmann Hickel¹; Poulumi Dey1; Biswanath Dutta1; Martin Friák2; Joerg Neugebauer1; 1Max-Planck-Institut fuer Eisenforschung GmbH; ²Academy of Sciences of the Czech Republic

4:05 PM Invited

Stability and Effects of Substitutional Elements in NdFe12-based Compounds: Ying Chen1; Arkapol Saengdeejing1; 1Tohoku University

4:35 PM

Non-equilibrium Simulations of 4H Silicon Carbide: Rachel Flanagan¹; Eric Hahn²; Shiteng Zhao¹; Carlos Ruestes³; Chris Wehrenberg⁴; Bruce Remington⁴; Marc Meyers¹; ¹UCSD; ²Los Alamos National Laboratories; ³National University of Cuyo, Mendoza; ⁴Lawrence Livermore National Laboratories

4:55 PM

On the Behavior of Liquid Ga Precipitates in Solid Al: Sanket Navale¹; Michael Demkowicz²; ¹Massachusetts Institute of Technology; ²Texas A&M University

5:15 PM

Thermodynamics of Pb-Sn System in Molecular Dynamics Simulations: Seyed-Alireza Etesami1; Ebrahim Asadi1; 1University of Memphis

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Transport Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Thursday PM	Room: 131B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Xingqiu Chen, Institute of Metal Research, Chinese Academy of Science; Wenging Zhang, Southern Unversity of Science and Technology

2:00 PM Invited

Lattice Dynamics and Thermal Transport in Part-crystalline Part-liquid Materials through Molecular Dynamics Simulations: Wenging Zhang¹; Hongliang Yang²; Yancheng Wang²; ¹Southern Unversity of Science and Technology; 2SICCAS

2:30 PM

Thermal Transport in Ni-containing FCC Concentrated Solid Solutions from First Principles: German Samolyuk1; Sai Mu1; Sebastian Wimmer2; Sergiy Mankovsky2; Hubert Ebert2; Malcolm Stocks1; 1Oak Ridge National Laboratory; ²Ludwig-Maximilians-Universitat Munchen

2:50 PM

A Predictive Computational Route to Quantitatively Evaluate the Effect of Doping on Reducing Thermal Conductivity of Ceramic Oxides: Guoqiang Lan1; Jun Song1; 1McGill University

THURSDAY PM

3:10 PM

Thermoelectric Model of High ZT Nanoengineered Bulk Silicon for High Temperature Applications: *Seyed Aria Hosseini*¹; Jackson Harter²; Devin Coleman¹; Todd Palmer²; Lorenzo Mangolini¹; Alex Greaney¹; ¹University of California, Riverside; ²Oregon State University

3:30 PM Break

3:45 PM Invited

Topological Nodal Lines in Metals: *Xing-Qiu Chen*¹; ¹Institute of Metal Research, Chinease Academy of Sciences

4:15 PM

Formation of Arsenene p-n Junctions via Organic Molecular Adsorption: Gao Nan¹; ¹Changchun University

4:35 PM

Computational Approach to the Magnetic Properties of Ga-added Nd-Fe-B Sintered Magnets: Yasutomi Tatetsu¹; Shinji Tsuneyuki²; Yoshihiro Gohda¹; ¹Tokyo Institute of Technology; ²The University of Tokyo

4:55 PM

Cu Substituted CeCo5: New Optimal Permanent Magnetic Material with Reduced Criticality: Rajiv Chouhan¹; *Durga Paudyal*¹; ¹Critical Materials Institute, Ames Laboratory, U. S. Department of Energy

5:15 PM

First-principles-based Novel Materials Design for Pb-free Perovskite Solar Cell: *Donghwa Lee*¹; ¹Pohang University of Science and Technology (POSTECH)

Computational Method and Experimental Approaches for Model Development and Validation, Uncertainty Quantification, and Stochastic Predictions – UQ and Validation of Mesoscale Simulations

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers*: Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory; Richard Hennig, University of Florida; Avinash Dongare, University of Connecticut; Shawn Coleman, U.S. Army Research Laboratory; Niaz Abdolrahim, University of Rochester; Joseph Bishop, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Li Ma, National Institute of Standards and Technology

Thursday PMRoom: 132BMarch 15, 2018Location: Phoenix Convention Center

Session Chair: Joseph Bishop, Sandia National Laboratories

2:00 PM Invited

Dynamic Failure of High Energy Materials: Uncertainty Quantification and Stochastic Predictions: *Marisol Koslowski*¹; Nicolo Grilli¹; Camilo Duarte Cordon¹; Akshay Dandekar¹; ¹Purdue University

2:30 PM

Overcoming Singularities within Rate-independent Crystal Plasticity to Enable Realistic Latent Hardening: *Milovan Zecevic*¹; Marko Knezevic¹; ¹University of New Hampshire

2:50 PM

Bayesian Linear Regression and Kriging Methods for Uncertainty Quantification in Process-structure-property Linkages of Low Carbon Steels and Superalloys: Yuksel Yabansu¹; Almambet Iskakov¹; Sudhir Rajagopalan²; Anna Kapustina²; Surya Kalidindi¹; ¹Georgia Institute of Technology; ²Siemens Energy Inc

3:10 PM Invited

Parametrically Homogenized Models of Deformation and Failure of Metals and Alloys with Uncertainty-quantification: Somnath Ghosh¹; ¹Johns Hopkins University

3:40 PM Break

4:00 PM

The Current State of Phase Field Benchmark Problems Developed by CHiMaD/NIST: Andrea Jokisaari¹; Daniel Wheeler²; Peter Voorhees¹; Jonathan Guyer²; James Warren²; Olle Heinonen³; ¹Northwestern University; ²National Institute of Standards and Technology; ³Argonne National Laboratory

4:20 PM

Property Localization: Quantifying the Uncertainty of Inferred Constitutive Models for Grain Boundaries: *Christian Kurniawan*¹; Oliver Johnson¹; ¹Brigham Young University

Deriving Value from Challenging Waste Streams: Recycling and Sustainability Joint Session – Industrial Streams II

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee, TMS: Pyrometallurgy Committee

Program Organizers: Elsa Olivetti, Massachusetts Institute of Technology; John Howarter, Purdue University; Fiseha Tesfaye, Åbo Akademi University

Thursday PM	Room: 224B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: John Howarter, Purdue; Elsa Olivetti, MIT

2:00 PM Introductory Comments

2:05 PM

Tannic Acid as a Flame Retardant - Deriving Value from Leather Tanning Waste: *Matthew Korey*¹; John Howarter¹; ¹Purdue University

2:25 PM

Kinetic Investigations on the Recovery of Residues from the Stainless Steel Industry: Manuel Leuchtenmueller¹; ¹University of Leoben

2:45 PM

Rapid Removal of Pb(II) from Acid Wastewater Using Vanadium Titanium-bearing Magnetite Particles Coated by Humic Acid: *Manman Lu*¹; Yuanbo Zhang¹; Zijian Su¹; Bingbing Liu¹; Guanghui Li¹; Tao Jiang¹; ¹Central South University

3:05 PM

Study of the Synthesis of MgAl₂O₄ Spinel Refractory from Waste Chromium Slag of a Chrome Plant in China: *Meng Jinxia*¹; ¹University of Science and Technology Beijing

3:25 PM Break

3:40 PM

An Eco-friendly Extraction Method for Recovery of Valuable Metals from Spent Ni-W/Al₂O₃-SiO₂ Catalysts: *Wenqiang Wang*¹; Shengming Xu¹; ¹Tsinghua University

4:00 PM

Effect of Ferrosilicon on Reduction of Cr₂O₃ in Steelmaking Slags: *Yue Yu*¹; Jianli Li¹; ¹Wuhan University of Science and Technology

4:20 PM

Complete Recycling of Waste Diamond Cutting Tools by an Electrochemical Method: Tansu Altunbasak¹; Mehmet Kul²; Ishak Karakaya¹; *Esra Karakaya*¹; ¹Middle East Technical University; ²Cumhuriyet University

Frontiers in Solidification Science and Engineering – Computational Modelling of Solidification: From Nano to Macro Scales

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Damien Tourret, IMDEA Materials Institute; Mohsen Eshraghi, California State University, Los Angeles; Johannes Hötzer, University of Applied Science Karlsruhe

Thursday PM	Room: 126C
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Johannes Hötzer, Karlsruhe University of Applied Sciences; Mohsen Eshraghi, California State University, Los Angeles

2:00 PM

A Quantitative Phase-field Crystal Model to Study Particle Coarsening in Binary Systems: *Ahmad Nourian-Avval*¹; Ebrahim Asadi¹; ¹University of Memphis

2:20 PM

Phase-field Modelling of Intermetallic Solidification: *Andrew Mullis*¹; Peter Jimack¹; Peter Bollada¹; ¹University of Leeds

2:40 PM

Variational Formulation of a Quantitative Phase-field Model for Nonisothermal Solidification in Multi-component Alloys and its Applications: *Munekazu Ohno*¹; Tomohiro Takaki¹; Yasushi Shibuta²; ¹Hokkaido University; ²The University of Tokyo

3:00 PM

Multi-GPU Phase-field Simulation of Growth, Motion and Collision of Multiple Dendrites: *Shinji Sakane*¹; Tomohiro Takaki¹; Munekazu Ohno²; Yasushi Shibuta³; Takashi Shimokawabe³; Takayuki Aoki⁴; ¹Kyoto Institute of Technology; ²Hokkaido University; ³The University of Tokyo; ⁴Tokyo Institute of Technology

3:20 PM Break

3:40 PM

Multiscale Dendritic Needle Network Model for Dendritic Solidification with Liquid Convection: Damien Tourret¹; ¹IMDEA Materials Institute

4:00 PM

THURSDAY PM

Mesoscopic Envelope Model for Equiaxed and Columnar Dendritic Growth Coupled with Flow: *Alexandre Viardin*¹; Miha Zaloznik²; Youssef Souhar³; Markus Apel¹; Hervé Combeau²; ¹ACCESS e.V; ²IJL; ³ENSAM

4:20 PM

Simulation of Macrosegregation and Columnar to Equiaxed Transition in a Solidification Benchmark Problem: *Mahdi Torabi Rad*¹; Christoph Beckermann¹; ¹University of Iowa

High Entropy Alloys VI – Alloy Development and Applications III

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Thursday PM	Room: 121B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Mitra Taheri, Drexel University; Eun Park, Seoul National University

2:00 PM Invited

Processing and Characterization of High Entropy Alloys for Extreme Environments: *Mitra Taheri*¹; Elaf Anber¹; Haoyan Diao²; Christopher Barr³; Shang-Hao Huang¹; Peter Liaw²; Leslie Lamberson¹; Junpeng Liu⁴; Yong Zhang⁴; ¹Drexel University; ²University of Tennessee; ³Sandia National Laboratory; ⁴University of Science and Technology Beijing

2:20 PM

Derivation of Non-equiatomic MnFeCoNiCu High Entropy Alloy and its Relation to the Equiatomic Counterpart: Artashes Ter-Isahakyan¹; Azin Akbari¹; Thomas Balk¹; ¹University of Kentucky

2:40 PM

Optimization of Strength and Ductility in Mo-Ta-Nb-V-Ti BCC High Entropy Alloys: Sang Jun Kim¹; Hyun Seok Oh¹; Eun Soo Park¹; ¹Seoul National University

3:00 PM

Development of Oxidation Resistant Refractory High Entropy Alloys for High Temperature Applications: Recent Results and Development Strategy: *Bronislava Gorr*¹; Franz Mueller¹; Hans-Juergen Christ¹; Hans Chen²; Alexander Kauffmann²; Dorothée Vinga Szabó²; Ruth Schweiger²; Martin Heilmaier²; ¹University Siegen; ²Karlsruhe Institute of Technology

3:20 PM Break

3:40 PM Invited

Solution Strengthening in FCC High Entropy Alloys: Celine Varvenne¹; Satish Rao²; Wolfram Nohring³; William Curtin³; ¹Aix-Marseille University-CNRS; ²Air Force Research Laboratory; ³EPFL

4:00 PM

Resistance Spot Welding of Dissimilar FeCoNiCrCu0.5 High Entropy Alloys-to-AISI 304L Stainless Steel: Microstructural Evolution and Metallurgy Mode Analysis: *Jia-Chi Li*¹; Chun-Ming Lin¹; Cheng-Shun Chen¹; ¹National Taipei University of Technology

4:20 PM

Manipulation of Deformation Mechanism in FCC HEA by Al Addition: *Kook Noh Yoon*¹; Hyun Seok Oh¹; Eun Soo Park¹; ¹Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University

4:40 PM

Evolution of the Solid Solution Strengthening in FCC Multi-component Alloys: Towards High Entropy Alloys Design: *Guillaume Bracq*¹; Mathilde Laurent-Brocq¹; Loïc Perrière¹; Rémi Pirès¹; Jean-Marc Joubert¹; Ivan Guillot¹; ¹ICMPE

5:00 PM

Role of Copper in Nucleation and Stabilization of Ordered L12 Precipitates in HEAs: *Bharat Gwalani*¹; Rajarshi Banerjee¹; ¹University of North Texas Denton

High Entropy Alloys VI – Mechanical and Other Properties III

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Thursday PM	Room: 121A
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Che-Wei Tsai, National Tsing Hua University; Bernd Gludovatz, UNSW Sydney

2:00 PM

Elastic Stability and Lattice Distortion of Refractory High Entropy Alloys: *Bojun Feng*¹; Michael Widom¹; ¹Carnegie Mellon University

2:20 PM

Flow Stress and Activation Volume of FCC Metals and Low to Medium Entropy Alloys: *Takahiro Kunimine*¹; Kosei Tsujikawa¹; Chihiro Watanabe¹; Ryoichi Monzen¹; ¹Kanazawa University

2:40 PM

Screening of Structure and Properties of FCC Thin Film HEAs Using Compositional Gradient Samples: *Azin Akbari*¹; Artashes Ter-Isahakyan¹; T. Balk²; ¹University of Kentucky

3:00 PM

Effects of Solidification Conditions on Microstructure and Properties of the CoCrFeMnNi Family of HEAs: *Anna Fraczkiewicz*¹; Tomasz Stasiak¹; Jerzy Latuch²; Dariusz Oleszak²; ¹MINES St-Etienne; ²Warsaw Technical University

3:20 PM Break

3:40 PM Invited

On the Damage Tolerance of TRIP, TWIP and Dual-phase High-entropy Alloys: *Bernd Gludovatz*¹; Hyunseok Oh²; Eun Soo Park²; Robert Ritchie³; ¹UNSW Sydney; ²Seoul National University; ³Lawrence Berkeley National Laboratory

4:00 PM Invited

Effect of NiAl Precipitates on Grain Refinement in AlxCoCrFeNi High Entropy Alloys: *Hiroyuki Yasuda*¹; Hiroyuki Miyamoto¹; Ken Cho¹; Takeshi Nagase¹; ¹Osaka University

4:20 PM

Effect of NbC on Microstructure and Mechanical Properties of Selected HEA Alloys from CoCrFeMnNi Family: *Julia Olszewska*¹; Adrianna Lozinko¹; Julia Olszewska²; Jean Denis Mithieux²; Anna Fraczkiewicz¹; ¹MINES St Etienne; ²APERAM

4:40 PM

Plastic Behavior of a CoCrFeMnNi Alloy under Monotonic-tension and Low-cycle-fatigue Loading: *Yu-Lun Jao*¹; Stefanus Harjo²; E-Wen Huang¹; ¹National Chiao Tung University; ²Japan Proton Accelerator Research Complex (J-PARC)

High Temperature Corrosion of Structural Materials – Hot Corrosion, Materials Developed for Corrosive Environments at Elevated Temperatures, and Tialloys II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; David Shifler, Office of Naval Research; Mark Weaver, University of Alabama; Steve Coryell, Special Metals; James Earthman, University of California, Irvine

Thursday PM March 15, 2018 Room: 227C Location: Phoenix Convention Center

Session Chair: To Be Announced

2:00 PM Invited

High Temperature Degradation Mechanisms of Ceramic Matrix Composites: BN Effects: *Elizabeth Opila*¹; ¹University of Virginia

2:30 PM

Oxidation Resistance of AIN Modified ZrB₂-SiC Ultra High Temperature Ceramics: *Gaoyuan Ouyang*¹; Pratik Ray²; Matthew Kramer²; Mufit Akinc¹; ¹Iowa State University; ²Ames Laboratory

2:50 PM

Protection of Ti Based Materials Against High Temperature Oxidation by the Fluorine Effect: *Alexander Donchev*¹; Mathias Galetz¹; ¹Dechema-Forschungsinstitut

3:10 PM

Stability of Protective Oxide Scales Formed on Pure Titanium with Siliconbearing Films: *Kathleen Chou*¹; Peng-Wei Chu¹; Carlos Levi²; Emmanuelle Marquis¹; ¹University of Michigan; ²University of California, Santa Barbara

3:30 PM Break

3:50 PM

Studies on Isothermal and Cyclic Oxidation Behavior of Titanium Aluminide Coating Developed by Laser Cladding: Jyotsna Dutta Majumdar¹; *Anupama Dutta*¹; ¹Indian Institute of Technology Kharagpur

4:10 PM

Effect of Near Service Environmental Conditions on the High Temperature Damage Behavior of an Intermetallic TiAl Alloy: *Christian Löffl*¹; Holger Saage¹; Mathias Göken²; ¹University of Applied Sciences Landshut; ²Friedrich-Alexander-University Erlangen-Nürnberg

4:30 PM

Kinetics of Pack-aluminized Coating Layer on Ti-6Al-4V Alloys and Oxidation Behaviors of the Coated Alloy: Jinsoo Park¹; Kwangsoo Choi²; Minkyu Kim²; *Joon Sik Park*²; ¹Instech Co. Ltd.; ²Hanbat National University

4:50 PM

CALPHAD Based Modelling of Oxidation: Sedigheh Bigdeli¹; Reza Naraghi²; Lina Kjellqvist²; Amanda Persdotter³; Lars Höglund¹; Torbjörn Jonsson³; *Henrik Larsson*¹; ¹KTH Royal Institute of Technology ; ²Thermo-Calc Software; ³Chalmers University of Technology

Magnesium Technology 2018 – Thermo-Mechanical Processing

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Thursday PMRoom: 224AMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Kiran Solanki, Arizona State University; Vineet Joshi, Pacific Northwest National Laboratory - PNNL

2:00 PM Introductory Comments

2:05 PM

Mechanical Properties of Thermo-mechanically Treated Extruded Mg-Zn-based Alloys: *Daria Drozdenko*¹; Patrik Dobron¹; Juraj Olejnák¹; Marius Hegedüs¹; Klaudia Horváth¹; Jan Bohlen²; ¹Charles University; ²Helmholtz-Zentrum Geesthacht

2:25 PM

Strengthening of a Biodegradable Mg-Zn-Ca Alloy ZX50 after Processing by HPT and Heat Treatment: *Andrea Ojdanic*¹; Erhard Schafler¹; Jelena Horky²; Michael Zehetbauer¹; Dmytro Orlov³; ¹University of Vienna; ²AIT Austrian Institute of Technology; ³University of Nova Gorica

2:45 PM

The Recrystallization and Grain Growth Behavior of Unalloyed Mg and a Mg-Al Alloy: Aeriel Murphy¹; John Allison¹; ¹University of Michigan

3:05 PM

Microstructure and Mechanical Properties of Mg-7.71Gd-2.39Nd-0.17Zr Alloy after the Different Heat Treatments: *Shifeng Luo*¹; Guangyu Yang¹; Lei Xiao¹; Wanqi Jie¹; ¹State Key Laboratory of Solidification Processing, Northwestern Polytechnical University

3:25 PM Break

3:45 PM

Strain Heterogeneity Structures in Wrought Magnesium AZ31 under Reversed Loading: Cahit Aydiner¹; ¹Bogazici University

4:05 PM

THURSDAY PM

Influence of Low Temperature Forging on Microstructure and Low Cycle Fatigue Behavior of Cast AZ31B Mg Alloy: D. Toscano¹; *Sugrib Shaha*¹; S. Behravesh¹; H. Jahed¹; Bruce Williams²; ¹University of Waterloo; ²CanmetMATERIALS, Natural Resources Canada

4:25 PM

Superplasticity in a Chip-consolidated Mg₉₇Zn₁Y₂ Alloy with LPSO Phase: *Kazuha Suzawa*¹; Shin-ichi Inoue¹; Yoshihito Kawamura¹; Michimasa Miyanaga²; Katsuhito Yoshida²; Nozomu Kawabe²; Michiaki Yamasaki¹; ¹Kumamoto University; ²Sumitomo Electric Industries, LTD.

4:45 PM

Technological Solutions to Apply Magnesium Bulk Materials in Dynamic Bending and Axial Compression Load Cases: *Elmar Beeh*¹; Friedrich Horst¹; Philipp Strassburger¹; William Altenhof²; Ping Zhou³; Michael Worswick³; Samuel Kim³; ¹DLR- Institute of Vehicle Concepts; ²University of Windsor; ³University of Waterloo

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Structural Materials VI

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Thursday PM	Room: 104B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Clarissa Yablinsky, Los Alamos National Laboratory; Peter Hosemann, University of California, Berkeley

2:00 PM

Chemical Compatibility of Refractory Carbides with Hydrogen at Very High Temperatures Relevant for Nuclear Thermal Propulsion Applications: *Kelsa Benensky*¹, Steven Zinkle; Kurt Terrani², ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory

2:20 PM

Dynamic Strain Aging in Alloy 709 (Fe-25Ni-20Cr): *Abdullah Alomari*¹; Korukonda Murty¹; Nilesh Kumar¹; ¹North Carolina State University

2:40 PM

High Temperature Strength Characterization of Alloy 709: *Nicholas Shaber*¹; Harrison Pugesek¹; Jose Ramirez¹; Martin Taylor¹; Robert Stephens¹; Gabriel Potirniche¹; Indrajit Charit¹; ¹University of Idaho

3:00 PM

Irradiation Effects on Fe-9%Cr Grain Boundary Strength Measured via In-situ TEM Testing: Jennifer Watkins¹; Brian Jaques¹; *Allyssa Bateman*¹; Yaqiao Wu¹; Indrajit Charit²; Janelle Wharry³; Kayla Yano¹; Wen Jiang⁴; Chao Jiang⁴, ¹Boise State University; ²University of Idaho; ³Purdue University; ⁴Idaho National Laboratory

3:20 PM

Metallurgical Analysis of Ti Addition with Ta in Reduced Activation Ferritic-martensitic Steel: *HanKyu Kim*¹; Ji-Won Lee¹; Joon-Oh Moon²; Chang-Hoon Lee²; Hyun-Uk Hong¹; ¹Changwon National University; ²Korea Institute of Materials Science

3:40 PM Break

4:00 PM

Effect of Cold Working on the Corrosion and Carburization Behavior of Alloy 800HT in High Temperature CO₂ Environment: *Gokul Obulan Subramanian*¹; Sung Hwan Kim¹; Ho Jung Lee²; Changheui Jang¹; ¹KAIST; ²Central Research Institute, KHNP

4:20 PM

In-situ Testing of Fouling-resistant Coatings for PWR Fuel Cladding: Max Carlson¹; Alexander Slocum¹; Michael Short¹; ¹Massachusetts Institute of Technology

4:40 PM

The Effect of Dpa and Dpa Rate on the Strength and Precipitates Stability in Ion-irradiated Inconel 718: *Hi Vo*¹; Laurent Capolungo²; John Graham³; Nathan Almirall⁴; Scott Tumey⁵; Stuart Maloy²; G. Robert Odette⁴; Peter Hosemann¹; ¹University of California, Berkeley; ²Los Alamos National Laboratory; ³Iowa State University; ⁴University of California, Santa Barbara; ⁵Lawrence Livermore National Laboratory

5:00 PM

Void Swelling Reduction through Deformation Twinning in Austenitic Stainless Steels: *Gabriel De Bellefon*¹; Jean Claude van Duysen²; Todd Allen¹; Kumar Sridharan¹; ¹University of Wisconsin Madison; ²University of Tennessee

Materials for Energy Conversion and Storage – Energy Storage IV

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Thursday PM	Room: 229B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Partha Mukherjee, Purdue University; Leela Arava, Wayne State University

2:00 PM Invited

Understanding Hollow Metal Oxide Nanomaterial Formation with In Situ Transmission Electron Microscopy: Lei Yu¹; Ruixin Han¹; Xiahan Sang²; Jue Liu²; Amita Patel¹; Katherine Page²; *Beth Guiton*¹; ¹University of Kentucky; ²Oak Ridge National Laboratory

2:25 PM

Are We There Yet? — Predicting the Theoretical Limit for Na Storage of in Hard Carbon Anodes: Clement Bommier¹; Woochul Shin²; Wesley Surta²; Michelle Dolgos²; Xiulei Ji²; *P Greaney*³; ¹Princeton University; ²Oregon State University; ³University of California, Riverside

2:45 PM

Evaluation of Thin-film Aluminum Anodes for Lithium-ion Batteries: Mohammad Hossein Tahmasebi¹; Dominik Kramer²; Reiner Mönig³; *Steven Boles*¹; ¹Department of Electrical Engineering, The Hong Kong Polytechnic University; ²Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU); ³Institute for Applied Materials, Karlsruhe Institute of Technology (KIT)

3:05 PM Invited

Exploring the Impact of Transport Properties on the Cycling Dynamics of Redox-active Polymers Using Multi-scale Modeling: *Kyle Smith*¹; ¹University of Illinois at Urbana-Champaign

3:30 PM Break

3:45 PM

Hydrogen Storage Using Alane Stabilized via Surface Functionalization of Nanoporous Ordered Hard Carbons: *Waruni Jayawardana*¹; Christopher Carr¹; Xander Benziger²; Paul Jelliss²; Hongyang Zou³; Samuel Emery³; Mark Conradi³; Eric Majzoub¹; ¹University of Missouri- St. Louis; ²Saint Louis University; ³Washington University in St. Louis

4:05 PM Invited

Biomass-derived Lithium-sulfur Batteries with Enhanced Capacity and Extended Lifespan: Xiaodong Li¹; ¹University of Virginia

4:30 PM

Novel N-rGO Sandwiched Biphasic Sn-SnSb Alloy Nanocomposite for Use as High Performance Anode in Li-ion Battery: Sambedan Jena¹; Arijit Mitra¹; S B Majumder¹; Siddhartha Das¹; ¹Indian Institute of Technology, Kharagpur

4;50 PM

Hydrogen Evolution Reaction Characteristics of WS2 Electrocatalysts Synthesized via Electrophoretic Deposition from WO3 Colloidal Solution: *Kyu Hwan Lee*¹; Sung Mook Choi¹; Nosang Myung²; ¹Korea Institute of Matarials Science; ²UC Riverside

Mechanical Behavior at the Nanoscale IV – Atomistic Simulations

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Thursday PMRooMarch 15, 2018Local

Room: 101C Location: Phoenix Convention Center

Session Chairs: Lucas Hale, NIST; Seunghwa Ryu, KAIST

2:00 PM

How Strongly Does Calculation Method Influence Atomistic Predictions of Mechanical Properties?: *Lucas Hale*¹; Chandler Becker¹; Zachary Trautt¹; ¹National Institute of Standards and Technology

2:30 PM

The Effect of the Misfit Dislocation on the In-plane Shear Response of the Ferrite/Cementite Interface: Jaemin Kim¹; Keonwook Kang²; *Seunghwa Ryu*¹; ¹KAIST; ²Yonsei University

2:50 PM

Understanding Effect of Grain Boundaries on Deformation and Strength of Yttria-stabilized Tetragonal Zirconia Bicrystals: *Ning Zhang*¹; Mohsen Asle Zaeem¹; ¹Missouri University of Science and Technology

3:10 PM

Molecular Dynamics Study on Temperature-dependent Screw Dislocation Behavior in Body-centered Cubic Metal Nanopillars: *Gyuho Song*¹; Seok-Woo Lee¹; ¹University of Connecticut

3:30 PM Break

3:50 PM

Size Dependent Strength and Plasticity in Nanocrystalline Metals with Amorphous Grain Boundary: *Afzal Hossain Neelav*¹; Chuang Deng¹; ¹University of Manitoba

4:10 PM

Effect of Ag and Zr Solutes on Dislocation Emission from the S11(332) [110] Symmetric Tilt Grain Boundary in fcc Cu.: Valery Borovikov¹; Mikhail Mendelev¹; Alexander King¹; ¹The Ames Laboratory

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XVII – Phase Stability of Energy Materials

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Chih-Ming Chen, National Chung Hsing University; Thomas Reichmann, Karlsruhe Institute of Technology; Yu Zhong, Worcester Polytechnic Institute; Hiroshi Nishikawa, Osaka University; Shien Ping Feng, The University of Hong Kong; Yee-Wen Yen, National Taiwan University of Science & Technology; Song-Mao Liang, Clausthal University of Technology

Thursday PMRoom: 227AMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Yu Zhong, Worcester Polytechnic Institute; Songmao Liang, Clausthal University of Technology

2:00 PM Invited

Predication of the Intrinsic Properties of Multi-component Electrodes for Li-ion Batteries from Aspect of Thermodynamics: Dajian Li¹; Weibin Zhang¹; Thomass Reichmann¹; Damian Cupid¹; ¹Karlsruhe Institute of Technology

2:25 PM

Phase Equilibria of the Li-Si-C System for Advanced Anodes in Liion Batteries: *Song-Mao Liang*¹; Artem Kozlov¹; Martin Drüe²; Markus Rettenmayr²; Rainer Schmid-Fetzer¹; ¹Clausthal University of Technology; ²Friedrich Schiller University

2:45 PM

High-entropy Oxides Li(Ni0.2Mn0.2Co0.2Zn0.2Cu0.2)O2 as Cathode Materials for Lithium-ion Batteries: *Po-wei Huang*¹; Ralph Nicolai Nasara¹; Shih-kang Lin¹; ¹National Cheng Kung University

3:05 PM

Liquidus Projection of Quaternary Ge-Sn-Co-Sb System and Thermoelectric Properties of Sn/Ge Doped Skutterudite CoSb3: *Ping-Yuan Deng*¹; Hsin-Jay Wu¹; ¹Department of Materials and Optoelectronic science, National Sun Yat-sen University

3:25 PM Invited

Phase Equilibria and Thermodynamic Assessment of the Mo-Nb-Re Ternary System: *Shao-yu Yen*¹; Shu-chang Wu¹; M. Anshar Makhraja¹; Kai-Chi Lo²; An-Chou Yeh²; Kyosuke Yoshimi³; Chuan Zhang⁴; Shih-kang Lin⁵; ¹Department of Materials Science and Engineering, National Cheng Kung University; ²Department of Materials Science, Graduate School of Engineering, Tohoku University; ⁴CompuTherm LLC; ⁵Department of Materials Science and Engineering, National Cheng Kung University; Center for Micro/Nano Science and Technology, National Cheng Kung University

Powder Metallurgy of Light, Reactive and Other Nonferrous Metals – Titanium Powder Metallurgy and Additive Manufacturing II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Ma Qian, RMIT University (Royal Melbourne Institute of Technology); Zak Fang, University of Utah; Bowen Li, Michigan Technological University

Thursday PMRoom: 225AMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: James D. Paramore, United States Army Research Laboratory; Professor Xin Lu, University of Science of Technology Beijing

2:00 PM Keynote

Powder Metallurgy of Titanium – Past, Present, and Future: *Zhigang Fang*¹; Pei Sun¹; ¹University of Utah

2:40 PM Invited

Selective Laser Melting Based Additive Manufacturing (SLM-AM) of Commercially Pure Titanium (CP-Ti): Development of Cost-affordable Ti Powder for AM, and High-strength As-printed CP-Ti: *Ming Yan*¹; Yuhang Hou¹; Dawei Wang¹; ¹South University of Science and Technology of China

3:10 PM Invited

Powder Metallurgy Porous Ti-10Mo Alloy for Orthopedic Applications: Structure Characterization, Mechanical Properties, Vitro Cytotoxicity and Vivo Osteointegration: Xin Lu¹; Wei Xu¹; Xuanhui Qu¹; ¹University of Science and Technology, Beijing

3:40 PM Break

4:00 PM Invited

Utilizing Hydrogen for Improved Properties of Titanium Alloys Produced via Powder Metallurgy: *James Paramore*¹; Brady Butler¹; Jonathan Ligda¹; Z. Zak Fang²; Matthew Dunstan¹; ¹United States Army Research Laboratory; ²University of Utah

4:30 PM

Microstructure of Y₂O₃ Stabilized UFG CP Ti Prepared by Cryomilling and Spark Plasma Sintering: *Jirí Kozlík*¹; Josef Stráský¹; Petr Harcuba¹; Miloš Janecek¹; ¹Charles University

4:50 PM

Hot Deformation Behaviors of Powder Metallurgy Ti-6Al-4V Alloy with Different Microstructures: *Pei Sun*¹; Omar Kergaye¹; Z. Zak Fang¹; Ali Yousefiani²; Austin Mann²; ¹University of Utah, Dept of Metallurgical Engineering; ²The Boeing Company

Recent Advances in Functional Materials for Printed, Flexible and Wearable Electronics – Material, Process Integration, and Characterization

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Pooran Joshi, Oak Ridge National Laboratory; Nuggehalli Ravindra, New Jersey Institute of Technology; Jud Ready, Georgia Institute of Technology; Amit Pandey, LG Fuel Cell Systems Inc.; Suresh Sitaraman, Georgia Institute of Technology

Thursday PMRoom: 226BMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Suresh Sitaraman, Georgia Institute of Technology; Anming Hu, University of Tennessee; Kostas Sierros, West Virginia University

2:00 PM Invited

Challenges in Gravure and Direct-write Printing of Nano-colloidal Inks: *P. Randall Schunk*¹; Nelson Bell¹; Adam Cook¹; ¹Sandia National Laboratories

THURSDAY PM

2:30 PM

Room-temperature Aerosol Deposition of PLZT Films on Polymer Substrates: *U. (Balu) Balachandran*¹; ¹Argonne National Laboratory

2:50 PM

Nondestructive Examination Study in P(VDF-TrFE) Filter System and PM2.5 Spatial Resolution Technology by Using Synchrotron Transmission X-ray Microscopy: *E-wen Huang*¹; Hui-Tzu Yeh¹; Chun-Chieh Wang²; Wei-Chieh Huang¹; ¹National Chiao Tung University; ²National Synchrotron Radiation Research Center

3:10 PM Invited

Delaminated Inkjet Printed Lines with Improved Electro-mechanical Behavior: Megan Cordill¹; ¹Erich Schmid Institute of Materials Science

3:40 PM Break

4:00 PM

Stretchable Wirings Prepared with PU and Silver Flakes: *Cai-Fu Li*¹; Hao Zhang¹; Wanli Li¹; Zhi-Quan Liu¹; Katsuaki Suganuma¹; ¹Osaka University

4:20 PM

Structural-resolved Study of Piezoelectric Properties of P(VDF-TrFE) Films: Ying-Jhih Wang¹; *E-Wen Huang*¹; Wen-Tsung Chuang²; Wen-Ching Ko³; Jun-Yi Ke⁴; ¹National Chiao Tung University; ²National Synchrotron Radiation Research Center; ³Industrial Technology Research Institute; ⁴National Taiwan University

4:40 PM

Ultrafast Pulsed Light Sintering of Thermoelectric Nanoparticles: Roozbeh Danaei¹; Mostafa Ahmadzadeh¹; Courtney Hollar²; Tony Varghese²; Craig Owen¹; Md Sadeq Saleh³; Grant Norton¹; John McCloy¹; Yanliang Zhang⁴; *Rahul Panat*³; ¹Washington State University; ²Boise State University; ³Carnegie Mellon University; ⁴University of Notre Dame

5:00 PM Invited

Materials Integration for Flexible Electronics: Cu-interconnects, Supercapacitors: *Tolga Aytug*¹; M. Rager¹; F. Brown¹; W. Higgins¹; H. Wang¹; Z. Hood¹; C. Rouleau¹; Pooran Joshi¹; ¹Oak Ridge National Laboratory

Solar Cell Silicon – Silicon Production, Crystallization, and Properties

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Neale Neelameggham, Ind LLC; York Smith, University of Utah

Thursday PM	Room: 223
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: York Smith, University of Utah; Wenzhou Yu, Chongqing University

2:00 PM Invited

Solar Silicon by Direct Carbothermic Reduction - Review and Outlook: Jan-Philipp Mai¹; Neda Rezaii¹; ¹JPM Silicon GmbH

2:40 PM

Thermo-Calc of the Phase Diagram of the Fe-Si System: *Shadia Ikhmayies*¹; ¹Al Isra University

3:00 PM

Crystal Growth Mechanism of Si in Hypereutectic Al-Si Melt during the Electromagnetic Directional Solidification: Jie Li¹; *Wenzhou Yu*¹; Xuewei Lv¹; ¹Chongqing University

3:20 PM

Thermo-Calc of the Phase Diagram of Calcium Silicon (Ca-Si) System: Shadia Ikhmayies¹; ¹Al Isra University

Thermal and Mechanical Stability of Nanocrystalline Materials – Composites and Heterophase Interfaces

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jason Trelewicz, Stony Brook University; Daniel Bufford, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Jessica Krogstad, University of Illinois, Urbana-Champaign; Christian Brandl, Karlsruhe Institute of Technology

Thursday PM	Room: 128B
March 15, 2018	Location: Phoenix Convention Center

Session Chairs: Heather Murdoch, Army Research Laboratory; Fadi Abdeljawad, Sandia National Laboratories

2:00 PM Invited

Interfaces in HCP/BCC Structural Nanocomposites: Irene Beyerlein¹; ¹University of California, Santa Barbara

2:30 PM

Exploring the Thermal Evolution of Nanomaterials: From Nanometallic Multilayers to Nanostructures: *J. Sebastian Riano*¹; Andrea Hodge¹; ¹University of Southern California

2:50 PM

Mechanical and Thermal Stability of Nanocrystalline High-entropy Alloys: *Yu Zou*¹; Jeffrey Wheeler²; Huan Ma²; Ralph Spolenak²; ¹University of Toronto; ²ETH Zurich

3:10 PM Invited

Thermal Stability of Thin Ni-Fe Films on Sapphire: Amit Sharma¹; Aakash Kumar²; David Srolovitz²; *Eugen Rabkin*¹; ¹Technion; ²University of Pennsylvania

3:40 PM Break

4:00 PM Invited

Sensitization in Grain Size Gradients – Investigating the Effects of Low Temperature, Long Term Annealing on the Corrosion and Mechanical Response of Nanocrystalline Aluminum Alloys: *Heather Murdoch*¹; Denise Yin¹; B. Hornbuckle¹; Joseph Labukas¹; ¹Army Research Laboratory

4:30 PM

Microstructure Characterization and Mechanical Properties of Nanostructured Low Activation Steel Produced by Surface Mechanical Attrition Treatment: *Wenbo Liu*¹; Di Yun¹; Chaohui He¹; Chi Zhang²; Zhigang Yang²; ¹Xi'an Jiaotong University; ²Tsinghua University

4:50 PM Invited

Insights from Variable Temperature and Ultra-high Strain Rate Nanomechanical Testing of Model Nanocrystalline and Nanocomposite Materials Realized by Either Inert Gas Condensation or Alternating Atomic Layer Deposition, Sputtering and Inert Gas Condensation of Nanoparticles: Laszlo Petho¹; Rachel Schoeppner¹; Mikhail Polyakov¹; Juri Wehrs¹; Keith Thomas¹; Johann Michler¹; ¹Empa, Materials Science and Technology

Ultrafine-grained Materials X – Bulk Processing and Applications

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Thursday PMRoom: 103BMarch 15, 2018Location: Phoenix Convention Center

Session Chairs: Terry Lowe, Colorado School of Mines; Malgorzata Lewandowska, Warsaw University of Technology

2:00 PM

The Path to Generating Bulk Nanocrystalline Parts for Mechanical Testing: *B. Hornbuckle*¹; Thomas Luckenbaugh¹; Anthony Roberts¹; Anit Giri¹; Joseph Marsico¹; Scott Grendahl¹; Kris Darling¹; ¹U.S. Army Research Laboratory

2:20 PM

Shear Assisted Processing and Extrusion (ShAPE): Bulk Property Enhancement through Tailored Microstructure: Scott Whalen¹; Jens Darsell¹; Nicole Overman¹; Vineet Joshi¹; Suveen Mathaudhu¹; ¹Pacific Northwest National Laboratory

2:40 PM

Development of SPD Techniques for the Fabrication of Long-length Rods from UFG Materials: *Georgy Raab*¹; Ruslan Valiev¹; E. Fakhretdinova¹; A. Raab¹; ¹Ufa State Aviation Technical University

3:00 PM

Fabrication of Ultrafine Grained Plates with Low Anisotropy of Mechanical Properties: Malgorzata Lewandowska¹; *Marta Ciemiorek*¹; Witold Chrominski¹; Lech Olejnik¹; ¹Warsaw University of Technology

3:20 PM

Improving Mechanical and Functional Properties of Conductive Nanostructured Aluminum Alloys: Maxim Murashkin¹; Nikolay Belov²; Georgy Raab³; Ruslan Valiev³; ¹Institute of Physics of Advanced Materials, Ufa State Aviation Technical University; ²National University of Science and Technology "MISIS"; ³Ufa State Aviation Technical University

3:40 PM Break

4:00 PM

Nanostructured SPD-processed Ti-Nb-based Alloys for Load-bearing Implant Applications: *Mariana Calin*¹; Stefan Pilz¹; Annett Gebert¹; Michael Zehetbauer²; Jürgen Eckert³; ¹IFW Dresden; ²Vienna University; ³Montanuniversität Leoben

4:20 PM

Corrosion Behavior of Ultrafine Grained Aluminum and Magnesium Alloys: *Gaurav Argade*¹; Rajiv Mishra¹; ¹University of North Texas

5:00 PM

Mechanical Properties and Microstructures of a TiZr Alloy for Dental Implants: *Mathew Hayne*¹; Casey Davis¹; Rilee Meagher¹; Peter Rovira¹; Dean Wenger¹; Gordon Campbell¹; Michaela Rillings¹; Kyle Haines¹; Lenka Kunèická²; Radim Kocich²; Florian Dalla Torre³; Terry Lowe¹; ¹Colorado School of Mines; ²Technical University of Ostrava; ³Institut Straumann AG

2018 Technical Division Student Poster Competition – Extraction and Processing Division (EPD) Graduate Students

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

SPG-1: Diffusion of Cr in the Alloys during Corrosion in MgCl2-KCl Molten Salt: *Yuxiang Peng*¹; Ramana Reddy¹; ¹The University of Alabama

SPG-2: Electrochemical Reduction of Metal Oxides in Molten Salt: *Meng Shi*¹; Haiyan Zhao¹; Shelly Li²; ¹University of Idaho; ²Idaho National Laboratory

SPG-3: Nano Computed Tomography Characterization of Additive Manufactured Metal: Oluwaseun Adewumi¹; ¹North Carolina A&T University

SPG-4: Teaching Applied in the Characterization of SAE 1020 Steel Corrosion in Atmospheric Test and Salt Spray Testing: *Gonçalo Siqueira*¹; Emílio Silva²; Gabriel Santo²; Allan Muniz de Souza²; ¹University of São Paulo; ²Fatec Itaquera

SPG-5: Thermodynamic Properties of Silicon-boron Binary Alloys Determined Using EMF Measurements: *Muhammad Imam*¹; Ramana Reddy¹; ¹The University of Alabama

2018 Technical Division Student Poster Competition – Functional Materials Division (FMD) Graduate Students

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

SPG-6: Characterization of Magnetic Microstructure in Co-Pt Nanochessboards: *Isha Kashyap*¹; Marc De Graef¹; ¹Carnegie Mellon University

SPG-7: Determination of Crystalline Domains Alignment in the Cellulose Nanocrystal Films with an Improved Birefringence Technique: *Reaz Chowdhury*¹; Jeffrey Youngblood¹; ¹Purdue University

SPG-8: Fabrication of Acoustic Devices for Sensing Applications: *Lokesh Rana*¹; Reema Gupta¹; Monika Tomar¹; Vinay Gupta¹; ¹University of Delhi

SPG-9: Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscope Digital Image Correlation: *Shikha Shrestha*¹; Jairo Diaz¹; Siavash Ghanbari¹; Jeffrey Youngblood¹; ¹Purdue University

SPG-10: Integrated Coplanar Pd-SnO₂ Hetrostructures Based CNG/ PNG Sensor for Wireless Detection: *Avneet Singh*¹; Anjali Sharma²; Monika Tomar³; Vinay Gupta¹; ¹University Of Delhi; ²Atma Ram Sanatan Dharma College; ³Miranda House

SPG-11:Microstructural Stability of SSC Fibrous Cathode with Embedded SDC Particles for Solid Oxide Fuel Cells Operating on Hydrogen: Sewook Lee¹; Sangho Park¹; Dongwook Shin¹; ¹Hanyang university

SPG-12: Microstructure and Texture Behavior of P-type Bi2Te3-Sb2Te3 Alloy by Hot Extrusion: *Hyo-Sang Yoo*¹; YongHo Kim¹; HyeonTaek Son¹; ¹Korea Institute of Industrial Technology

SPG-13: Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into White Graphene Oxide Platelets: *Pranjal Nautiyal*¹; Archana Loganathan¹; Richa Agrawal¹; Benjamin Boesl¹; Chunlei Wang¹; Arvind Agarwal¹; ¹Florida International University

SPG-14: Oxide Rate of (111), (100) and Random Copper Films at Low Temperatures for the Application of Cu-to-Cu Direct Bonding: *Chih-Han Tseng*¹; Chih Chen¹; ¹National Chiao Tung University SPG-15: Synthesis and Evaluations of Photocatalytic Activity of Au/ZnO/ Silk Textile Hybrid Layered Structure for Flexible Multifunction Device Applications: *Wan-Ting Chiu*¹; Yuma Tahara²; Chun-Yi Chen¹; Tso-Fu Mark Chang¹; Tomoko Hashimoto²; Hiromichi Kurosu²; Masato Sone¹; ¹Tokyo Institute of Technology; ²Nara Women's University

SPG-16: Synthesis and Processing of NaSICON/Polymer Membranes: *Shan-Ju Chiang*¹; Caihong Liu¹; Leon Shaw¹; ¹Wanger Institute for Sustainable Energy Research / Illinois Institute of Technology

SPG-17: Using Cellulose Nanocrystals (CNCs) with Portland Cements – Effect on Rheology: *Francisco Montes*¹; ¹Purdue University

SPG-18: Zinc Oxide Thin Film for Application to Surface Plasmon Resonance Based Meningitidis DNA Detection: *Gurpreet Kaur*¹; Monika Tomar²; Vinay Gupta¹; ¹Department of Physics & Astrophysics, University of Delhi; ²Miranda House, University of Delhi

2018 Technical Division Student Poster Competition – Functional Materials Division (FMD) Undergraduate Students

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

SPU-1: Determination of the Activation Temperatures of Group III and IV Metals via XPS: Ryan Schalip¹; ¹Sandia National Laboratories

SPU-2: Fluorescence of Functionalized Carbon Nano-onions for Bioimaging Applications: *Jenna Severson*¹; Grant Crawford²; Mingrui Liu²; ¹Montana State University; ²South Dakota School of Mines and Technology

SPU-3: Synthesis and Characterization of Chitosan-based Composites Containing TiO₂ Nanoparticles and Their Antibacterial Activity: *Amanda Quintero Garcia*¹; John Lopez Calero¹; Yamalis Lopez Massa¹; Christian McRoberts Amador¹; Katyria Torres Mora¹; John Soto Vargas¹; Zuleika Oquendo Berrios¹; Kenneth Serrano Rodriguez¹; Karimar Amador Martinez¹; Luis Orta Rodriguez¹; Claralys Hernadez Santiago¹; Oscar Marcelo Suarez¹; ¹University of Puerto Rico, Mayaguez

2018 Technical Division Student Poster Competition – Light Metals Division (LMD) Graduate Students

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

SPG-19: Effect of Magnetic Field on the Tensile Properties of Friction Stir Processed 1100 Aluminum Alloy: *Hitesh Adhikari*¹; Rajiv Mishra¹; ¹University of North Texas

SPG-20: Modelling of Precipitate Evolution and Yield Strength of a Friction Stir Welded Al-Cu-Li Alloy: *Barnali Mondal*¹; Aniket Dutt²; Rajiv S. Mishra¹; ¹University of North Texas; ²University of Pittsburgh

2018 Technical Division Student Poster Competition – Light Metals Division (LMD) Undergraduate Students

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

SPU-4: A Computational Study of Phase Evolution and Stability in Multi-Rare Earth Mg-Alloys: *Adam Shaw*¹; Gregory Pomrehn²; Aurora Pribram-Jones³; Kevin Laws⁴; Lori Bassman¹; ¹Harvey Mudd College; ²The Boeing Company; ³Lawrence Livermore National Lab; ⁴The University of New South Wales SPU-5: Fabrication of Novel Aluminum Welding Fillers Reinforced with NbB2 Nanoparticles: Oscar Marcelo Suarez¹; Andres Calle¹; Cristina Crespo Roldan¹; ¹Material Advantage

2018 Technical Division Student Poster Competition – Materials Processing and Manufacturing Division (MPMD) Graduate Students

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

SPG-21: A General Multiphase Model for Macrosegregation and Columnar to Equiaxed Transition in Alloy Solidification: *Mahdi Torabi Rad*¹; Christoph Beckermann¹; ¹The University of Iowa

SPG-22: Effects of Strain Localization & Processing on the Corrosion of Nanostructured Aluminum: *Ramatou Ly*¹; Karl Hartwig¹; Homero Castaneda Lopez¹; ¹Texas A&M University

SPG-23: Effects of Variable and Constant Sealing Force Techniques for Studying the Formability Using Square Cup Die in Hydroforming of Cryorolled Al-Mg Alloy Sheets in FE Simulation: *Fitsum Feyissa*¹; Digavalli Ravi¹; ¹Indian Institute of Technology Delhi

SPG-24: Fatigue Behavior of Ultrafine Grained Al0.3CoCrFeNi High Entropy Alloy: *Kaimiao Liu*¹; Mageshwari Komarasamy¹; Bharat Gwalani¹; Mishra Rajiv¹; ¹University of North Texas

SPG-25: In-situ Strengthening of High Entropy Alloys by Friction Stir Processing: *Tianhao Wang*¹; ¹University of North Texas

SPG-27: Microfract: An Image Based Code for Micro-crack Path Prediction for Multi-phase Materials: *Siddhartha Srivastava*¹; Veera Sundararahavan¹; ¹University of Michigan

SPG-28: Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments: *Dunyong Deng*¹; Ru Peng¹; Johan Moverare¹; ¹Linkoping University

SPG-29: The Effect of Co Content on Fabrication of Full-scale Highperformance Alnico Magnets with Near-final Shape: *Emily Rinko*¹; Liangfa Hu²; Iver Anderson²; Aaron Kassen³; Emma White²; Wei Tang²; Lin Zhou²; Matthew Kramer²; ¹Iowa State University ; ²Ames Laboratory; ³Iowa State University

SPG-30: Towards a Standardized Technique of Determining Nanoindentation Derived Stress-Strain Curves of Metal Powder Particles: *Bryer Sousa*¹; Matthew Gleason¹; Jeremy Schreiber²; Danielle Cote¹; Victor Champagne³; ¹Worcester Polytechnic Institute; ²Penn State's Applied Research Lab; ³U.S. Army Research Laboratory

2018 Technical Division Student Poster Competition – Materials Processing and Manufacturing Division (MPMD) Undergraduate Students

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

SPU-6: Influence of Volumetric Energy Density on Defect Formation and Crystallographic Texture Development in 3-D Printed Hastelloy-X: Austin Ngo¹; Kin Ling Sham¹; Peijun Hou¹; Sebastien Dryepondt²; Xianghui Xiao³; Hahn Choo¹; ¹University of Tennessee; ²Oak Ridge National Laboratory; ³Argonne National Laboratory

SPU-7: Investigating Damping Performance of Powder Bed Fused Inconel 718 with Unfused Internal Features: *Thaddeus Crowe*¹; Christopher Howard²; Ross Cefalu³; Onome Scott-Emuakpor⁴; Tommy George⁴; Casey Holycross⁴; Bryan Langley⁴; Ryan O'Hara⁵; ¹Ohio University; ²Stanford University; ³Georgia Institute of Technology; ⁴Aerospace Systems Directorate (AFRL/RQTI); 5Air Force Institute of Technology

SPU-8: Laser Brazing of Nickel Superalloys with a Ni-Mn-Fe-Co-Cu High Entropy Alloy Nanopaste: *Samantha Lang*¹; Denzel Bridges¹; Anming Hu¹; ¹University of Tennessee

SPU-9: Optimization of Anodization Parameters for Production of Titanium Dioxide Nanotube Arrays: Alec Mittelstadt¹; ¹University of Utah

SPU-10: Porous Metal from Selective Dissolution of Al-Cu-Mg Alloy: *Keishlyann Báez Cruz*¹; Juan Vargas²; Oscar Suárez¹; Johnattan Díaz¹; ¹University of Puerto Rico at Mayagüez; ²University of Puerto Rico at Mayague

2018 Technical Division Student Poster Competition – Structural Materials Division (SMD) Graduate Students

Monday PMRoom:March 12, 2018Location

Room: Hall CD Location: Phoenix Convention Center

SPG-31: A Mechanism Study of Electromigration Effect: An In Situ Current Stressing Study: *Yu-chen Liu*¹; Shih-kang Lin¹; ¹National Cheng Kung University

SPG-32: A Phase-field Study on the Role of Lattice Misfit on the Microstructural Stability in Ni-based Single Crystal Superalloys: *Harikrishnan Rajendran*¹; Jean-Briac le Graverend¹; ¹Texas A&M University

SPG-33: Effects of Ar Ion Irradiation on Microstructural and Mechanical Properties of Zr-0.33wt.% Sn Alloy Probed through PAS, GI-XRD, Picoindentation and TEM: *Aruna Devi*¹; ¹Bhabha Atomic Research Centre

SPG-34: Geometrical Effect on the Energetic Size Effect Law: *Mohamed Refat*¹; Pere Maimi¹; ¹AMADE, University of Girona

SPG-35: Low Cycle Fatigue Behaviour and Micromechanics of a Beta Titanium Alloy Ti-5Al-5Mo-5V-3Cr: *Mainak Sen*¹; Swati Suman¹; Trideep Banerjee¹; Sujoy Kar¹; ¹Indian Institute of Technology

SPG-36: Markov Random Field Approach For Three-dimensional Microstructure Reconstruction: *Iman Javaheri*¹; Veera Sundararaghavan¹; ¹University of Michigan

SPG-37: MgO-MgCr₂O₄ Based Age-hardened Bulk Polycrystalline Oxide 'Ceramic Alloys': *Udit Kumar*¹; Luv Gurnani¹; Amartya Mukhopadhyay¹; ¹Indian Institute of Technology (IIT) Bombay

SPG-38: Microstructural Characterization of W-ODS Materials for Nuclear Applications: *Ryan DeMott*¹; Alan Xu²; Dhriti Bhattacharyya²; Sophie Primig¹; ¹UNSW; ²ANSTO

SPG-39: Prediction of Single Crystal Properties of Aluminum-Lithium Alloy Using a Stochastic Inverse Model: Srihari Sundar¹; Pinar Acar²; Veera Sundararaghavan¹; ¹University of Michigan, Ann Arbor; ²Virginia Tech

SPG-40: Radiation Resistant Nanostructured 304 Austenitic Steel Prepared Using ECAP and HPT: Andrew Hoffman¹; Haiming Wen¹; ¹University of Missouri S&T

SPG-41: Simulating Dislocation Patterning at the Micro Scale Using the Schnakenberg Model: *Aaditya Lakshmanan*¹; Veera Sundararaghavan¹; ¹University of Michigan, Ann Arbor

SPG-42: The Microstructure Characterization and Precipitate Simulation of G115 Heat Resistance Steel during Creep: *Yunhe Yu*¹; Chi Zhang¹; Zhengdong Liu²; Hao Chen¹; Zhigang Yang¹; ¹Tsinghua University, China; ²China Iron and Steel Research Institute, China

TECHNICAL PROGRAM

2018 Technical Division Student Poster Competition – Structural Materials Division (SMD) Undergraduate Students

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

SPU-11: Effect of Alumina Nanoparticles on the Portevin-Le Chatelier Phenomenon in Al-Mg Alloys: *Monica Diaz Pares*¹; David Florian-Algarin¹; Xiaochun Li; Hongseok Choi²; Oscar Suarez¹; ¹University of Puerto Rico at Mayaguez; ²Clemson University

SPU-12: Influence of Titanium Substrate Surface Preparation on the Growth of Titanium Dioxide Nanotubes: *Sabrina Curley*¹; Jevin Meyerink²; Grant Crawford²; ¹The University of Alabama; ²South Dakota School of Mines and Technology

SPU-13: Method to Increase Data Throughput of a Single Bending Fatigue Test: *Ross Cefalu*¹; Christopher Howard²; Thaddeus Crowe³; Onome Scott-Emuakpor⁴; Tommy George⁴; Casey Holycross⁴; ¹Georgia Institute of Technology; ²Stanford University; ³Ohio University; ⁴Aerospace Systems Directorate (AFRL/RQTI)

SPU-14: Structure and Ductility in Multicomponent B2-ordered Intermetallic Compounds: *Bailey Meyer*¹; Kyla Scott¹; Patrick Conway²; Lori Bassman¹; Kevin Laws²; ¹Harvey Mudd College; ²University of New South Wales

2018 Technical Division Young Professional Poster Competition – Extraction and Processing Division (EPD)

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

YP-1: A Scalable Gibbs Energy Minimization Model for Solvent Extraction Systems: *Chukwunwike Iloeje*¹; Diane Graziano¹; Joseph Cresko²; ¹Argonne National Laboratory; ²Department of Energy

YP-2: Application of Nanometric Zinc Oxide-containing Organic Film Evaluation Techniques to Radiation Cure through the Scanning Vibrating Electrode Technique - SVET Process: *Gonçalo Siqueira*¹; Hélio Wiebeck¹; Rocio Bendezú¹; Fabio Esper¹; Leonardo Silva¹; Wanderley Da Costa¹; ¹University of São Paulo

YP-3: Novel Synthesis of Various CaxSr1-xO Solid Solutions Using Polymer Complex Method (PCM) for Transesterfication Process: Maria Lourdes Potestades¹; Wen-Dung Hsu¹; Masahiro Yoshimura¹; Shih-Kang Lin¹; ¹National Cheng Kung University

2018 Technical Division Young Professional Poster Competition – Functional Materials Division (FMD)

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

YP-4: Polymer-ceramic Composite Coating for Promoting Bioactive Bone Formation of Bioabsorbable Metal: Yukyoung Kim¹; Min-Ho Lee²; ¹Institute of Oral Bioscience and BK 21 Program; ²Institute of Oral Bioscience and BK 21 Program

YP-5: Study of Structural and Electronic Properties of Hetero-interface for Photovoltaic Applications: *Rabi Khanal*¹; Nicholas Ayers¹; Soumik Banerjee²; Samrat Choudhury¹; ¹University of Idaho; ²Washington State University **YP-6: Toward Designing Flexible Two-dimensional Tin+1Cn MXenes for Multifunctional Applications**: *Ning Zhang*¹; Mohsen Asle Zaeem¹; ¹Missouri University of Science and Technology

2018 Technical Division Young Professional Poster Competition – Materials Processing and Manufacturing Division (MPMD)

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

YP-7: Effect of the Extrusion Conditions on the Microstructure and Residual Stress Distribution of Extruded AZ31B Magnesium Alloy: *Yong Lian*¹; Jin Zhang¹; Xiaoming Cui¹; Xiaomin Yuan¹; ¹University of Science and Technology Beijing

YP-8: Joining Lightweight Dissimilar Alloys by Using Electron Beam Welding: *Affaan Moosa*¹; Iain Todd¹; Brad Wynne¹; ¹The University of Sheffield

YP-9: Thermodynamic Properties of Mg-Si Alloys: *Mallikharjuna Bogala*¹; Ramana Reddy²; ¹University of South Carolina; ²The University of Alabama

2018 Technical Division Young Professional Poster Competition – Structural Materials Division (SMD)

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

YP-10: A Holistic Proposal for the Conversion of Metallurgical Residues into Low CO, Foot-print Building Materials: *Remus Ion Iacobescu*¹; Yiannis Pontikes¹; ¹KU Leuven

YP-11: Corrosion Protection of Aluminum Alloy in Salt Solution with Polymer Nanocomposite Coatings: *Junqing Zhang*¹; Md Fazlay Rabbey¹; Caleb Smith¹; Cheng-fu Chen¹; Lei Zhang¹; ¹University of Alaska Fairbanks

YP-12: Ga-doping Effect upon Sn-0.7Cu/Cu Interfacial Reactions and the Investigation of Sn-Cu-Ga Phase Diagram: *Chih-han Yang*¹; Yu-chen Liu¹; Kuo Yi-kai¹; Lin Shih-kang¹; ¹National Cheng Kung University

YP-13: Reversible Devitrification in Amorphous As₂Se₃ under Pressure: *Azkar Saeed Ahmad*¹; Jianzhong Jiang²; ¹Southern University of Science and Technology (SUSTech); ²Zhejiang University

9th International Symposium on High Temperature Metallurgical Processing – Poster Session I Sponsored by: TMS Extraction and Processing Division, TMS:

Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

Session Chair: Xuewei Lv, Chongqing University

D-1: Atomistic Insight into Structural Role of Boron in High Temperature CaO-SiO2 Slag System: *Mengyi Zhu*¹; ¹RWTH Aachen University **D-3: Effect of Chemical Components of Mould Flux on Dissolution Rate of Al2O3 into Molten Flux for High Manganese High Aluminum Steel:** *Kun-peng Xu*¹; Ya-bing Zhang¹; Qian Wang¹; Sheng-ping He¹; ¹Chongqing University

D-4: Effect of Temperature on Oxidation Behavior of Cr-Mo-V Steel with Different Cr Contents for High-speed Train Brake Discs: *Dan Wu*¹; Fuming Wang¹; Changrong Li¹; Yaxu Zheng¹; Wei Shen¹; ¹School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing

D-6: Evolution of Al-Ti-Mg-O Inclusions during Refining and Casting Process of Interstitial Free Steel: *Xiao Pengcheng*¹; Xiaoyan Wu¹; Liguang Zhu¹; Qingjun Zhang¹; Yihua Han¹; ¹North China University of Science and Technology

D-7: Experimental Study on Carburization of Higher Vanadium-bearing Hot Metal: *Deng Ma*¹; ¹Central Iron and Steel Research Group

D-9: Influence On The Crystallization Phase Of Mold Flux By Magnetic Fields: *LuMing Zhao*¹; Li Zhao¹; Yu Wang¹; ¹Chongqing University

D-10: Kinetics Study on Limestone Decomposition in Early Converter Slag: Nan Wang¹; Haohua Deng¹; Min Chen¹; Ming Chen¹; Ying Wang¹; *Cuihuan Huang*¹; ¹Northeastern University

D-11: Mathematical Modeling and Analysis of Converter Slagging and Steelmaking Process by Replacing Part of Lime With Limestone: *Haohua Deng*¹; Nan Wang¹; Min Chen¹; Lei Xu¹; ¹Northeastern University

D-12: Research of Digital Platform and Process Guidance Model in EAF Steelmaking Process: Lingzhi Yang¹; Rong Zhu²; Kai Dong²; Guangsheng Wei²; *Zeshi Yang*¹; ¹Central South University; ²University of Science and Technology Beijing

D-13: Research on Factors Affecting and Prediction Model of Silicon Content in Hot Metal of Corex: *Bingjie Wen*¹; ShengLi Wu¹; Heng Zhou¹; Jiacong Zhang¹; Kai Gu¹; ¹University of Science and Technology Beijing

D-14: Research on the Long Life Blowpipe Liner of BF Air Supply Apparatus: *Li Zhu*¹; Keng Wu¹; Wenlong Zhan²; Guoyou Liu³; Kai Wang³; Yulin Guo⁴; ¹University of Science and Technology Beijing; ²University of Science and Technology Liaoning; ³Shouqin Metal Materials Co.Ltd.; ⁴Beijing Yaxinda Industry and Trade Co., LTD.

D-15: Selection of Viscosity Model of Chromium-Containing Converter Slag and Investigation of the Effect of Compositions on Viscosity: *Bing Huang*¹, Mingmei Zhu¹; Peng Zhu¹; ¹Chong Qing University

D-17: Study on Grain Size and Porosity of the Produced Lime from Limestone in Early Converter Slag: *Guangzong Zhang*¹; Nan Wang¹; Min Chen¹; Haohua Deng¹; Xiaoao Li¹; ¹Northeastern University

D-18: Study on the Volatilization of Sb2S3 in Vacuum: Heng Xiong¹; Zhengen Zhou¹; Bin Yang¹; Dachun Liu¹; *Baoqiang Xu*¹; Deng Yong¹; Yang Jia¹; ¹Kunming University of Science and Technology

D-19: The Effects of ZrO₂, Y₂O₃ and Sc₂O₃ on the Properties of Mould Fluxes for High Manganese High Aluminum Steels: *Shaoda Zhang*¹; Qian Wang¹; Lilong Zhu¹; Shengping He¹; ¹Chongqing University

D-20: Thermodynamic Calculation on Reactivity between Slag and High Mn-high Al Steel: *Chun-jiang Guo*¹; Shengping He¹; Ya-Bing Zhang¹; Qian Wang¹; ¹ChongQing University

D-22: Viscosity of Mould Flux under Electromagnetic Field: *Li Zhao*¹; Yu Wang¹; Luming Zhao¹; ¹Chongqing University

9th International Symposium on High Temperature Metallurgical Processing – Poster Session II

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; Mark Kennedy, Proval Partners SA; Dean Gregurek, Rhi Ag; Shijie Wang, Rio Tinto Kennecott Utah Copper; Baojun Zhao, The University of Queensland; Onuralp Yücel, ITU; Ender Keskinkilic, Atilim University; Jerome Downey, Montana Tech of the University of Montana; Zhiwei Peng, Central South University; Rafael Padilla, University of Concepcion

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Mingjun Rao, Central South University

D-23: Alumino-thermic Reduction of SrO and SrCO₃: *Selim Ertürk*¹; Rasit Sezer²; Cuneyt Arslan¹; ¹Istanbul Technical University; ²Karadeniz Technical University

D-25: Analysis of Operational Parameters Affecting the Degree of Metalization of DRI in a Reduction Shaft of the COREX Process and Improvement Measures: Shengli Wu¹; *Jiacong Zhang*¹; Mingyin Kou¹; Bingjie Wen¹; Heng Zhou¹; ¹University of Science and Technology Beijing

D-26: Dechlorination of Zinc Oxide Dust by Microwave Rosating with RSM Optimization: *Aiyuan Ma*¹; Tingfang Xie²; Guo Jiang²; Xuemei Zheng¹; Libo Zhang³; Jinhui Peng³; ¹School of Chemistry and Materials Engineering, Liupanshui Normol University; ²Yunnan Chihong Zn & Ge Co., Ltd; ³Yunnan Provincial Key Laboratory of Intensification Metallurgy, Key Laboratory of Unconventional Metallurgy, Ministry of Education

D-27: Effect of TiO2 on the Viscous Behavior of High Alumina Blast Furnace Slag: *Zhiming Yan*¹; Zhengde Pang¹; Xuewei Lv¹; Guibao Qiu¹; Chenguang Bai¹; ¹Chongqing University

D-28: Fundamental Research on the Iron Nugget Process from Carbon Composite Pellet: *Shihan Zhang*¹; Guang Wang¹; Yaxing Du¹; Jingsong Wang¹; Qingguo Xue¹; ¹University of Science & Technology Beijing

D-30: Influence of Coke Quality on Main Technical Indexes of Blast Furnace: *Kai Gu*¹; Shengli Wu¹; Mingyin Kou¹; Heng Zhou¹; Laixin Wang¹; Shun Yao¹; Binbin Du¹; ¹University of Science and Technology Beijing

D-31: Kinetic Analysis of Blast Furnace Dust Recycling with Flash Reduction Process at High Temperature: Jin Xu¹; Jianhua Xin¹; Nan Wang¹; Min Chen¹; Hui Li¹; Ming Chen¹; ¹School of Metallurgy, Northeastern University

D-32: Novel Utilization Technology of Low Grade Nb-bearing Iron Concentrate from Bayan Obo Ore in China: Guang Wang¹; Jingsong Wang¹; Qingguo Xue¹; ¹University of Science and Technology Beijing

D-33: Preparation and Characterization of Iron-coke Briquette: *Pei-ye Yan*¹; Hui-qing Tang¹; ¹University of Science and Technology Beijing

D-34: Preparation of Direct Reduced Iron Using Crumb Rubber Powder: *Xiufeng Fu*¹; Huiqing Tang¹; Zhiwei Yun¹; ¹State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

D-35: Preparation of Oxidized Pellets with Chrome Ore: *Ming-feng Ye*¹; Guang-liang Wu¹; ¹Central South University

D-36: Research and Application of Sintering Surface Steam Spraying Technology for Energy Saving and Quality Improvement: *Pei Dong*¹; ¹Shougang China

D-37: Study on Bonding Mechanism of Sinter Grate Bar: *Pei Dong*¹; ¹Shougang China

D-38: Optimizing Iron Ore Matching for Sintering Based on High Temperature Characteristic Numbers: *Yong Zhao*¹; Keng Wu¹; Wenlong Zhan²; Chunen Zhu¹; Xiaodong Du¹; ¹University of Science and Technology Beijing; ²University of Science and Technology Liaoning

TECHNICAL PROGRAM

D-39: Mineral Composition and Microstructure Changes of Iron Ore Sinter during the Gas-Solid Reduction: *Xia Zhao*¹; Ze-jun Ma²; Yan-juan Yang³; Yong Zhao²; Wen Pan²; ¹Shougang Institute of Technology; ²Shougang Research Institute of Technology; ³Shougang Technician College

D-40: Roasting Kinetics of Molybdenite Concentrates: *Selçuk Kan*¹; Kagan Benzesik¹; Onuralp Yücel¹; ¹Istanbul Technical University

D-41: Study on Direct Reduction of Low-grade Iron Ore-coal Mini-pellets in Coal-based Rotary Kiln: *Zhikai Liang*¹; Zhucheng Huang¹; Lingyun Yi¹; Tao Jiang¹; Biao Lu¹; Ronghai Zhong¹; ¹Central South University

D-42: Study on Influences of Different Ti-bearing Materials on MgObearing Pellets Metallurgical Properties: Yan Zhang¹; *Gele Qing¹*; Wenbin Huang²; Yunqing Tian¹; Wenwang Liu²; Ming Li²; Luyao Zhao¹; Li Ma¹; Haoyu Cai¹; ¹Shougang Research Institute of Technology; ²Shougang Jingtang United Iron and Steel Co. Ltd

D-43: Supergravity Separation of Pb and Sn from Waste Printed Circuit Boards: *Long Meng*¹; Zhe Wang¹; Yiwei Zhong¹; Kuiyuan Chen¹; Zhancheng Guo¹; ¹Uinversity of Science and Technology Beijing

D-44: The Effect of Temperature and Additive on Transport and Transformation of P of High-phosphorus Iron Ore during Carbothermic Reduction: Yuanyuan Zhang¹; Qingguo Xue¹; Guang Wang¹; Jingsong Wang¹; ¹University of Science and Technology Beijing

D-45: Thermodynamic Calculations on Direct Reduction of Chromiumbearing Vanadium Titanium Magnetite: *Wenchao He*¹; Xuewei Lv¹; Xueqin Li¹; Yu Zhang¹; ¹Chongqing University

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling – Poster Session Sponsored by: TMS Structural Materials Division, TMS: Nuclear

Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California, Berkeley; Julie Tucker, Oregon State University; Elaine West, Knolls Atomic Power Laboratory

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

F-1: Current Status of In-situ Tritium Measurements from TMIST-3A: Walter Luscher¹; David Senor¹; Kevin Clayton²; Gary Hoggard²; ¹Pacific Northwest National Laboratory; ²Idaho National Laboratory

F-2: Dose Effect on the Irradiation Induced Loop Density and Burgers Vector in Ion-irradiated Alloy T91 Irradiated In-situ in a TEM: Djamel Kaoumi¹; Ce Zheng¹; ¹North Carolina State University

F-3: Grain Boundary Influence on Displacement Cascades in ZrC: Raul Florez Meza¹; *Joseph Graham*¹; ¹Missouri University of Science and Technology

F-4: In Situ TEM Study on the Radiation Response of Nanotwinnednanovoid Cu: *Cuncai Fan*¹; Youxing Chen²; Jin Li³; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University; ²Los Alamos National Laboratory; ³Texas A&M University

F-5: Investigation of Helium-Defect Interactions in Tungsten through Coordinated Modeling and Experiment: *Jie Qiu*¹; Xunxiang Hu²; Brian Wirth¹; ¹University of Tennessee; ²ORNL

F-6: Irradiation Response of Twin Boundaries in Face-centered Cubic Metals with Low Stacking Fault Energy: *Jin Li*¹; Youxing Chen²; Kaiyuan Yu³; Cuncai Fan¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University; ²Los Alamos National Laboratory; ³China University of Petroleum-Beijing

F-7: Radiation Response in Single-phase Concentrated Solid Solution Alloys: *Chenyang Lu*¹; Taini Yang¹; Lumin Wang¹; Yanwen Zhang²; Fei Gao¹; Ke Jin²; Hongbin Bei²; William Weber³; ¹University of Michigan; ²Oak Ridge National Laboratory; ³University of Tennessee F-8: Self-organization of Helium Precipitates into Elongated Channels within Metal Nano-layers: *Di Chen*¹; Nan Li¹; Dina Yuryev²; Kevin Baldwin¹; Michael Demkowicz³; Yongqiang Wang¹; ¹Los Alamos National Laboratory; ²Department of Materials Science and Engineering, Massachusetts Institute of Technology; ³Department of Materials Science and Engineering, Texas A&M University

F-9: Studying the Influence of In Situ Proton Irradiation on Corrosion in Molten Salt: *Weiyue Zhou*¹; Michael Short¹; ¹Massachusetts Institute of Technology

F-10: Swelling Quantification of High Dose Helium Implantation in Different Materials Using a Helium Ion Beam Microscope: *Manfred Virgil Ambat*¹; David Frazer¹; Mehdi Balooch¹; Yun Yang¹; Peter Hosemann¹; ¹University of California, Berkeley

F-11: The Role of Oxides in Nanostructured Ferritic Alloys and Fe-Y2Ti2O7 Bilayers: Interfaces, Helium Partitioning and Bubble Formation: *Tiberiu Stan*¹; Yuan Wu²; Jim Ciston³; Takuya Yamamoto²; Yongquiang Wang⁴, Richard Cox⁵, Robert Odette²; ¹Northwestern University; ²University of California, Santa Barbara; ³Lawrence Berkeley National Laboratory; ⁴Los Alamos National Laboratory; ⁵Pacific Northwest National Laboratory

Accident Tolerant Fuels for Light Water Reactor – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Lingfeng He, Idaho National Laboratory; Andrew Nelson, Los Alamos National Laboratory; Kumar Sridharan, University of Wisconsin; Peng Xu, Westinghouse Electric Company

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

F-12: High Temperature Oxidation Behavior of Zirconium Silicides and their Coating by Laser Cladding on the Zircaloy-4 Tube: JaeJoon Kim¹; Hyun Gil Kim²; Ho Jin Ryu¹; ¹KAIST; ²KAERI

F-13: Optimization of Process Parameters for Thin-wall Tube Fabrication of FeCrAl Alloys: *Zhiqian Sun*¹; Yukinori Yamamoto¹; ¹Oak Ridge National Laboratory

F-19: Chromium-based Accident-tolerant Fuel Concept: Koroush Shirvan¹; Yifeng Che¹; Arunkumar Seshadri¹; Martin Sevecek¹; Malik Wagih¹; Anil Gurgen¹; Mohammad Shahin¹; Bren Philips¹; ¹Massachusetts Institute of Technology

Additive Manufacturing of Metals: Establishing Location Specific, Processing-Microstructure-Property-Relationships III – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Shaping and Forming Committee, TMS: Additive Manufacturing Committee

Program Organizers: Eric Lass, National Institute of Standards and Technology; Mark Stoudt, National Institute of Standards and Technology; Judith Schneider, University of Alabama at Huntsville; Lee Semiatin, US Air Force Research Laboratory; Behrang Poorganji, GE Additive; Clay Houser, QuesTek Innovations

Monday PM	
March 12, 2018	

Room: Hall CD Location: Phoenix Convention Center

Session Chair: Eric Lass, National Institute of Standards and Technology

A-1: Additive Manufacturing of Oxide Dispersion Strengthened (ODS) Steel via Selective Laser Melting: *Hannah Coe*¹; Somayeh Pasebani¹; ¹Oregon State University POSTERS

TECHNICAL PROGRAM

A-2: Aluminium-molybdenum System by Friction Stir Surface Alloying Process: Mahesh V.P.¹; *Amit Arora*¹; ¹Indian Institute of Technology Gandhinagar

A-3: Application of the Small Punch Test to Estimate the Mechanical Properties of Additive Manufactured Materials: *Sean Davies*¹; Robert Lancaster¹; Spencer Jeffs¹; Henry Illsley¹; Gavin Baxter²; ¹Swansea University; ²Rolls-Royce plc

A-4: Bead Formation in Powder Bed Melting of Inconel Material: Leila Ladani¹; *Jafar Razmt*²; ¹University of Texas at Arlington; ²University of Hartford

A-5: Deformation Mechanism of Inconel 718 Made by Additive Manufacturing and Investigated by In-situ Neutron Diffraction: *Qingge Xie*¹; Yan Chen¹; Alexandru Dan Stoica¹; Gian Song¹; Sarma Gorti¹; Radhakrishnan Balasubramaniam¹; Hassina Z Bilheux¹; Michael M Kirka¹; Ryan R Dehoff¹; Jean-Christophe Bilheux¹; Louis J. Santodonato¹; Ke An¹; ¹UT Battelle LLC

A-6: Design and Testing of Thin-walled Elements of Additively Manufactured: *Jalil Alidoost*¹; Kevin Hemker¹; James Guest¹; Matthew Begley²; ¹Johns Hopkins University; ²University of California, Santa Barbara

A-7: Direct Laser Cladding an Emerging Technique for Development of Component: *Jyotsna Dutta Majumdar*¹; ¹Indian Institute of Technology Kharagpur

A-9: Effects of Different Laser Parameters on Microstructure and Melt Pool of Additively Manufactured 316L Stainless Steel: *Filippo Vecchiato*¹; Mark Wenman¹; Paul Hooper¹; ¹Imperial College London

A-10: Effects of Gas Pressure on Melt Track Shape and Quality in SLM: *Jonathan Gibbs*¹; Christoph Meier¹; Ryan Penny¹; Stuart Baker¹; Yu Zou¹; Johannes Weinberg¹; Reimar Weissbach¹; Martin Feldmann¹; A. John Hart¹; ¹MIT

A-11: Efficiency of Use of High-strength Aluminum Powders at the Press of Details of the Aerospace Equipment: *Ivan Redkin*¹; Aleksander Evgenov¹; Vladimir Korolev¹; Dmitriy Ryabov¹; ¹RUSAL Global Management B. V.

A-12: Enhancement of Density and Pseudoelasticity of a Cu-Al-Ni-Mn Shape-memory Alloy Produced by Selective Laser (Re)Melting: *Tobias Gustmann*¹; Holger Schwab¹; Uta Kühn¹; Simon Pauly¹; ¹IFW Dresden

A-13: In-situ Synchrotron Transmission X-ray Microscopy and Selfconsistent Modeling for Mechanical Behavior Study of Addictive Manufacturing Ti6Al4V Implants: Kuan Ying Tseng¹; *E-Wen Huang*¹; Chun Chieh Wang²; Pei Yi Tsai³; Shin Yi Huang³; Nan Yow Chen⁴; ¹National Chiao Tung University; ²National Synchrotron Radiation Research Center; ³Biomedical Technology and Device research Laboratories, Industrial Technology Research Institute; ⁴National Center for High-Performance Computing

A-14: In Operando High-speed X-ray Imaging of Inconel 625 during Laser Powder Bed Fusion Additive Manufacturing: Enyu Guo¹; Chu Lun Alex Leung¹; Robert Atwood²; *Peter Lee*¹; ¹University of Manchester; ²Diamond Light Source Ltd

A-15: Local Micro-structure of Inconel Material Fabricated Using Powder Bed Laser Melting Process: Leila Ladani¹; *Ali Keshavarz*¹; ¹University of Texas at Arlington

A-16: Microstructural Investigation of Inconel 625 – Inconel 738 Functionally Graded Material Fabricated by Laser Metal Deposition: *Abhishek Ramakrishnan*¹; Chaitanya Amilkanthwar¹; Arpit Sethi¹; Guru Dinda¹; ¹Wayne State University

A-17: Microstructure Evolution of Metallic Parts Influenced by Rapid Solidification during Additive Manufacturing: *Matjaz Godec*¹; Elena Chernyshova²; Jaka Burja¹; Barbara Šetina Batic¹; Bojan Podgornik¹; ¹Institute of Metals and Technology; ²National Institute of Chemistry

A-18: On the Relationships between Process Parameters, Microstructure and Properties of Selectively Laser-melted Ti-6V-4V: Jonathan Stef¹; Angéline Poulon-Quintin¹; Mohamed Gouné¹; ¹ICMCB-CNRS

A-19: Understanding Silicon Reinforcement in Ti6Al4V to Enhance Wear Resistance: Jose Avila¹; Zumurda Alrawahi¹; Susmita Bose¹; Amit Bandyopadhyay1; 1Washington State University

A-20: X-ray Powder Diffraction of Additively Manufactured (3D Printed) Inconel-718: Ryan Collette¹; *Donna Guillen*²; Mohamed Elbakhshwan³; Lynne Ecker³; Jeff King¹; ¹Colorado School of Mines; ²Idaho National Laboratory; ³Brookhaven National Laboratory

Additive Manufacturing of Metals: Fatigue and Fracture – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Nikolas Hrabe, National Institute of Standards and Technology; Steve Daniewicz, University of Alabama; Nima Shamsaei, Auburn University; Mohsen Seifi, Case Western Reserve University/ASTM International; John Lewandowski, Case Western Reserve University

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

Session Chair: Nikolas Hrabe, National Institute of Standards and Technology

A-21: Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing: *V.A. Popovich*¹; E. V. Borisov²; V. Heurtebise³; T. Riemslag¹; A. A. Popovich²; V. Sh. Sufiiarov²; ¹Delft University of Technology; ²Peter the Great Saint-Petersburg Polytechnic University; ³SIGMA Clermont

A-22: Effect of Loading Direction and Heat Treatment on Fatigue Crack Growth Rate of CoCrW Alloy Additively Manufactured by Selective Laser Melting: *Ho Won Lee*¹; Dong Jun Lee¹; Seong-Hoon Kang¹; Dongkyu Kim²; ¹Korea Institute of Materials Science; ²Korea Atomic Energy Research Institute

Additive Manufacturing: Building the Pathway towards Process and Material Qualification – Poster Session

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Additive Manufacturing Committee *Program Organizers:* John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas - Austin; Christian Leinenbach, Empa-

Bourell, University of Texas - Austin; Christian Leinenbach, Empa-Swiss Federal Laboratories for Materials Science and Technology; James Sears, Carpenter Technology Coporporation; Christopher Tuck, University of Nottingham

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

A-23: Additive Manufacturing on Satellites: Current State, Future Applications, Gaps and Needs, and Transition Strategies: *Ben Jafek*¹; Alexander Jafek²; ¹Brigham Young University; ²University of Utah

A-24: AM Informatics – Optimizing Additive Manufacturing through Effective Use of Materials and Process Information: *Najib Baig*¹; James Goddin¹; Will Marsden¹; ¹Granta Design

A-25: Applied Machine Vision and Machine Learning to the Characterization and Qualification of Additive Manufacturing Powder Feedstock: *Anna Smith*¹; Brian DeCost¹; Elizabeth Holm¹; ¹Carnegie Mellon University

A-26: Characterization of Additive Manufactured Microstructures Using Ultrasonic Measurements: Hualong Du¹; *Paul Panetta*¹; Lisa Deibler²; Bradley Jared²; ¹Applied Research Associates, Inc.; ²Sandia National Lab

A-27: Effect of Build Geometry on the Microstructure and Tensile Properties of 17-4 PH Stainless Steel Parts Prepared by Selective Laser Melting: Yu Sun¹; Mark Aindow¹; Rainer Hebert¹; ¹University of Connecticut

POSTERS

A-28: Effects of Atomizing Pressure, Melt Temperature and Flow Rate on the Particle Size and Yield of Gas Atomized Aluminum Alloy Powders for Additive Manufacturing: *Sharon Park*¹; Le Zhou¹; Edward Dein¹; Yongho Sohn¹; ¹University of Central Florida

A-30: The Influence of FDM Build Parameters on the Mechanical Properties of 3D-printed ABS: Celeste Brown¹; Kemar Hibbert¹; ¹Howard University

A-31: Understanding Properties and Effects of Reused Metal Powder in the LENS DED Process: *Katherine Terrassa*¹; Sen Jiang¹; Joshua Yee²; Nancy Yang²; Julie M. Schoenung¹; ¹University of California, Irvine; ²Sandia National Laboratories

Advanced Magnetic Materials for Energy and Power Conversion Applications – Poster Session -Magnetism in Energy Applications

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Orlando Rios, Oak Ridge National Laboratory; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory; Alex Leary, NASA Glenn; Ian Ashcroft, University of Nottingham; Tanjore V. Jayaraman, University of Michigan, Dearborn

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

B-1: A Study on Microstructure of Nb-Ti Based Alloy with Strain and Heat-treatment: *Yong-Ho Kim*¹; Hyo-Sang Yoo¹; Hyeon-Taek Son¹; Duk-Young Hwang²; ¹Korea Institute of Industrial Technology; ²KAT Ltd.

B-3: Development of Filaments for 3D Printing from Recycled Materials: Helena Khazdozian¹; Juan Manzano²; Igor Slowing¹; *Ikenna Nlebedim*¹; ¹Ames Laboratory; ²Iowa State University

B-4: High Temperature Performance of Dy-free Nd₂Fe₁₄B Basedpermanent Magnets: *Kinjal Gandha*¹; Wei Tang¹; Cajetan Nlebedim¹; ¹Ames Laboratory

B-5: Investigating an Exchange-spring Magnet for Direct-drive Wind Turbine Generators: Helena Khazdozian¹; Scott McCall²; Aditya Vedantam³; Devin Imholte⁴; Ananth Iyer⁵; *Ikenna Nlebedim*¹; ¹Ames Laboratory; ²Lawrence Livermore National Laboratory; ³University at Buffalo; ⁴Idaho National Laboratory; ⁵Purdue University

B-6: Tuning of Magnetic Properties of Heusler-type Glass-coated Microwires: Valentina Zhukova¹; Mihail Ipatov¹; Juan del Val¹; *Arcady Zhukov*²; ¹University of Basque Country; ²Basque Country University and Ikerbasque

Advances in Additive Manufacturing of Titanium and Titanium Based Alloys – Poster Session

Sponsored by: TMS: Additive Manufacturing Committee Program Organizers: Peter Collins, Iowa State University; Leon Prentice, CSIRO; Andrew Baker, The Boeing Company; Craig Brice, Lockheed Martin Space Systems Company

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

A-32: Validation of a High Integrity Joining/ Repair Process for Aerospace Materials: *Aran Johal*¹; Helen Davies¹; Peter Davies¹; Silvia Marchisio²; ¹Swansea University; ²Rolls Royce plc

Aluminum Alloys, Processing and Characterization – Poster Session I - Development of Aluminum Alloy Processing

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

C-1: Aluminum Matrix Composites: Cameron Shackleford¹; ¹Oak Ridge National Laboratory

C-2: Effect of Mg on Microstructure and Mechanical Property of Al-B Alloy: *Jae-Ik Cho*¹; Cheol-Woo Kim¹; Min-Suk Oh¹; Jung-Han Kim¹; ¹Korea Institute of Industrial Technology

C-3: Effects of ZnO Nanoparticles and its Decomposition on the Mechanical Behavior of A356 Gravity Casting Alloy: Jeheon Jeon¹; Donghyun Bae¹; ¹Yonsei University

C-4: Investigation on Mechanochemical Behavior of Al-Nb-B/B₂O₃ System Reactive Mixtures to Synthesize Metal Matrix Composites: *Petra Hanusova*¹; ¹Brno University of Technology, Faculty of Mechanical Engineering

C-5: High Thermal Conductivity Aluminum Alloy for High Pressure Die Casting: *Cheol Woo Kim*¹; Jae-Ik Cho¹; Jung-Han Kim¹; Min-Suk Oh¹; Young-Chan Kim¹; ¹KITECH

C-6: Study on the Process Parameters of Preparing Al-Mg-Sc Alloy by Electrodeposition: *Hao Ren*¹; Li Jidong¹; Wang Yiyong¹; ¹University of Science and Technology Liaoning

C-7: Formation Mechanism of Surface Segregation in Heated Mold Continuous Casting Al-Cu Alloy: Jihui Luo¹; ¹Yangtze Normal University

C-8: A Study on the Thermal Conductivity of Aluminum Die Casting Products with the Variation of Cooling Rate: *TaekWon Oh*¹; JeHeon Jeon¹; DongHyun Bae¹; ¹Yonsei University

C-9: Mitigation of β-AlFeSi Intermetallic Formation on Spray Formed 319 Aluminum Alloy with Different Iron Content: *Lucas Otani*¹; Michele Matsuo²; Guilherme Zepon²; Claudio Kiminami²; Walter Botta²; Claudemiro Bolfarini²; ¹Postgraduate Program in Materials Science and Engineering (PPGCEM); ²Federal University of São Carlos (UFSCar)

C-10: The Influence of Microstructure Length Scale on Dry Sliding Wear Behaviour of Monotectic Al-3.2Bi-3Cu Alloy: Vitor Pinotti¹; Rodrigo Reyes¹; Conrado Afonso¹; Luiz Casteletti²; *José Spinelli*¹; ¹Federal University of São Carlos; ²University of São Paulo

C-11: Effect of Mg and Cu Additions into ADC12 on the Mechanical Properties during Heat Treatment after Die-casting: JaeHwang Kim¹; JiWoo Im¹; ¹Korea Institute of Industrial Technology

C-12: Friction Stir Welding of High Strength Al-7050 and Mg-WE43 Alloys: *Saurabh Nene*¹; Michael Frank¹; Rajiv Mishra¹; R. Brennan²; K. Cho²; ¹University of North Texas; ²U.S. Army Research Laboratory

C-13: Grain Size Modelling and Simulation during Hot Torsion of AW6082 Aluminium Alloy: *Sanjeev Kumar*¹; Jules Franz Thierry Simonet Fotso¹; Friedrich Krumphals¹; Cecilia Poletti¹; ¹Graz University of Technology, Graz Austria

C-14: A Comparison of Strain Profiles Obtained by Nanoindentation and Glancing Angle X-ray Diffraction in Hot Rolled Aluminum-magnesium Alloys: *Sepideh Parvinian*¹; Eric Hoar¹; David Tavakoli¹; Hamid Garmestani¹; ¹Georgia Institute of Technology

C-15: Direct Preparation of Pure Al and Si from Al-Si3O Alloy by Molten Salts Electrolysis: Guolong Liu¹; Zheng Wang¹; Wei Liu¹; Saijun Xiao¹; ¹Anhui University of Technology

C-16: Effect of Electromagnetic Stirring on the Distribution of Primary Silicon in Hypereutectic Aluminum Alloys Billet: Jong Ho Kim¹; ¹Research Institute of Industrial Science and Technology

Aluminum Alloys, Processing and Characterization – Poster Session II - Characterizations of Aluminum Alloys

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Xiyu Wen, University of Kentucky

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

C-17: Development of V-arm Manufacturing Technology for Heavy Truck Using High Vacuum Die Casting Technology: Min Seok Moon¹; *MyeongHan Yoo*¹; JoonHyuk Song¹; JeHa Oh¹; NaRa Park¹; GunSung Chung¹; DongChul Chung¹; Young Choi²; ¹Korea Institute of Carbon Convergence Technology; ²Korea Institute of Industrial Technology

C-18: Effect of Alloying Elements on Microstructure Adjacent to Grain Boundaries in Al-Mg-Si Based Alloys: *Shingo Ishizawa*¹; Shigeru Kuramoto¹; Goroh Itoh¹; ¹Ibaraki University

C-19: Effect of Mg Amount on Interface Reaction between Molten Al Alloy and Tool Steel: *Young-Ok Yoon*¹; Seong-Ho Ha¹; Bong-Hwan Kim¹; Hyun-Kyu Lim¹; Shae K. Kim¹; ¹Korea Institute of Industrial Technology

C-20: Effect of Stacking Fault Energy on the Deformation Behavior of Al-Mg-(Zn) Alloy Sheets: *Juhee Yun*¹; Sangjun Lee¹; Donghyun Bae¹; ¹Yonsei University

C-21: Effects of Extrusion and Heat Treatment Conditions on Microstructure and Mechanical Properties of an Al-Zn-Mg-Cu-Er Alloy: S. Kord¹; *Mohammad Alipour*²; M. H. Siadati¹; Masumeh Kord³; Praveennath G. Koppad⁴; ¹Faculty of Materials Science and Engineering, K. N. Toosi University of Technology; ²Department of Materials Science and Engineering, University of Tabriz; ³Department of Biomaterial, Pasteur Institute of Iran; ⁴Department of Mechanical Engineering, CMR Institute of Technology

C-22: Effects of Rare Earth Er Additions on Microstructure and Mechanical Properties of an Al-5Cu-2Mg Alloy: S. Kord¹; *Mohammad Alipour*¹; M. H. Siadati¹; Masumeh Kord²; ¹Department of Materials Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology; ²Department of Biomaterial, Pasteur Institute of Iran

C-23: Effects of Rare Earth Er Additions on Microstructure and Mechanical Properties of an Al-Zn-Mg-Cu Alloy: S. Kord¹; *Mohammad Alipour*²; M. H. Siadati¹; Masumeh Kord³; Praveennath G. Koppad⁴, ¹Faculty of Materials Science and Engineering, K. N. Toosi University of Technology; ²Department of Materials Science and Engineering, University of Tabriz; ³Department of Biomaterial, Pasteur Institute of Iran; ⁴Department of Mechanical Engineering, CMR Institute of Technology

C-24: Particle Stimulated Texture Development in the Al-Si-Mg Alloy Sheets Containing Transition Metals: *Kwangmin Choi*¹; Sangjun Lee¹; Donghyun Bae¹; ¹Yonsei University

C-25: Microstructure and Mechanical Properties of Three Dissimilar Aluminum Alloys by Accumulative Roll-bonding Process: Jung-Han Kim¹; Min-Suk Oh¹; Cheol-Woo Kim¹; Jae-Ik Cho¹; Hyeon-Taek Son¹; ¹Korea Institute of Industrial Technology

C-27: Precipitation Processes and Strengthening Mechanisms in Al-Mg-Si Alloy Extruded to High Strains: *Witold Chrominski*¹; Malgorzata Lewandowska¹; ¹Warsaw University of Technology

C-30: Study of Variable and Constant Blank Holding Force Techniques in Hydroforming of Cryorolled Aluminum-magnesium Alloy Sheets: *Fitsum Feyissa*¹; Ravi Dagavalli¹; ¹Indian Institute of Technology Delhi

C-31: Study on Fe-rich Phase in Al-Mg-Fe and Al-Mg-Mn-Fe Alloys: *Xiangzhen Zhu*¹; Shouxun Ji¹; ¹Brunel University London

C-32: The Effect of Waiting Time after Furnace Exit on Mechanical Properties of AA6082 Rod Profile: Osman Celik¹; ¹Istanbul Technical University Aluminum Reduction Technology – Poster Session Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Abdalla Zarouni, Emirates Global Aluminium

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

Session Chair: Zlatko Cus, TALUM d.d.

C-33: Current Distribution on the Anode Bottom of the Aluminium Cell in the Complicated Conditions of Electrolysis: *Peter Polyakov*¹; Nikita Sharypov¹; Illiya Puzanov²; Andrey Zavadyak²; Yuriy Mikhalev¹; Andrey Polyakov¹; Andrey Yasinskiy¹; Jan Voushel¹; ¹Siberian Federal University; ²JC RUSAL

C-34: Investigate the Causes of Hole in Pots: *Mohsen Amerisiahooei*¹; Tayeb Kamali²; ¹Islamic Azad University; ²Almahdi Hormozal Aluminium Smelter

C-35: Potline Start up without Anode Effect Frequency: *Mohsen Amerisiahooei*¹; Babak Bahman Nejad²; ¹Islamic Azad University; ²Almahdi Hormozal Aluminium Smelter

C-36: Restarting Electrochemical Cell with a Cold Metal (D18 Cell): Mohsen Amerisiahooei¹; Tayeb Kamali²; ¹Islamic Azad University; ²Almahdi Hormozal Aluminium Smelter

C-37: The Impact of One Pot Tap out on the Secondary Alumina in Line Production: *Mohsen Amerisiahooei*¹; Tayeb Kamali²; ¹Islamic Azad University; ²Almahdi Hormozal Aluminium Smelter

C-38: The Influence of Potassium Additive on Cryolite Molten Salt Structure and Transport Properties: Hongliang Zhang¹; *Tianshuang Li*¹; Jie Li¹; Kena Sun¹; Fengqi Ding¹; Zhong Zou¹; ¹Central South University

C-39: Thermo-electrical Modeling of an Aluminum Reduction Cell: *Mohsen Amerisiahooei*¹; Borzou Baharvand²; ¹Islamic Azad University; ²Almahdi Hormozal Aluminium Smelter

Cast Shop Technology – Poster Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mark Badowski, Hydro Aluminium

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

C-40: Electrochemical Characterization of Al-Li-Cu-Mg Alloys: Alicia Ares¹; Silvina Ramos¹; Claudia Méndez²; ¹CONICET/FCEQyN-UNaM; ²FCEQyN-UNaM

C-41: Evaluation of Stress Relief Processes Used on High Pressure Aluminum Die Casting Dies: *Thomas Watkins*¹; Philip Maziasz¹; Ercan Cakmak¹; Jeffrey Cornett¹; James Saylor²; ¹Oak Ridge National Laboratory; ²Toyota | Bodine Aluminum TN

C-42: Introduction and Distribution of Non-metallic Nanoparticles in Aluminum Melt: Anton Khrustalev¹; *Aleksander Vorozhtsov*¹; Marina Khmeleva¹; Ilya Zhukov¹; Vladimir Promakhov¹; ¹Tomsk State University

C-43: Shaping the Mechanical Properties of AlSi30 Alloy Cast by Rapid Solidification: *Boguslaw Augustyn*¹; Marcin Szymanek¹; Dawid Kapinos¹; Sonia Boczkal¹; ¹Institute of Non Ferrous Metals

C-44: Study of the Effect of the Surface-roughness of Dies and Tooling for HPDC on Soldering: Federico Simone Gobber¹; Andrea Pisa¹; Daniele Ugues¹; Silvia Lombardo²; *Mario Rosso*¹; ¹Politechnico di Torino; ²FOMT

Cast Shop Technology: Fundamentals of Aluminum Alloy Solidification Joint Session – Poster Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizers: Andre Phillion, McMaster University; Mark Badowski, Hydro Aluminium; Mohsen Asle Zaeem, Missouri University of Science and Technology

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

C-45: Homogenization Treatment of High-strength Aluminum Alloy with Casting Processes: Myounggyun Kim¹; ¹RIST

Cast Shop Technology: Recycling and Sustainability Joint Session – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Aluminum Committee, TMS: Recycling and Environmental Technologies Committee *Program Organizers:* Mark Badowski, Hydro Aluminium; Elsa Olivetti, Massachusetts Institute of Technology

Monday PM Room: Hall CD March 12, 2018 Location: Phoenix Convention Center

C-46: Precious Technology; Recycling of Titanium from Medical Implant Industry, Challenges and Opportunities: *Erdogan Teke*¹; M. Özgür Seydibeyoglu¹; ¹Izmir Katip Celebi University

C-47: Promotion of Separation of Two Phase Liquid Metals by Applying Mechanical Vibration: *Yuichiro Murakami*¹; Shuji Tada¹; Mingjun Li¹; Isao Matsui¹; Naoki Omura¹; ¹Advanced Industrial Science and Technology

Coupling Experiments and Modeling to Understand Plasticity and Failure – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Sangid, Purdue University; Philip Eisenlohr, Michigan State University; Matthew Miller, Cornell University; Paul Shade, Air Force Research Laboratory

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

Session Chair: Michael Sangid, Purdue University

E-1: A Domain Decomposition Parallel Implementation of an Elasto-viscoplastic Fast Fourier Transform Micromechanical Solver with Spectral Database Constitutive Representation: *Adnan Eghtesad*¹; Timothy Barrett¹; Kai Germaschewski¹; Ricardo A. Lebensohn²; Rodney J. McCabe²; Marko Knezevic¹; ¹University of New Hampshire; ²Los Alamos National Laboratory

E-2: An Image Based Finite Element Model for Ni-based Superalloys Using a Two Scale Constitutive Model Accounting for Morphological Distributions of γ' Precipitates: *George Weber*¹; Maxwell Pinz¹; Akbar Bagri¹; Somnath Ghosh¹; ¹Johns Hopkins University

E-3: Annealing-detwinning due to Thermal Fluctuation of Incoherent Twin Boundary: Hao Sun¹; *Chandra Singh*¹; ¹University of Toronto

E-4: Finite Element Simulation of Global Plastic Behavior of Supercritical CO2 Exposed P91 Metal-weld under Tensile Loading: *Sajedur Akanda*¹; Monica Kapoor¹; Kyle Rozman¹; Ömer Dogan¹; Jeffrey Hawk¹; ¹National Energy Technology Laboratory

E-5: Grain-scale Investigations of Deformation Heterogeneities in Aluminum Alloys: *Baran Güler*¹; Tuncay Yalçinkaya¹; Mert Efe¹; ¹Middle East Technical University

E-6: In-situ Characterization of Microstructural Damage in QP980 Steel: *Diyar Salehiyan*¹; Javad Samei¹; David Wilkinson¹; ¹McMaster University

E-7: In Situ Mechanics at Atomic Scale – Experimental vs. Computational Molecular Dynamics: *Scott Mao*¹; ¹University of Pittsburgh

E-8: Influence of the Aluminum Microstructure in Electronic Components on their Failure Behavior: Experiments and Crystal Plasticity Simulations: *Ewald Werner*¹; Felix Meier¹; ¹Technical University of Munich

E-9: Internal State Variable Plasticity-damage Modeling of AISI 4140 Steel Including Microstructure-property Relations: Temperature and Strain Rate Effects: *Reda Nacif el Alaoui*¹; Luke Peterson¹; Mark Horstemeyer¹; ¹Mississippi State University

E-10: Investigation of Deformation Mechanisms in Columnar Aluminum: *Marissa Linne*¹; Samantha Daly²; ¹University of Michigan; ²UCSB

E-11: Mechanism-based Modeling of Solute Strengthening: Application to Thermal Creep in Zr Alloy: *Wei Wen*¹; ¹Los Alamos National Laboratory

E-12: Molecular Dynamics (MD) Evaluation of the Effect of Titanium Oxide Stoichiometry on Fracture: *Natalia Tymiak Carlson*¹; ¹Bettis Atomic Power Laboratory

E-13: New Approach for Modeling Texture Effect on Macroscopic Plastic Properties of Metals: *Nitin Chandola*¹; Oana Cazacu¹; Benoit Revil-Baudard¹; ¹University of Florida

E-14: Rate Processes in Dislocation Dynamics: Effects on Dislocation Microstructure and Comparison with X-ray and TEM Data: Anter El-Azab¹; ¹Purdue University

E-15: Strain Bursts Induce Quasi-elastic Non-linear Average Response in Nanopillar Compression: *Hengxu Song*¹; Stefanos Papanikolaou²; ¹Johns Hopkins University; ²West Virginia University

E-16: Strain Field Mapping and Modeling Around Laser-induced Keyhole Defects in Ti-7Al under Cyclic Loading: *Rachel Lim*¹; Yufeng Shen¹; Christopher Kantzos¹; He Liu¹; Robert Suter¹; Anthony Rollett¹; ¹Carnegie Mellon University

E-17: Using Machine Learning Approaches towards Quantifying the Deformation History of Crystals: Examples from Discrete Dislocation Dynamics: *Michail Tzimas*¹; Stefanos Papanikolaou¹; Hengxu Song¹; Andrew Reid²; Stephen Langer²; ¹West Virginia University; ²National Institute of Standards and Technology

Deformation and Damage Mechanisms in High Temperature Ni, Co and Fe-based Superalloys – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce plc; Kevin Bockenstedt, ATI Specialty Materials; Chantal Sudbrack, QuesTek Innovations, LLC; Michael Titus, Purdue University; Kinga Unocic, Oak Ridge National Laboratory; Yukinori Yamamoto, Oak Ridge National Laboratory

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

E-18: Atomistic Modeling of Segregation and Diffusion in Ni-based Superalloys: You Rao¹; Maryam Ghazisaeidi¹; ¹The Ohio State University

E-19: Effect of Rhenium on Deformation Mechanisms during Creep in Ni-based Single-crystal Superalloys: *Vincent Huleux*¹; Loïc Naze¹; Vladimir Esin¹; Vincent Maurel¹; Virginie Jaquet²; Jérémy Rame²; ¹Centre des Matériaux des Mines de Paris; ²Safran Tech

E-20: Exploring Thermo-mechanical Deformation Mechanism of a NiAl-Cr(Mo) Superalloy by In-situ Neutron Diffraction: *Dunji Yu*¹; Ke An¹; Xu Chen²; Hongbin Bei¹; ¹Oak Ridge National Laboratory; ²Tianjin University

E-21: Mechanical and Microstructural Evaluation of Friction Welded Future Nickel Disk Alloys: *Kate Franklin*¹; ¹University of Birmingham, UK

E-23: Prediction of Incipient Melting Map and γ' Features of Ni-base Superalloys Using Molecular Orbital Method: *Mohammad Mostafaei*¹; S. M. Abbasi¹; ¹Malek Ashtar University of Technology

E-24: Predictive Equations of the Elastic Modulus for Individual γ and γ ' Phases in the Ni-Al-W System: *Takuma Saito*¹; Makoto Osawa²; Tadaharu Yokokawa²; Toshiharu Kobayashi²; Hiroshi Harada²; Kyoko Kawagishi²; Yuhi Mori¹; Shinsuke Suzuki¹; ¹Waseda University, School of Fundamental Science and Engineering; ²National Institute for Materials Science (NIMS)

E-25: Probing the Effects of Alloying Elements on Creep Properties Using Simplified Alloy Chemistries: *Ashton Egan*¹; Jiashi Miao¹; Maryam Ghazisaedi¹; Yunzhi Wang¹; Stephen Niezgoda¹; Michael Mills¹; ¹The Ohio State University

E-26: Tensile Properties and Fracture Behavior of ATI 718Plus Alloy at Room and Elevated Temperatures: *Micheal Kattoura*¹; Seetha Ramaiah Mannava¹; Dong Qian²; Vijay Vasudevan¹; ¹University of Cincinnati; ²University of Texas at Dallas

Deriving Value from Challenging Waste Streams: Recycling and Sustainability Joint Session – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee, TMS: Pyrometallurgy Committee

Program Organizers: Elsa Olivetti, Massachusetts Institute of Technology; John Howarter, Purdue University; Fiseha Tesfaye, Åbo Akademi University

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

B-7: Bacterial Degradation of Free Cyanide in Alkaline Medium Using *Bacillus Licheniformis* Strain: *Amzy Vallenas Arévalo*¹; Carlos Rosario¹; Denise Espinosa¹; Jorge Tenório¹; ¹University of Sao Paulo

B-8: Determination of Limiting Current Density of a Solution with Copper, Zinc and EDTA from the Effluent of Brass Electrodeposition: Kayo Barros¹; Jorge Tenório¹; *Denise Espinosa*¹; ¹University of São Paulo (USP)

B-9: Effect of the pH on the Recovery of Al3+, Co2+, Cr3+, Cu2+, Fe3+, Mg2+, Mn2+, Ni2+ and Zn2+ by Purolite S950: *Isadora Perez*¹; Mónica Maria Correa¹; Jorge Alberto Tenório¹; Denise Espinosa¹; ¹University of São Paulo

B-10: Evaluation of the Occurrence of Fouling and Scaling on the Membrane HDX 200 for the Treatment of the Effluent of Brass Electrodeposition with EDTA as Complexing Agent: Kayo Barros¹; Jorge Tenório¹; Denise Espinosa¹; ¹University of São Paulo (USP)

B-11: High Temperature Crystallization Kinetics of MgSO4.H2O: Kristine Wanderley¹; Denise Espinosa¹; *Jorge Tenório*¹; ¹LAREX, University of São Paulo (USP)

B-12: Incorporation of Rubber Waste Powder from Scrap Tires into Heavy Clay Ceramics: *Carlos Maurício Vieira*¹; Rosane Toledo¹; Juliana Soares de Faria¹; Sergio Neves Monteiro²; ¹State University of the North Fluminense; ²Military Engineering Institute

B-14: Preparation of Glass-ceramic from Titanium-bearing Blast Furnace Slag by "Petrurgic" Method: *Kuiyuan Chen*¹; Yu Li¹; Long Meng¹; Yaodong Yi¹; Zhancheng Guo¹; ¹University Of Science And Technology Beijing **B-16: Recovery of Copper from Nickel Laterite Leach Waste by Chemical Reduction Using Sodium Dithionite**: Amilton Botelho Junior¹; Iara Anes¹; Mariana Alves de Carvalho¹; Denise Espinosa¹; *Jorge Tenório*¹; ¹University of São Paulo

B-17: Recovery of Nickel and Cobalt from a Waste Zone of Nickel Laterite Ore Using a Mixture of Extractants in Solvent Extraction Technique: *Paula Aliprandini*¹; Mónica Jimenez Correa¹; Jorge Tenório¹; Denise Espinosa¹; ¹University of Sao Paulo

B-18: Rural Water Pollution and its Strategies in China: *Li Zhaohua*¹; Zhang Jin¹; Zhao Liya¹; Chen Hongbing¹; ¹Hubei University

B-19: Study on the Passivation Effect of Cr6+ in the Waste Water of the Blood Meal: *Chen Hongbing*¹; Li Yadong¹; Li Sitong¹; Shu Fangfang¹; Wang Nan¹; ¹Hubei University

B-20: Mechanical Behavior of White Ordinary Portland Cement Paste with Iron Oxide Powders Containing Arsenic: Manuela Castañeda Montoya¹; Henry Colorado¹; ¹Universidad de Antioquia

Dynamic Behavior of Materials VIII – Poster Session Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee Program Organizers: Saryu, Los Alamos National Laboratory; George

Gray, Los Alamos National Laboratory; Naresh Thadhani, Georgia Institute of Technology; Kenneth Vecchio, University of California, San Diego; Marc Meyers, University of California, San Diego

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

E-27: Constitutive Model for Dynamic Tensile Behaviour and the Dynamic Tensile Ductile Fracture Behaviour of Press-hardening Steels: *Xing Wei*¹; Jianhua Mo¹; ¹WISCO

E-28: Development of a Dynamic Materials Processing and Testing Equipment: *Anupam Vivek*¹; Stephen Niezgoda¹; Alexander Koenig¹; Geoffrey Taber¹; Glenn Daehn¹; ¹Ohio State University

E-29: Dynamic Response of AA2519-T8 Aluminum Alloy under High Strain Rate Loading: Gbadebo Owolabi¹; Adewale Olasumboye¹; *Temitayo* Daramola¹; Horace Whitworth¹; ¹Howard University

E-30: Effect of Stain Rate on the Compressive Behavior and Energy Absorption of Woven Flax-epoxy Laminate Composites: *Jianxing Hu*¹; Sha Yin¹; Jun Xu¹; ¹Beihang University

E-31: Fragmentation in Ni-Al: Andrew Marquez¹; Zezhou Li¹; Christopher Braithwaite²; Timothy Weihs³; Nicholas Krywopusk³; David Gibbins³; *Marc Meyers*¹; ¹University of California, San Diego; ²Cambridge University; ³Johns Hopkins University

E-32: Microstructural Evolution in Fe-10Ni-0.1C Steel during Dynamic Deformation: *Ian Harding*¹; Sharvan Kumar¹; ¹Brown University

E-33: New Insights to the Bonding Mechanisms in Metal-ceramic Composite Cold Spray: Rohan Chakrabarty¹; Jun Song¹; ¹McGill University

E-34: Prediction of Joint Properties Obtained in the High Velocity Impact Welding of Dissimilar Metals: *Varun Gupta*¹; Kyoo Sil Choi¹; Anupam Vivek²; Yu Mao²; Xin Sun³; Glenn Daehn²; ¹Pacific Northwest National Laboratory; ²Ohio State University; ³Oak Ridge National Laboratory

E-35: Shock-induced Mechanical Response and Substructural Evolution of Ti–6Al–4V Alloy: *Yu Ren*¹; Shimeng Zhou²; Zhiyong Xue¹; Chengwen Tan³; ¹North China Electric Power University; ²No. 52 Institute of China Ordnance Industries; ³Beijing Institute of Technology

E-36: The Effect of Mercerization of Sisal Fibers on the Ballistic Performance of Epoxy / Sisal Composites: Luís Carlos Silva¹; Sérgio Neves Monteiro¹; ¹IME

E-37: The Use of Circumferentially Notched Tension Specimen for Fracture Toughness Assessment of High Strength Steels: *V.A. Popovich*¹; T. Opraus¹; M. Janssen¹; B. Hu¹; A. C. Riemslag¹; ¹Delft University of Technology

Energy Technologies and CO₂ Management Symposium – Poster Session

John Howarter, Purdue University

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee Program Organizers: Ziqi Sun, Queensland University of Technology; Cong Wang, Northeastern University; Donna Guillen, Idaho National Laboratory; Tao Wang, Nucor Steel; Neale Neelameggham, Ind LLC;

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

B-21: A Novel Preparation of Bi₂O₃ and Their Potent Photocatalytic Activity under Visible-light Irradiation: Jun Chen¹; *Jing Zhan*¹; ¹Central South University

B-22: CaxSr1-xO Heterogeneous Catalysts Using Polymer Complex Method (PCM) for Biodiesel Production: *Maria Lourdes Potestades*¹; Shih-Kang Lin¹; Wen-Dung Hsu¹; Masahiro Yoshimura¹; ¹National Cheng Kung University

B-23: Energy Conservation in Sintering Ignition Process Based on Comprehensive Ignition Intensity: *Wen Pan*¹; Xia Zhao²; Si-bin Zhang³; Jun-hua Zhao⁴; Huai-ying Ma¹; Zhi-xing Zhao¹; ¹Shougang Research Institute of Technology; ²Shougang Institute of Technology; ³Chief Engineer Office Shougang Group co., LTD; ⁴Beijing Shougang co., LTD

B-24: Study of Seperation between Carbon Dioxide and Hydrogen by Carbon Nanotube in Aluminium Industry (Monte Carlo Simulation): *Mohsen Amerisiahooei*¹; Khirollah Mehrani¹; Mohammad Yousefi¹; ¹Islamic Azad University

B-25: Study on Energy Utilization of High Phosphorus Oolitic Hematite by Gas-based Shaft Furnace Reduction and Electric Furnace Smelting Process: *Hui Sun*¹; ¹Beijing Shenwu Environment & Energy Technology Co.,Ltd.

Environmental Challenges and Opportunities for the Magnesium Industry: Recycling and Sustainability Joint Session – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Magnesium Committee, TMS: Recycling and Environmental Technologies Committee *Program Organizers:* Elsa Olivetti, Massachusetts Institute of Technology; Neale Neelameggham, Ind LLC

Monday PM Room: Hall CD March 12, 2018 Location: Phoenix Convention Center

C-48: Repaired Algorithm for Nonlinear to Predict the Displacement of Copper Ion in the Absorbtion System of Treated Steel Slag: *Zhu Shu Jing*¹; ¹Michigan Technological University

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention – Poster Session

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee *Program Organizers:* Ashley Spear, University of Utah; Jean-Briac le Graverend, Texas A&M University; Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

E-40: Fatigue of the Beta Ti-15Mo and Ti-12Mo-6Zr-2Fe Alloys Treated above Beta Transus: Leonardo Campanelli¹; Murilo Santos¹; Paulo Sergio da Silva¹; *Claudemiro Bolfarini*¹; ¹Federal University of São Carlos

E-41: Prediction and Fatigue Response of Ti-6Al-4V Alloy with Surface Modified by Chemical Treatment: *Cesar Escobar Claros*¹; Paulo Sergio Pereira da Silva¹; Leonardo Campanelli¹; Tales Ferreira¹; Diego Pedreira Oliveira¹; Claudemiro Bolfarini; Claudemiro Bolfarini¹; ¹Universidade Federal de São Carlos

Fracture: 65 Years after the Weibull Distribution and the Williams Singularity – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Brad Boyce, Sandia National Laboratories; Ellen Cerreta, Los Alamos National Laboratory; Jacob Hochhalter, NASA LaRC; Jonathan Zimmerman, Sandia National Laboratories

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

E-42: High Temperature Cracking Damage of Calcium Aluminate Cements: John Zapata¹; Henry Colorado¹; ¹Universidad de Antioquia

E-43: On the Experimental Evaluation of the Fracture Toughness of Shape Memory Alloys: *Behrouz Haghgouyan*¹; Ceylan Hayrettin¹; Theocharis Baxevanis²; Ibrahim Karaman¹; Dimitris Lagoudas¹; ¹Texas A&M University; ²University of Houston

Magnesium Alloy Development: An LMD Symposium in Honor of Karl Kainer – Poster Session

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Norbert Hort, Helmholtz-Zentrum Geesthacht;

Monday PM March 12, 2018

Alan Luo, The Ohio State University

Room: Hall CD Location: Phoenix Convention Center

C-49: Corroding Magnesium Implants – a New Class of Biomaterials: *Frank Witte*¹; ¹Charite - Universitätsmedizin Berlin

C-50: Development and Characterization of Mg-4Zn-0.5Ca-0.16 Mn (wt. %) Alloy for Biomedical Applications: *Partha Duley*¹; Souriddha Sanyal¹; Tapas Kumar Bandyopadhyay¹; Sumantra Mandal¹; ¹Indian Institute of Technology Kharagpur

POSTERS

C-51: Development of Ultralight and Ultrafine Grained Mg-4Li-1Ca Alloy for Biomedical and Lightweight Applications: Saurabh Nene¹; B Kashyap²; N Prabhu²; Y. Estrin³; T. Al-Samman⁴; ¹IITB-Moansh Research Academy; ²IIT Bombay; ³Moansh University; ⁴RWTH Aachen University

C-52: Effect of Al Addition on the Microstructure and Compressive Properties of Mg-based AZ31 Alloy: *Md Ershadul Alam*¹; Victor Hernandez¹; Zephyr Li¹; Irene Beyerlein¹; AbdelMagid Hamouda²; Manoj Gupta³; ¹University of California, Santa Barbara; ²Qatar University; ³National University of Singapore

C-53: Magnesium Nanocomposites, Progress and Potential: Andrew Sherman¹; Nick Farkas¹; David Wolf¹; ¹Terves Inc

C-54: Metal Injection Molding (MIM) of Mg-alloys: *Martin Wolff*¹; Johannes Schaper¹; Michael Dahms²; Thomas Ebel¹; Regine Willumeit-Römer¹; Thomas Klassen³; ¹Helmholtz-Zentrum Geesthacht; ²University of Applied Sciences, FH-Flensburg; ³Helmut Schmidt University, Hamburg

C-55: Microstructure Evolution and Mechanical Properties of Thin Strip Twin Roll Cast (TRC) Mg Sheet: Xinliang Yang¹; *Chamini Mendis*¹; Jayesh Patel¹; Zhongyun Fan¹; ¹Brunel University London

C-56: Orientation and Length Scale Effect in Deformation Mechanism in Pure Magnesium: *Ali Khosravani*¹; Surya Kalidindi¹; ¹Georgia Institute of Technology

C-57: Precipitate Strengthening Mechanisms in Different Mg Alloys by In Situ Synchrotron X-ray Diffraction: *Xiaoqin Zeng*¹; Leyun Wang¹; Jie Wang¹; Bijin Zhou¹; Wen Wen²; ¹Shanghai Jiao Tong University; ²Shanghai Synchrotron Radiation Facility

C-58: The Effect of Shearable Plate-shaped Precipitates on the Strength of Mg Alloys: Sean Agnew¹; Jishnu Bhattacharyya¹; Fulin Wang¹; ¹University of Virginia

Magnesium Technology 2018 – Poster Session Sponsored by: TMS Light Metals Division, TMS: Magnesium

Committee

Program Organizers: Dmytro Orlov, Lund University; Vineet Joshi, Pacific Northwest National Laboratory; Kiran Solanki, Arizona State University; Neale Neelameggham, Ind LLC

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

Session Chairs: Vineet Joshi, Pacific Northwest National Laboratory - PNNL; Neale Neelameggham, IND LLC

C-59: A Microtomography Analysis of Damage and Fracture in Notched AZ31: *Babak Kondori*¹; Thilo Morgeneyer²; Amine Benzerga¹; ¹Texas A&M University; ²MINES ParisTech

C-60: Combustion of Regolith/Magnesium Mixtures for the Fabrication of Construction Materials on the Moon and Mars: *Sergio Cordova*¹; Armando Delgado¹; Evgeny Shafirovich¹; ¹The University of Texas at El Paso

C-61: Deformation Mechanism of a Mg-Zn-Y Alloy Containing Large Long-period-stacking-ordered Structures under Shock Wave: *Fan Zhang*¹; Chengwen Tan²; Mingwei Chen³; ¹Tohoku University; ²Beijing Institute of Technology; ³Johns Hopkins University

C-62: Deformation Processing of AZ31 and ZK60 Using a Novel Tubeequal Channel Angular Pressing (t-ECAP) Technique: *Abhinav Srivastava*¹; Bilal Mansoor²; Matthew Vaughan¹; Karl Hartwig¹; Ibrahim Karaman¹; ¹Texas A&M University; ²Texas A&M University at Qatar

C-63: Deformation Twinning in Shock Compressed UFG Mg: *Chaitanya Kale*¹; Cyril Williams²; Jonathan Ligda²; B. Hornbuckle²; Kiran Solanki¹; ¹Arizona State University; ²U.S. Army Research Laboratory

C-64: Effect of Calcium on Resistance to Oxidation of Magnesium Alloys (**AZ91**): Hassan Saghafianlarijani¹; *Shima Paridari*¹; Ghasem Eisaabadi.B²; ¹Iran University of Science and Technology; ²Arak University C-65: Effect of Confined Rolling on Microstructure and Mechanical Properties of Magnesium Alloys: *Pavitra Krishnan*¹; Hanin Elathram¹; Qiuming Wei¹; Laszlo Kecskes²; ¹University of North Carolina at Charlotte; ²Weapons and Materials Research Directorate, US Army Research Laboratory

C-66: Effect of Heat Treatment on the Grain Growth Kinetics and Mechanical Properties in Shear Assisted Processing and Extrusion (ShAPETM) ZK60 Tube: *Vineet Joshi*¹; Scott Whalen¹; Derek Neal¹; Arun Devaraj¹; Nicole Overman¹; Curt Lavender¹; ¹Pacific Northwest National Laboratory

C-67: Effect of Micro-alloyed Neodynium on the Microstructure and Texture of Magnesium-zinc-calcium Alloys: *Yang Liu*¹; Jing Su¹; Amjad Javaid²; Tim Skszek³; Stephen Yue¹; ¹McGill University; ²CanmetMATERIALS; ³Magna International

C-68: Effects of Ageing Treatment on the Microstructure and Mechanical Properties of Mg-Li Based Alloys: *Mingyu Fan*¹; Ye Cui¹; Yang Zhang¹; Hao Guo¹; Zhongwu Zhang¹; ¹Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University

C-69: Evolution of Microstructure and Mechanical Properties during the Casting and Rolling of the ZEK100 Sheet: *Amjad Javaid*¹; Frank Czerwinski¹; ¹CANMET Materials

C-70: Hot Forging Behavior of Mg-8Al-4Ba-4Ca (ABaX844) Alloy and Validation of Processing Map: *K.P. Rao*¹; C. Dharmendra¹; Y.V.R.K. Prasad²; Hajo Dieringa³; Norbert Hort³; ¹City University of Hong Kong; ²processingmaps.com; ³Helmholtz-Zentrum Geesthacht

C-71: Influence of Hot Rolling on Microstructure and Mechanical Properties Thixo-Casts Obtained from Mixed E21 and WE43 Magnesium Granules: Lukasz Rogal¹; P. Bobrowski¹; A. Tarasek¹; M. Szlezynger¹; ¹Institute of Metallurgy and Materials Science

C-72: Interaction of Glide Dislocations with Extended Precipitates in Mg-Nd Alloys: Zhihua Huang¹; John Allison¹; Amit Misra¹; ¹University of Michigan

C-73: Macro and Micro C/A Ratios Induced by Solute Atoms in Mg Via Ab Initio Calculations: *Gang Zhou*¹; Hao Wang¹; Chunguang Bai¹; ¹IMR

C-74: Microstructure and Mechanical Behavior of ECAP-processed Magnesium at the Ice-water Temperature: Dai Zuo¹; *Diaoyu Zhou*¹; Taotao Li¹; Wei Liang¹; Fuqian Yang²; ¹Taiyuan University of Technology; ²University of Kentucky

C-75: Microstructure and Mechanical Properties of Magnesium-metal Laminated Nanocomposites: *Soodabeh Azadehranjbar*¹; Jeffrey Shield¹; Jian Wang¹; ¹University of Nebraska-Lincoln

C-76: Nanostructured Mg-Gd Alloy Processed by ARB Processing: *Xuan Luo*¹; Zongqiang Feng¹; Tianlin Huang¹; Guilin Wu¹; Xiaoxu Huang¹; ¹Chongqing University

C-77: Rate and Temperature Dependent Deformation Behavior of WE43 Magnesium-rear Earth Alloy: Experiments and Crystal Plasticity Modeling: *Marko Knezevic*¹; Saeede Ghorbanpour¹; Milan Ardeljan¹; Brandon McWilliams²; ¹University of New Hampshire; ²US Army Research Laboratory

C-78: Twin and Compressive Response of Nano-sized Al₂O₃ Added Mgbased AZ41 and AZ51 Alloys: *Md Ershadul Alam*¹; Zephyr Li¹; Victor Hernandez¹; Irene Beyerlein¹; Manoj Gupta²; Abdel Magid Hamouda³; ¹University of California, Santa Barbara; ²National University of Singapore; ³Qatar University

C-79: Understanding of Dynamic Recrystallization Characteristics of ZEK100 Magnesium Alloy Sheet during Warm Forming: *Jing Su*¹; Yang Liu¹; Timothy Skszek²; Stephen Yue¹; ¹McGill; ²Magna International

Materials and Fuels for the Current and Advanced Nuclear Reactors VII – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee *Program Organizers:* Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory; Anne Campbell, Oak Ridge National Laboratory

Monday PM	Room: Hall CD
	Location: Phoenix Convention Center

F-14: Asymptotic Expansion Homogenization of the Stiffness Tensor and Thermal Conductivity of a 2D Exemplar-guided Digital Reconstruction of an Al3Hf-Al Microstructure with Comparison to Experiment: *William Harris*¹; Donna Guillen²; Javier Morales³; ¹Massachusetts Institute of Technology; ²Idaho National Laboratory; ³University of Texas at San Antonio

F-15: Characterization of Stress and Microstructure of Zr-4 alloy Processed by Pulsed Laser: *Junkai Liu*¹; Yang Du¹; Hang Zang¹; Wenbo Liu¹; Di Yun¹; ¹Xi²an Jiaotong University

F-18: Experimentally Determined Properties of U-Pu-Zr Alloys: What Do We Know and How Well?: *Dawn Janney*¹; Cynthia Adkins¹; ¹Idaho National Laboratory

Materials for Energy Conversion and Storage – Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee Program Organizers: Amit Pandey LG Fuel Cell Systems Inc.: Cu

Program Organizers: Amit Pandey, LG Fuel Cell Systems Inc.; Guihua Yu, The University of Texas at Austin

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

B-26: A New Economical Method for Fabricating High-purity Bi2O3 via Extraction-precipitation Stripping and Post Annealing: Jun Chen¹; *Jing Zhan*¹; ¹Central South University

B-28: In Situ Imaging and Spectroscopy of Nanostructured Pt/CeO₂ Catalysts Performing CO Oxidation: Josh Vincent¹; ¹Arizona State University

B-29: Thermal Conductivity and Thermal Expansion of Ba(Ce_{0.8-x}Zr_xY_{0.2}) O₃₋₆ Applicable for an Electrolyte of Solid Oxide Fuel Cells: *Hirotomo Sumikawa***¹; Ken Kurosaki²; Yuji Ohishi¹; Hiroaki Muta¹; Shinsuke Yamanaka³; ¹Graduate School of Engineering, Osaka University; ²Graduate School of Engineering, Osaka University, and JST, PRESTO; ³Graduate School of Engineering, University, and Research Institute of Nuclear Engineering, University of Fukui**

Materials Processing Fundamentals – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Guillaume Lambotte, Boston Electromet; Antoine Allanore, Massachusetts Institute of Technology; Jonghyun Lee, Iowa State University; Samuel Wagstaff, Novelis

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

D-46: DEM Simulation of Dispersion of Cohesive Particles by Spontaneous Inter-particle Percolation in a 3D Random Packed Bed: *Heng Zhou*¹; Shengli Wu¹; Mingyin Kou¹; Shun Yao¹; Bingjie Wen¹; Kai Gu¹; Feng Chang¹; ¹University of Science and Technology Beijing D-47: Effects of High Energy Ag7+ Ion Irradiation on the Magnetic and Topographical Properties of Amorphous Co–Fe Thin Films: *Imaddin Al-Omari*¹; G. Pookat²; T. Hysen²; S.H. Al-Harthi¹; R. Lisha²; D.K. Avasthi³; M.R. Anantharaman²; ¹Sultan Qaboos University; ²Cochin University of Science & Technolog; ³Inter University Accelerator Centre, Aruna Asaf Ali Marg

D-48: Effects of Mn Content on the Formation of Nanoscale Precipitates and Matrix Microstructure in the Ultra-high Strength Steels: *Songsong Xu*¹; Yu Zhao¹; Hao Guo¹; Naimeng Liu¹; Xinghao Wei¹; Zhongwu Zhang¹; ¹Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education ,College of Materials Science and Chemical Engineering, Harbin Engineering University

D-49: Ground-based Experiments Using an Electrostatic Levitator and Numerical Modeling of Convection Inside Electromagnetically-levitated Molten Iron-cobalt Droplets in Support of Space Experiments: *Jonghyun Lee*¹; Michael SanSoucie²; ¹Iowa State University; ²NASA Marshall Space Flight Center

D-50: Hybrid Modeling for Endpoint Carbon Content Prediction in EAF Steelmaking: Wei Guangsheng¹; Zhu Rong¹; Yang Lingzhi²; *Tang Tianping*¹; ¹University of Science & Technology Beijing; ²Central South University

D-51: Time Evolution of the Microstructure of ZA27 during Heat Treatment Applied in the SIMA Process: Wilky Desrosin¹; Gerardo Héctor Rubiolo²; *Carlos Enrique Schvezov*³; ¹IMAM (UNaM-CONICET) - Inst. Sabato-UNSAM; ²Inst. Sabato - UNSAM; ³IMAM (UNaM-CONICET)

D-57: Structural and Deformation Behavior of Different Hematite Ore Pellets: Saikat Kuila¹; Tarun Kundu¹; ¹Indian Institute of Technology Kharagpur

Phase Transformations and Microstructural Evolution – Poster Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

N-14: Bainite Transformation in Medium Carbon Microalloyed Steel: Sachin Kumar¹; Shiv Singh¹; ¹IIT Kharagpur, India

N-15: Changes in Microstructures and Mechanical Properties in T92 during Long-term Aging Treatment: Cheoljun Bae¹; Rosa Kim¹; Jongryoul Kim¹; ¹Hanyang University

N-16: Effect of Precipitation on Creep Properties of Ferritic Steels: Maribel Saucedo-Muñoz¹; Arturo Ortiz-Mariscal¹; Shin-Ichi Komazaki²; *Victor Lopez-Hirata*¹; ¹Instituto Politecnico Nacional (ESIQIE); ²Kagoshima University

N-17: Effects of Additional Elements on the Phase Stability and Precipitation Behavior of C14 Laves Phase in High Cr Ferritic Alloys: Ko Kato¹; Yaw Wang Chai¹; Yoshisato Kimura¹; ¹Tokyo Institute of Technology

N-18: Evolution of Microstructure in High Strength Bainitic Steel: Sk Hasan¹; Shiv Singh¹; ¹IIT Kharagpur

N-19: Nucleation and Growth of Austenite in a Fe-12Mn-3Al-0.06C Medium-Mn Steel Annealed at 585°C: Jake Benzing¹; Lutz Morsdorf²; *Alisson Kwiatkowski da Silva*²; Dirk Ponge²; Dierk Raabe²; James Wittig¹; ¹Vanderbilt University; ²Max-Planck-Institut für Eisenforschung GmbH

N-21: Physical Metallurgy of Segregation and Austenite Reversion in Medium Mn Steels: *Alisson Kwiatkowski da Silva*¹; Dirk Ponge¹; Gerhard Inden¹; Baptiste Gault¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH

Powder Metallurgy of Light, Reactive and Other Nonferrous Metals – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Ma Qian, RMIT University (Royal Melbourne Institute of Technology); Zak Fang, University of Utah; Bowen Li, Michigan Technological University

Monday PM March 12, 2018 Room: Hall CD Location: Phoenix Convention Center

D-52: High-temperature Mechanical Properties of Powder Forged Ti-6Al-4V Alloys: *Sung Ho Lee*¹; Youngmoo Kim¹; Young-Beom Song¹; Young-Sam Kwon²; ¹Agency for Defense Development; ²Cetatech Co.

D-53: Magnesiothermic MASHS and Pressureless Sintering of Diborides of Zirconium and Hafnium: *Sergio Cordova*¹; Evgeny Shafirovich¹; ¹The University of Texas at El Paso

Rare Metal Extraction & Processing – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee Program Organizers: Hojong Kim, The Pennsylvania State University; Bradford Wesstrom, Freeport-McMoRan Copper & Gold; Shafiq Alam, University of Saskatchewan; Takanari Ouchi, The University of Tokyo; Gisele Azimi, University of Toronto; Neale Neelameggham, Ind LLC; Shijie Wang, Rio Tinto Kennecott Utah Copper; Xiaofei Guan, ShanghaiTech University

Monday PMRoom: Hall CDMarch 12, 2018Location: Phoenix Convention Center

Session Chairs: Hojong Kim, The Pennsylvania State University; Bradford Wesstrom, Freeport-McMoRan

D-55: Experimental Modeling of Nodulation in Copper Electrorefining: *Yuya Nakai*¹; Ken Adachi¹; Atsushi Kitada¹; Kazuhiro Fukami¹; Kuniaki Murase¹; ¹Kyoto University

D-56: Extraction of Vanadium from Vanadium-containing APVprecipitated Wastewater by W/O Microemulsion System: *Yun Guo*¹; Hong-Yi Li¹; Minmin Lin¹; Bing Xie¹; ¹Chongqing University

Thermal and Mechanical Stability of Nanocrystalline Materials – Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jason Trelewicz, Stony Brook University; Daniel Bufford, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Jessica Krogstad, University of Illinois, Urbana-Champaign; Christian Brandl, Karlsruhe Institute of Technology

Monday PM	Room: Hall CD
March 12, 2018	Location: Phoenix Convention Center

E-44: Control of Thermal Expansivity in Electroformed Fe-Ni Alloys for the Fine Metal Mask: *Yong Bum Park*¹; In Gyeong Kim¹; ¹Sunchon National University

E-45: Thermomigration of Cu-Sn and Ni-Sn Intermetallic Compounds during Reliability Test in SnAg Solder Joints: *Po-Ning Hsu*¹; ¹National Chiao Tung University

2018 Symposium on Functional Nanomaterials: Discovery and Integration of Nanomaterials – Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Stephen McDonnell, University of Virginia; Chang-Yong Nam, Brookhaven National Laboratory; Lanxia Cheng, University of Texas Dallas; Dong Lin, Kansas State University; Wenda Tan, University of Utah

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

M-1: A Novel Adsorption-reduction Method for the Preparation of Nano-Bi@super P Composites: *Chao Yang*¹; Zhongliang Tian¹; Yanqing Lai¹; ¹Central South University

M-2: Co/Pd Multilayered Nanodot Formation by Block Copolymer Templating: Subhadra Gupta¹; Allen Owen¹; Hao Su¹; ¹University of Alabama

M-3: Controlling Domain Wall Structure and Behavior in Magnetic Nanowires: *Liwei Geng*¹; Yongmei Jin¹; ¹Michigan Technological University

M-6: Electrosynthesis of CuNP'S from E-Waste: *Pedro Ramirez Ortega*¹; Mauricio Islas Hernández¹; Laura García Hernández¹; Mizraim Flores Guerrero¹; ¹Universidad Tecnológica de Tulancingo

M-7: Experimental Investigation of the Effect of ZnO-Citrus Sinensis Nano-additive on the Electrokinetic Deposition of Zinc on Mild Steel in Acid Chloride: *Oluseyi Ajayi*¹; Olasubomi Omowa¹; Olugbenga Omotosho¹; Oluwabunmi Abioye¹; Esther Akinlabi²; Stephen Akinlabi²; Abiodun Abioye¹; Felicia Owoeye¹; Sunday Afolalu¹; ¹Covenant University, Cananland, Ota; ²University of Johannesburg

M-8: Formation of Quantum Dots-based Concentric Rings on Polymerbased Nanocomposite Films: Shaofu Zhang¹; Weiling Luan¹; Shaofeng Yin¹; *Wenxin Cao*²; Fuqian Yang²; ¹Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology; ²University of Kentucky

M-9: In-situ Studies of Transition Metal Dichalcogenides Grown by Molecular Beam Epitaxy: *Peter Litwin*¹; Keren Freedy¹; Stephen McDonnell¹; ¹University of Virginia

M-10: Obtaining of Iron Nanoparticles (Fe NP's) for Treatment of Water Contaminated with As: *Daniel Barron Romero*¹; Mizraim Uriel Flores Gerrero¹; Iván Alejandro Reyes Domínguez²; Laura García Hernández¹; Pedro Alberto Ramírez Ortega¹; Angelina Gonzales Rosas¹; Marcos Joel Cruz¹; Nancy M. Escamilla¹; ¹Universidad Tecnológica de Tulancingo; ²Universidad Autónoma de San Luis Potosí

M-11: Soybean-derived Activated Carbon for Supercapacitors: *Wenxin Cao*¹; Fuqian Yang¹; ¹University of Kentucky

M-12: Synthesis of Gold Nanoparticles Using the Extract of Sedum Praeltum and its Deposition on a Ceramic Substrate: Laura Garcia-Hernandez¹; Begoña Aguilar-Pérez¹; Jaqueline Ramírez-Castro¹; Pedro Alberto Ramírez-Ortega¹; Diana Arenas-Islas¹; Mizraim Uriel Flores-Guerrero¹; ¹Universidad Tecnológica de Tulancingo

Advanced Characterization Techniques for Quantifying and Modeling Deformation – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; Thomas Bieler, Michigan State University; Marko Knezevic, University of New Hampshire; Irene Beyerlein, University of California Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; Cem Tasan, Massachusetts Institute of Technology

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

I-1: 4D Imaging of Deformation in Polymeric Foams Using X-ray Synchrotron Tomography: Arun Sundar Sundaram Singaravelu¹; Oldrich Sevecek²; Michal Kotoul²; Brian Patterson³; Xianghui Xiao⁴; Nikhilesh Chawla¹; ¹Arizona State University; ²Brno University of Technology; ³Los Alamos National Laboratory; ⁴Advanced Photon Source

I-2: Compression Testing of Single Crystals of β -Si₃N₄ on Micron Meter Scale by Means of FIB Machining Combined with EBSD Orientation Mapping: *Nobuyuki Kadota*¹; Haruyuki Inui¹; Norihiko Okamoto¹; Isao Tanaka¹; You Zhou²; Hideki Hyuga²; Kiyoshi Hirao²; ¹Kyoto University; ²AIST

I-3: Correlative Microscopy in Materials Science: Will Harris¹; *Jeff Gelb*¹; Tobias Volkenandt²; Leah Lavery¹; ¹Carl Zeiss X-ray Microscopy; ²Carl Zeiss Microscopy

I-4: Development of a Constitutive Model for Plastic Deformation in Single Crystal Niobium: *Eureka Pai Kulyadi*¹; Philip Eisenlohr¹; ¹Chemical Engineering and Materials Science, Michigan State University

I-5: Distribution of Cr Atoms in a Strained and Strain-relaxed Fe89.15Cr10.75 Alloy: Mössbauer Effect Study: *Stanislaw Dubiel*¹; Jan Zukrowski¹; ¹AGH University of Science and Technology

I-6: Extending EBSD's Phase Differentiation Capabilities Through the Dictionary Approach: *Farangis Ram*¹; Marc De Graef¹; ¹Carnegie Mellon University

I-7: Influence of Strain Rate and Microstructure on the Substructure Evolution and Properties of Ti-407: *Zachary Kloenne*¹; Gopal Viswanathan¹; Matthew Thomas²; Hamish Fraser¹; Michael Lorreto³; ¹The Ohio State University; ²TIMET; ³University of Birmingham

I-8: Investigating Internal Lattice Strains in DMLS IN718 Material in the as Built and Post-processed Conditions: *Priya Ravi*¹; Diwakar Naragani¹; John Rotella¹; Peter Kenesei²; Jonathan Almer²; Michael Sangid¹; ¹Purdue University; ²Argonne National Laboratory

I-9: Time-dependent Characterization at the Mesoscale: The MaRIE Project at Los Alamos National Laboratory: Cris Barnes¹; Ellen Cerreta¹; ¹Los Alamos National Laboratory

I-10: Toward Development of an Optimum Biaxial Tensile Test Specimen Design: *Dilip Banerjee*¹; Mark Iadicola¹; Adam Creuziger¹; Evan Rust¹; ¹National Institute of Standards and Technology

Advanced High-strength Steels – Poster Session Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: M.X. Huang, The University of Hong Kong; Tilmann Hickel, Max-Planck-Institut fuer Eisenforschung GmbH; Amy Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology; Young-Kook Lee, Yonsei University; Matthias Militzer, The University of British Columbia

Tuesday PM March 13, 2018 Room: Hall CD Location: Phoenix Convention Center

G-1: Abnormal Deformation Heating and Dynamic Strain Aging in DP Steels at Forming Relevant Strain Rates and Temperatures: *Mert Efe*¹; Caner Simsir²; ¹Middle East Technical University; ²Atilim University

G-2: Correlationship of the Microstructural Features and Mechanical Properties with the Sliding Wear Resistance of a High Strength Low Alloy Steel: *Jayanta Mondal*¹; Karabi Das¹; Siddhartha Das¹; ¹Indian Institute of Technology Kharagpur

G-3: Effect of Feeding Ca–Ba–RE–Zr and Ca-Si Composite Effect of Wire Injection to Liquid Steel on the Properties of Advanced High-strength Steel: *Zhizheng Yang*¹; ¹BaoWu Steel China

G-4: Effect of Reheating Temperature and Cooling Treatment on the Microstructure, Texture and Impact Transition Behavior of Heat Treated Naval Grade HSLA Steel: *Md. Basiruddin Sk.*¹; Abhijit Ghosh¹; Nirmalya Rarhi²; R. Balamuralikrishnan²; Debalay Chakrabarti¹; ¹IIT Kharagpur; ²Defence Metallurgical Research Laboratory

G-5: Microstructural Evolution and Mechanical Properties of a Prototype 0.15C-6Mn-1Si-1Al Third Generation Steel: *Vivek Patel*¹; Joseph McDermid¹; Frank Goodwin²; ¹McMaster University; ²International Zinc Association

G-6: Numerical Investigations of the Effects of Subtitionnal Elements on the Interface Conditions during Partitioning in Q&P Steels: *Steve Gaudez*¹; Sébastien Allain¹; Julien Teixeira¹; Mohamed Gouné²; Michel Soler³; Frédéric Danoix⁴; ¹Institut Jean Lamour; ²ICMCB; ³Arcelormittal Maizières Research SA; ⁴GPM

G-7: Quantitative Analysis of External Selective Oxidation of a CMnSi Advanced High Strength Steel Using a Novel Approach: *Mary Story*¹; Bryan Webler¹; ¹Carnegie Mellon University

G-8: Reactive Wetting of Advanced High Strength Steels by a Zn-Al-Mg Bath: Danielle De Rango¹; Joseph McDermid¹; ¹McMaster University

G-9: Solidification Cracking in High-strength Low Alloy Steels: *Maddie McAllister*¹; Eric Gulliver¹; Michael Kottman¹; Badri Narayanan¹; ¹Lincoln Electric

G-10: Steels for Elevated Temperature Application: *Zixin Huang*¹; ¹University of Cambridge

G-11: Strain Rate Dependence of Tensile and Serration Behaviors of an Austenitic Fe-22Mn-0.7C Twinning-induced Plasticity Steel: *Byoungchul Hwang*¹; Seung-Yong Lee²; Sang-In Lee¹; ¹Seoul National University of Science and Technology; ²Korea Institue of Science and Technology

G-12: The Technology Study of Silicon Reduction of Chromite Powder in Microwave Field: *Hua Liu*¹; ¹Kunming University of Science and Technology

Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder – Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee Program Organizers: Yan Li, Intel; Tae-Kyu Lee, Portland State University; Albert T. Wu, National Central University; Kwang-Lung Lin, National Cheng Kung University; Chih Chen, National Chiao Tung University; Won Sik Hong, Korea Electronics Technology Institutue(KETI); Mehran Maalekian, AIM Metals & Alloys; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Fan-Yi Ouyang, National Tsing Hua University; Fu Guo, Beijing University of Technology

K-1: Flexible Electrodes Based on the Carbon/Polymer Composite for Wearable Devices: *Sungwook Mhin*¹; Sehoon Yoo¹; Kyoung Ryeol Park¹; Jae Eun Jeon¹; ¹Korea Institute of Industrial Technology

K-2: Lead-free Nano-Solder Pastes for the Soldering of Cu-Cu Thin Wires: Edward Fratto¹; Evan Wernicki¹; Yang Shu¹; Fan Gao¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell

K-3: Mechanical Properties and IMC Morphology of Sn-58Bi Solder Including Sn-decorated MWCNTs: *Hyun-Joon Park*¹; Kyung-Deuk Min¹; Choong-Jae Lee¹; Seung-Boo Jung¹; ¹Sunkyunkwan University

K-4: Theoretical and Experimental Study of Intermetallic Compound Grown by Electromigration, Thermomigration and Chemical Diffusion for Sn-0.7Cu Solders: Sung-Min Baek¹; Min-Hyeok Heo²; *Namhyun Kang*²; Cheolmin Oh³; ¹Samsung Eletro-Mechanics; ²Pusan National University; ³Korea Electronics Technology Institute

Alloys and Compounds for Thermoelectric and Solar Cell Applications VI – Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Ensicaen University of Caen; Soon-Jik Hong, Kongju National University and Institute for Rare Metals; Philippe Jund, Université Montpellier 2; Lan Li, Boise State University; Takao Mori, National Institute for Materials Science (NIMS); Hsin-jay Wu, National Sun Yat-sen University; Tiejun Zhu, Zhejiang University

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

Session Chair: Sinn-wen Chen, National Tsing Hua University

K-5: Compressive Creep Behavior of Hot-pressed TAGS-85: Ming-Chiang Chang¹; *Matthias Agne*¹; Richard Michie¹; David Dunand¹; G. Jeffrey Snyder¹; ¹Northwestern University

K-6: Determination of the Mg-Si-Sn Ternary Phase Diagram to Evaluate Phase Stability of Thermoelectric Mg₂(Si,Sn) Compound: *Natsumi Kaneko*¹; Yosuke Kubo¹; Yoshisato Kimura¹; Yong-Hoon Lee²; Hiroyuki Matsunami²; Hirokuni Hachiuma²; ¹Tokyo Institute of Technology; ²KELK Ltd.

K-7: Effect of Precipitates on Thermoelectric Properties in Nickel Based Alloy: *Tomoyuki Kanatani*¹; Hiroaki Muta¹; Yuji Ohishi¹; Ken Kurosaki²; Shinsuke Yamanaka³; ¹Graduate School of Engineering, Osaka University; ²Graduate School of Engineering, Osaka University and JST, PRESTO; ³Graduate School of Engineering, Osaka University and Research Institute of Nuclear Engineering, University of Fukui

K-8: Improved Thermoelectric Properties of Bismuth-magnesium Eutectic Alloy by Melt Spinning and Spark Plasma Sintering: *Mohd Natashah Bin Norizan*¹; Hiroaki Muta¹; Yuji Ohishi¹; Ken Kurosaki¹; Shinsuke Yamanaka¹; 'Osaka University K-9: Phase Diagrams of Ternary Zn-Sb-In Systems and Thermoelectric Properties of (Cu, In)-doped Zn4Sb3 Doped Zn4Sb3: *Su Hui Yi*¹; Hsin-jay Wu¹; You-Kai Su¹; ¹National Sun Yat-sen University

K-10: Study of Cobalt Silicide by Grain Boundary Engineering: Wang Yunxia¹; Muta Hiroaki¹; Ohishi Yuji¹; Kurosaki Ken¹; Yamanaka Shinsuke¹; ¹Osaka University

K-11: The Phase Diagram of Ge-Te-Sb and Enhanced Thermoelectric Properties of (Sb, In)-doped GeTe: *Yi-Fen Tsai*¹; Hsin-Jay Wu¹; Jie-Ru Deng¹; ¹Department of Materials and Optoelectronic Science, National Sun Yat-sen University

K-12: ZnO Synthesis on the Au Metallized Silk Textile for Flexible Photocatalyst Application: *Wan-Ting Chiu*¹; Yuma Tahara²; Chun-Yi Chen¹; Tso-Fu Mark Chang¹; Tomoko Hashimoto²; Hiromichi Kurosu²; Masato Sone¹; ¹Tokyo Institute of Technology; ²Nara Women's University

Biodegradable Materials for Medical Applications – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Jaroslaw Drelich, Michigan Technological University; Petra Maier, University of Applied Sciences Stralsund; Jan Seitz, Syntellix AG; Norbert Hort, Helmholtz-Zentrum Geesthacht; Huinan Liu, University of California-Riverside

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

H-2: Development of Biodegradable Operative Zinc Clips for Ligation: *Jeffrey Brookins*¹; Jan-Marten Seitz²; Jeremy Goldman¹; Jaroslaw Drelich¹; ¹Michigan Technological University; ²Syntellix AG

H-3: Long Term Biocompatibility of Zinc and its Alloys for Absorbable Vascular Scaffolds: *Roger Guillory*¹; Jaroslaw Drelich¹; Jeremy Goldman¹; ¹Michigan Technological University

Biological Materials Science – Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee *Program Organizers:* Steven Naleway, University of Utah; Vinoy Thomas, University of Alabama at Birmingham; Holly Martin, Youngstown State University; Jing Du, Pennsylvania State University

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

Session Chairs: Steven Naleway, University of Utah; Thomas Vinoy, University of Alabama, Birmingham; Holly Martin, Youngstown State University; Jing Du, Penn State University

H-5: Characterizing the Collagen Structure of Armored Carapace of the Boxfish: Sean Garner¹; ¹University of Californi, San Diego

H-6: Density and Vessel Distribution Interactions in the Impact Resistance of Wood: *Albert Matsushita*¹; Joanna McKittrick¹; Yunlan Zhang²; Pablo Zavattieri²; ¹University of California, San Diego; ²Purdue University

H-7: Freeze Casting of Bioinspired Porous Ring Structures through Ultrasound Directed Self-assembly: *Taylor Ogden*¹; Milo Prisbrey¹; Isaac Nelson¹; Bart Raeymaekers¹; Steven Naleway¹; ¹Department of Mechanical Engineering, University of Utah

H-8: Numerical Investigation of Force Network in 3D Heterogeneous Cellularized ECM: *Hanqing Nan*¹; Yang Jiao¹; ¹Arizona State University

H-9: Transparent Teeth of Deep-sea Dragonfish: Audrey Velasco-Hogan¹; ¹UCSD

Bladesmithing 2018 – Poster Session

Program Organizers: Bharat Jasthi, South Dakota School of Mines and Technology; Roxana Ruxanda, Emerson; Garry Warren, University of Alabama; Michael West, South Dakota School of Mines and Technology; Eric Schmidt, Vallourec; Samuel Wagstaff, Novelis

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

O-1: Determining the Composition of Mystery Recycled Steel using SEM: *Brandon Ohl*'; Jon Callirgos¹, Maddox Dockins¹, Neil MacDonald¹, Roman Madoerin¹; ¹University of North Texas

Bulk Metallic Glasses XV – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, University of Tennessee; Yanfei Gao, University of Tennessee; Yunfeng Shi, Rensselaer Polytechnic Institute; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; Jianzhong Jiang, Zhejiang University; Robert Maass, University of Illinois at Urbana-Champaign

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

G-13: A First-order Liquid-liquid Phase Transition in Undercooled Molten Pd-Ni-P Alloys: *Xingchen Wang*¹; Y. Lo¹; Zhenduo Wu¹; W. Zhou¹; Hin Wing Kui¹; ¹The Chinese University of Hong Kong

G-14: Atomic Structure and Properties of CuZrAl Metallic Glasses and Composites: *Ivan Kaban*¹; ¹IFW Dresden

G-15: Compositional Effect on Temperature-induced Atomic Structure Evolution in Liquid Ga-In, Ga-Sn and In-Sn Alloys: *Qing Yu*¹; Xiaodong Wang¹; Yu Su¹; Dongxian Zhang¹; Qingping Cao¹; Jianzhong Jiang¹; ¹Zhejiang University

G-17: Correlation between Structural Heterogeneity and Serrated Flow Behavior of Zr-based Metallic Glass: *LeHua Liu*¹; ZhiYuan Liu²; PeiJie Li¹; ¹Tsinghua University; ²ShenZhen University

G-18: Effect of Pressure on Viscous Deformation during Spark Plasma Sintering of Fe – Based Bulk Amorphous Alloy: *Tanaji Paul*¹; Sandip Harimkar¹; ¹Oklahoma State University

G-19: Fictive Temperature Controlling Ductility in Metallic Glasses: *Jittisa Ketkaew*¹; Eran Bouchbinder²; Jan Schroers¹; ¹Yale University; ²Weizmann Institute of Science

G-20: Formation and Properties of Pd-Cu-Ag-Au-Si Glassy Alloys: *El-Sayed Shalaan*¹; Akihisa Inoue²; Fahad Al-Marzouki¹; Saleh Al-Heniti¹; Abdullah Obaid¹; ¹King Abdulaziz University; ²Josai International University

G-21: Formation of Zr-Cu-Al-Ag-Ti Bulk Metallic Glass Composites with Deformation Induced Martensitic Transformation: *Haotian Nan*¹; Iain Todd¹; ¹The University of Sheffield

G-22: Friction and Wear Behavior of Ti-based In-situ Dendrite Amorphous Composites: *Jian Shang*¹; ¹Liaoning University of Technology

G-23: Friction and Wear Behaviour of Ti-based Bulk Metallic Glass Composites: *Fufa Wu*¹; ¹Liaoning University of Technology, China

G-24: Influence of Composition on Glass Formation and Structure in Zr-Al-Ni Alloys: *Juan Wang*¹; Peter Tsai¹; Anupriya Agrawal¹; Katharine Flores¹; ¹Washington University in Saint Louis

G-25: On Quantifying Amorphous to Crystalline Phase Transition during Micro Milling Zr-based Bulk Metallic Glasses: David Yan¹; ¹San José State University G-26: Probabilistic Modelling and Simulation of Microstructural Evolution in Zr Based Bulk Metallic Glass Matrix Composites during Solidification: Muhammad Musaddique Ali Rafique¹; ¹RMIT University

G-27: Short-term Oxidation Behavior of Zr53.8Cu29.1Ni7.3Al9.8 Bulk Metallic Glass at High Temperature in Dry Air: *Haiyang Li*¹; ¹Northeastern University

G-28: Spark Plasma Sintering of Ni Reinforced Fe Based Bulk Metallic Composites: *Himabindu Kasturi*¹; Tanaji Paul¹; Sandip Harimkar¹; ¹OSU

G-29: Temperature Dependent Plastic Deformation of Bulk Metallic Glasses: Chandra Sekhar Meduri¹; Golden Kumar¹; ¹Texas Tech University

G-30: The Shape of the Liquid Metastable Miscibility Gap in Undercooled Molten Pd-Ni-P Alloys: *Yongxing Nie*¹; Hin Wing Kui¹; ¹Chinese University of Hong Kong

G-32: X-ray Diffraction Studies of the First-order Liquid-liquid Phase Transition in Undercooled Molten Pd-Ni-P: Ka Chung¹; X. Wang¹; Hin Wing Kui¹; ¹The Chinese University of Hong Kong

G-58: Tracking Metastable Phase Selection during Devitrification in a Metallic Glass: *Lin Zhou*¹; Fanqiang Meng¹; Shihuai Zhou¹; Taehoon Kim¹; Ryan Ott¹; Ralph Napolitano¹; Matthew Kramer¹; ¹Ames Lab

Characterization of Minerals, Metals, and Materials – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Jian Li, CanmetMATERIALS; Shadia Ikhmayies, AI Isra University; Mingming Zhang, ArcelorMittal Global R&D; Eren Kalay, METU; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Donato Firrao, Politecnico di Torino - DISAT; Andrew Brown, UNSW Australia; Chenguang Bai, Chongqing University; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Ramasis Goswami, Naval Research Laboratory; Jeongguk Kim, Korea Railroad Research Institute

Tuesday PM March 13, 2018

Room: Hall CD Location: Phoenix Convention Center

Session Chairs: Eren Kalay, Middle East Technical University; Jian Li, CanmetMATERIALS

I-11: Addition of Dregs in Mixed Mortar: Evaluation of Physical and Mechanical Properties: Rodrigo Santos¹; Rita de Cássia Alvarenga¹; *Beatryz Mendes*¹; José Maria Carvalho¹; Leonardo Pedroti¹; Afonso Azevedo¹; ¹Universidade Federal de Viçosa

I-12: Adhesion Study at Advanced Ages in Multipurpose Mortars: Markssuel Marvila¹; Jonas Alexandre¹; *Afonso Azevedo*¹; Euzébio Zanelato¹; Sergio Monteiro²; Gustavo Xavier¹; Melissa Goulart¹; Beatriz Mendes³; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro; ²Instituto Militar de Engenharia; ³Universidade Federal de Viçosa

I-14: Applications and Opportunities of Nanomaterials in Construction and Infrastructure: *Henry Colorado*¹; Oscar Jaime Restrepo Baena²; Juan Nino³; ¹Universidad de Antioquia; ²Universidad Nacional de Colombia; ³University of Florida

I-15: Automated Optical Serial Sectioning Analysis of Phases in a Medium Carbon Steel: *Veeraraghavan Sundar*¹; Satya Ganti¹; Bryan Turner¹; ¹UES Inc.

I-16: Ballistic Performance Evaluation of a Mutilayered Armor System with PALF/Epoxy Composite: Fernanda da Luz¹; Sergio Monteiro¹; ¹Military Institute of Engineering, IME

I-17: Ballistic Test of Multilayered Armor with Intermediate Polyester Composite Reinforced with Fique Fabric: Artur Camposo Pereira¹; Sergio Neves Monteiro¹; Foluke Salgado de Assis¹; ¹Instituto Militar de Engenharia

TECHNICAL PROGRAM

I-18: Intergranular Cracking of High Strength Extruded Brass Alloys: *Athanasios Vazdirvanidis*¹; George Pantazopoulos¹; ¹ELKEME S.A.

I-19: Characterization of a Brazilian Bentonite for its Use in the Oil and Gas Industry: Adriana Almeida Cutrim¹; Margarita Bobadilla²; Kleberson R. Oliveira Pereira²; Fabio Jose Esper³; Guillermo Ruperto Martin Cortes³; Maria das Gracas Silva Valenzuela²; *Francisco Valenzuela-Diaz*²; ¹Federal University of Campina Grande; ²Universidade de Sao Paulo; ³Centro Universitario Estacio e Universidade de Sao Paulo

I-20: Characterization of Different Clays for the Optimization of Mixtures for the Production of Ceramic Artifacts: *Afonso Azevedo*¹; Jonas Alexandre²; Euzébio Zanelato²; Markssuel Marvila²; Leonardo Pedroti³; Gustavo Xavier²; Diogo Santos²; Sergio Monteiro⁴; Marcelo Peixoto¹; ¹IFF; ²UENF; ³UFV; ⁴IME

I-21: Characterization of Polyester Composite Reinforced with Fique Fiber Functional Groups by Infrared Spectroscopy: Artur Camposo Pereira¹; Sergio Neves Monteiro¹; Foluke Salgado de Assis¹; ¹Instituto Militar de Engenharia

I-22: Characterization of Tensile Properties of Epoxy Matrix Composites Reinforced with Fique Fabric Fiber: *Maria Carolina Teles*¹; Felipe Lopes¹; Sérgio Monteiro²; Djalma Souza¹; ¹State University of the Northern Rio de Janeiro; ²IME

I-23: Clay Smectite Synthetic: Characterization and Application in Nanocomposites: Thamyres de Cavalho¹; Edermarino Hidebrando²; Roberto Neves²; *Francisco Diaz*¹; ¹Polytechnic School of the University of São Paulo; ²Federal University of Pará

I-24: Comparison of Performance between Granite Waste Pigments Based Paints and Soils Pigments Based Paints: Márcia Maria Lopes¹; Rita de Cássia Alvarenga¹; Leonardo Pedroti¹; *Beatryz Mendes*¹; Fernando Cardoso¹; Afonso Azevedo²; ¹Universidade Federal de Viçosa; ²UENF

I-25: Comparison of the Analytical and Experimental Temperatures in the Process of Machining an Intexable Steel: Victor Souza¹; *Niander Cerqueira*²; Juliana Ladeira¹; Ricardo Sanches¹; Jarilson Silva¹; Afonso Azevedo²; Luis Felipe Silva¹; ¹Uni Redentor; ²Universidade Estadual Do Norte Fluminense Darcy Ribeiro - UENF

I-26: Development and Characterization of Recycled-HDPE/EVA Foam Reinforced with Babassu Coconut Epicarp Fiber Residues: Mariana Arantes¹; Julyana Santana¹; Francisco Valenzuela-Díaz²; Vijay Rangari³; Olgun Guven⁴; *Esperidiana Moura*¹; ¹Instituto de Pesquisas Energéticas e Nucleares; ²Universidade de São Paulo; ³Tuskegee University; ⁴Hacettepe University

I-27: Effects of Civil Construction Waste on Properties of Lining Mortars: *Afonso Azevedo*¹; Jonas Alexandre²; Gustavo Xavier²; Beatryz Mendes³; Sergio Monteiro⁴; Niander Cerqueira²; ¹IFF; ²UENF; ³UFV; ⁴IME

I-28: Electron Beam Effect on Mechanical and Thermical Properties of DGEBA/EPDM Compound: Anderson Mesquita¹; Ian Cavalcante¹; *Leonardo Silva*¹; ¹Instituto de Pesquisas Energéticas e Nucleares - IPEN

I-29: Epoxy Adhesive Joint for Metal Parts: *Fabio Garcia Filho*¹; Sergio Monteiro¹; ¹Military Institute of Engineering - IME

I-30: Evaluation of Microcapsules of PBSL/MMT-K and PBSL/OMMT-K Nanocomposites: *Bianca Michel*¹; Maria das Graças Silva-Valenzuela¹; Francisco Valenzuela-Diaz¹; Wang Hui¹; Hélio Wiebeck¹; ¹Polytechnic Scholl of University of São Paulo

I-31: Evaluation of the Projectile's Loss of Energy in Polyester Composite Reinforced with Fique Fiber and Fique Fabric: Artur Camposo Pereira¹; Sergio Neves Monteiro¹; Foluke Salgado de Assis¹; ¹Instituto Militar de Engenharia

I-32: Evaluation of the Quality of Concrete with Waste of Construction and Demolition: Niander Cerqueira¹; *Victor Souza*¹; Afonso Azevedo²; Renan Vicente¹; Anna Carolina Rabello¹; Amanda Camerini¹; André Gomes¹; ¹Uni Redentor; ²UENF

I-33: Experimental Investigation of Low-velocity Ballistic Impact Response of Closed Cell Aluminium Foams for Various Shaped Projectile Tips: Md Ashraful Islam¹; *Md Abdul Kader*¹; Paul Hazell¹; Juan Escobedo-Diaz¹; Andrew Brown¹; ¹UNSW Canberra I-34: Evaluation of Two Different Pulsed Plasma Nitriding Conditions on Steel Properties: *Fabio Garcia Filho*¹; Gabriel De Carvalho¹; Sergio Monteiro¹; ¹Military Institute of Engineering - IME

I-35: Flexural Mechanical Characterization of Polyester Composites Reinforced with Jute Fabric: Foluke de Assis¹; Sergio Monteiro¹; Artur Pereira¹; ¹Military Institute of Engineering

I-36: Grain Boundary Engineering through Thermo-mechanical Processing and its Implication on Sensitization in Alloy 600H: *Chandra Kaithwas*¹; Pallabi Bhuyan¹; Sumanta Pradhan¹; Sumantra Mandal¹; ¹IIT Kharagpur

I-37: Influence of Coupling Agent on the Modification Effects of Vanadium Tailing as a Polymer Filler: *Tiejun Chen*¹; Min Lu¹; PeiWei Hu¹; ¹Wuhan University of Science and Technology

I-38: Influence of Electron-beam Irradiation on the Properties of LDPE/ EDPM Blend Foams: *Julyana Santana*¹; Marcus Seixas²; Vijay Rangari³; Francisco Valenzuela-Díaz²; Helio Wiebeck²; Esperidiana Moura⁴; ¹Instituto de Pesquisas Energeticas e Nucleares IPEN/SP; ²Metallurgical and Materials Engineering Department, Polytechnic School, University of Sao Paulo; ³Department of Materials Science and Engineering, Tuskegee University; ⁴Center for Chemical and Environmental Technology (CQMA), Nuclear and Energy Research Institute – Sao Paulo

I-39: Influence of the Areal Density of Layers in the Ballistic Response of a Multilayered Armor System Using Box-behnken Statistical Design: *Fábio Braga*¹; Pedro Henrique Lopes¹; Fernanda Luz¹; Édio Lima Jr.¹; Sergio Monteiro¹; ¹Military Institute of Engineering (IME)

I-40: Influence of the Blocks and Mortar's Compressive Strength on the Flexural Bond Strength of Concrete Masonry: Gustavo Nalon¹; Rita Alvarenga¹; Leonardo Pedroti¹; Marcelo Alves¹; Roseli Martins¹; Carol Santos²; Igor Andrade¹; *Beatryz Mendes*¹; ¹Federal University of Viçosa; ²University of Sao Paulo

I-41: Influence of Two Solubilization Conditions at 718 Superalloy Hardness and Microstructure: Fabio Garcia Filho¹; Dian De Oliveira¹; Sergio Monteiro¹; ¹Military Institute of Engineering - IME

I-42: Irradiation Influence on the Properties of HMS-Polypropylene Clay/AgNPs Nanocomposites: Washington Oliani¹; *Duclerc Parra*¹; Vijaya Rangari²; Nilton Lincopan³; Ademar Lugao¹; ¹Nuclear Energy Research Institute – IPEN/USP; ²Tuskegee University; ³Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo

I-43: Limit Speed Analysis and Absorbed Energy in Multilayer Armor with Epoxy Composite Reinforced with Mallow Fibers and Mallow and Jute Hybrid Fabric: Lucio Nascimento¹; *Sérgio Monteiro*¹; Luis Henrique Louro¹; Édio Lima Jr.¹; Fábio Braga¹; Fernanda Luz¹; Jheison Santos¹; Rubens Marçal¹; Hugo Freitas¹; ¹Instituto Militar de Engenharia

I-44: Mechanical Characterization of Concrete Blocks with Addition on Residual Waste from the Marble Benefit: *Niander Cerqueira*¹; Victor Souza²; Leonardo Pinheiro²; Victor Pinho²; Afonso Azevedo¹; Luis Felipe Silva²; ¹Universidade Estadual Do Norte Fluminense Darcy Ribeiro - UENF; ²Uni Redentor

I-45: Mechanical, Thermal and Electrical Properties of Polymer (Ethylene Terephthalate - PET) Filled with Carbon Black: Anderson Mesquita¹; *Leonardo Silva*¹; Leila Miranda²; ¹Instituto de Pesquisas Energéticas e Nucleares - IPEN/USP; ²Universidade Presbiteriana Mackenzie - UPM

I-46: Mineralogical Analysis of A Chrome Ore from South Africa: *Ming-feng Ye*¹; Guang-liang Wu¹; ¹Central South University

I-47: Multilayered Armors with Piassava Fiber Composite: Fabio Garcia Filho¹; Sergio Monteiro¹; ¹Military Institute of Engineering - IME

I-48: Oxidation Behavior of Ti-based Bulk Metallic Glasses at Different Temperatures: *Haiyang Li*¹; ¹Northeastern University

I-49: Pilot Trial of Detoxification of Chromium Slag in Cyclone Furnace and Preparation of Glass-ceramics with the Water-quenched Melt: *Guizhou Zhao*¹; Lingling Zhang¹; Daqiang Cang¹; ¹University of Science and Technology, Beijing

POSTERS

I-50: Preparation of Refractory Material from Ferronickel Slag: Foquan Gu¹; *Zhiwei Peng*¹; Huimin Tang¹; Lei Ye¹; Weiguang Tian²; Guoshen Liang²; Mingjun Rao¹; Yuanbo Zhang¹; Guanghui Li³; Tao Jiang¹; ¹Central South University; ²Guangdong Guangqing Metal Technology Co.Ltd; ³Central South University School of Minerals Processing and Bioengineering

I-51: Process Improvement Study on the Gradation Uniformity of Steel Slag Asphalt Concrete Aggregate: *Canhua Li*¹; Ming-sheng He²; Huo-guo Pang¹; Xiao-dong Xiang¹; Xin-wei Jiang¹; Hong-bo Jin³; ¹Wuhan University of Technology, China; ²Frontier Technology Institute of Wuhan Branch of Bao-steel Central Research Institute of Wuhan Iron and SteelCo.,Ltd; ³Anhui Transport Consulting & Design Institute Co.,Ltd.

I-52: Recycling of Polypropylene: *Fabio Garcia Filho*¹; Sergio Monteiro¹; ¹Military Institute of Engineering - IME

I-53: Research on the Interaction of Humic Acid with Iron Minerals: *Guihong Han*¹; Shengpeng Su¹; Yijun Cao¹; Yanfang Huang¹; Xiangyu Song¹; ¹Zhengzhou University

I-54: Serial Sectioning as a Characterization Method for Carbon Fiber Composites: *Veeraraghavan Sundar*¹; Issa Hakim²; Satya Ganti¹; Bryan Turner¹; ¹UES Inc.; ²University of Dayton

I-55: Study of Different Process Additives Applied to Polypropylene: Patricia Poveda¹; Juliana Molari²; Deborah Brunelli²; *Leonardo Silva*¹; ¹Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP; ²Instituto Tecnológico de Aeronáutica - ITA

I-56: Study of the Durability of Mortars with Effluent Sludge from Paper Industry Exposed to Salt Spray: *Afonso Azevedo*¹; Jonas Alexandre²; Gustavo Xavier²; Euzébio Zanelato²; Markssuel Marvila²; Niander Cerqueira²; Beatryz Mendes³; Sergio Monteiro⁴; ¹IFF; ²UENF; ³UFV; ⁴IME

I-57: Study of the Incorporation of Residue of Ornamental Rocks in Ceramic Tiles: Markssuel Marvila¹; Jonas Alexandre¹; *Afonso Azevedo*¹; Euzébio Zanelato¹; Sergio Monteiro²; Wellington Junior¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro; ²Instituto Militar de Engenharia

I-58: Study of the Incorporation of Smectite in Powder Coating: Maria das Graças Silva-Valenzuela¹; Francisco Valenzuela-Diaz²; Simeão Ferreira¹; ¹Federal University of ABC; ²University of São Paulo

I-59: Study of the Mineralogical Composition of the Tailings of Coscotitlán, Hidalgo, Mexico: Aislinn Teja Ruiz¹; Julio Cesar Juárez¹; Martín Reyes¹; Leticia Hernández C.¹; *Mizraim Uriel Flores G.*¹; Iván Alejandro Reyes D.¹; Miguel Perez¹; Raúl Moreno Tovar¹; ¹Universidad Autónoma del Estado de Hidalgo

I-60: Study of Viability of the Addition of Sawing Residue in the Production of Structural Concrete: *Niander Cerqueira*¹; Victor Souza²; Victor Bartolazzi²; André Gomes²; ¹Universidade Estadual Do Norte Fluminense Darcy Ribeiro - UENF; ²Uni Redentor

I-61: The Effect of Transition Metals in Devitrification of Al-TM-RE Marginal Glass Forming Alloys: Mustafacan Kutsal¹; Bengisu Yasar¹; *Eren Kalay*¹; ¹METU

I-62: The Influence of Clay Reinforcement on the Properties of Recycled Polymer Foams: Mariane Oide¹; Julyana Santana¹; Renate Wellen²; Francisco Valenzuela-Díaz³; Olgun Guven⁴; *Esperidiana Moura*¹; ¹Instituto de Pesquisas Energéticas e Nucleares; ²Universidade Federal da Paraíba (UFPB) ; ³Universidade de São Paulo; ⁴Hacettepe University

I-63: The Mechanical and Thermal Properties of Bulk FeB: *Mitsuyuki Sugizaki*¹; Yuji Ohishi¹; Fumihiro Nakamori¹; Hiroaki Muta¹; Ken Kurosaki²; Shinsuke Yamanaka³; ¹Graduate School of Engineering, Osaka University; ²Graduate School of Engineering, Osaka University & JST, PRESTO; ³Graduate School of Engineering, Osaka University and Research Institute of Nuclear Engineering, University of Fukui

I-64: The Quality of Tiles in Red Ceramic in Northwest of Rio de Janeiro and Southeast of Minas Gerais: Niander Cerqueira¹; *Priscila Celebrini*²; Dienifer Konzen³; Melissa Oliviera³; Afonso Azevedo¹; Mairyanne Souza¹; Victor Souza³; ¹Universidade Estadual Do Norte Fluminense Darcy Ribeiro -UENF; ²IME; ³Uni Redentor I-65: The Use of Polymeric Residues of High Density Polyethylene, in Substitution of Large Aggregate in Different Dosages in the Selfcompacting Non-Structural Concrete: Thiago Silva¹; Alex Sandro Silva¹; *Michel Oliveira*¹; Jose Carlos Bueno¹; Niander Cerqueira²; André Viana¹; ¹Uni Redentor; ²Universidade Estadual Do Norte Fluminense Darcy Ribeiro - UENF

I-66: Structural, Spectroscopic, Magnetic, and Thermal Characterizations of a Magnetite Ore from the Nagaland Region, India: Ritayan Chatterjeel; Dinabandhu Ghosh²; Surajit Biswas³; Sandeep Agarwal⁴; P.K. Mukhopadhyay⁵; *Saikat K. Kuila*⁶; ¹Heritage Institute of Technology Kolkata; ²Jadavpur University; ³University of Kalyani; ⁴Ningbo Institute of Material Technology and Engineering; ⁵S. N. Bose National Centre for Basic Sciences; ⁶IIT Kharagpur

Computational Design and Simulation of Materials (CDSM 2018): Atomistic Simulations – Poster Session

Sponsored by: Chinese Society for Metals

Program Organizers: Dallas Trinkle, University of Illinois, Urbana-Champaign; Panthea Sepehrband, Santa Clara University; Ting Zhu, Georgia Institute of Technology; Xing-Qiu Chen, Institute of Metal Research, Chinease Academy of Sciences; Qing Jiang, Jilin University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Tuesday PM March 13, 2018 Room: Hall CD Location: Phoenix Convention Center

L-2: Atomic Structure and Electronic Properties of Hybrid Halide Perovskite Surface for Photovoltaic Applications: *Rabi Khanal*¹; Sheila Briggs¹; Nicholas Ayers¹; Taufique Mohammad²; Soumik Banerjee²; Samrat Choudhury¹; ¹University of Idaho; ²Washington State University

L-3: Atomicrex - the General Purpose Tool for Constructing Atomic Interaction Models: *Alexander Stukowski*¹; Paul Erhart²; ¹Darmstadt University of Technology; ²Chalmers University of Technology

L-4: Atomistic Simulations of Carbon Diffusion and Segregation in a-Iron Grain Boundaries: Mohamed Hindy¹; *Tarek Hatem*¹; Jaafar El-Awady²; ¹British University in Egypt; ²Johns Hopkins University

L-6: Composition and Measurement Dependent Thermal Conductivity of Graphene Oxide: *Thomas Zhang*¹; Chandra Singh¹; ¹University of Toronto

L-7: Deformation Studies of Pd-Pt Alloy Nanowire Using Molecular Dynamics Simulations: *Jay Krishan Dora*¹; Natraj Yedla²; Sudipto Ghosh¹; ¹IIT Kharagpur; ²Nit Rourkela

L-8: Effect of Pre-existing Defects in the Parent FCC Phase on the Martensitic Transformation in Pure Fe: A Molecular Dynamics Study: Shivraj Karewar¹; Jilt Sietsma¹; Maria Santofimia¹; ¹TU Delft

L-9: Effect of Precipitation on Grain Boundary Diffusion in Al-based Alloy: Sergiy V. Divinski¹; Vladislav Kulitcki¹; Bengue Tas Kavakbasi¹; *Ankit Gupta*²; Yulia Buranova¹; Tilmann Hickel²; J Neugebauer²; Gerhard Wilde¹; ¹Institute of Materials Physics, University of Muenster; ²Max-Planck Institute for Iron Research

L-10: First-principles Investigation of Vanadium Segregation at (111) Twins in MgAl2O4-spinel: *Venkateswara Rao Manga*¹; Tom Zega¹; Keith Runge¹; Krishna Muralidharan¹; ¹University of Arizona

L-11: Formation of Fivefold Twins during Rapid Solidification of Aluminum, and Twinning/Detwinning in Solidified Aluminum by Tensile Deformation: Avik Mahata¹; *Mohsen Asle Zaeem*¹; ¹Missouri University of Science and Technology

L-12: Insights into the Effect of Zr on O-contaminated MoSi₂ Grain Boundaries from Density Functional Theory Calculations: *Hui Zheng*¹; Richard Tran¹; Balachandran Radhakrishnan¹; Shyue Ping Ong¹; ¹University of California, San Diego L-13: Interface Design for Carbide and Nitride Precipitates in Ferritic and Austenitic Steels: First-principles Approach: *Oleg Kontsevoi*¹; Gregory Olson¹; ¹Northwestern University

L-15: On the Deformation Mechanisms and Scaling Law of Threedimensional Nanoporous Metals: *Lijie He*¹; Niaz Abdolrahim¹; Haomin Liu¹; ¹University of Rochester

L-16: Optimizing Processing Parameter in Laser Sintering Process by Molecular Dynamics Simulation: *Bowen Deng*¹; David Hobbs¹; Bruce Madigan¹; ¹Montana Tech of the University of Montana

L-17: Pair Correlations in Metal Nanocrystals: *Alberto Flor*¹; Paolo Scardi¹; ¹University of Trento

L-18: Peak Intrinsic Thermal Conductivity in Non-metallic Solids and New Interpretation of Experimental Data for Argon: *Ahmed Hamed*¹; Anter El-Azab¹; ¹Purdue University

L-19: Predicting the Electronic Structure of CeO2 Grain Boundaries for Comparison with Atomic Resolution EELS: *Tara Boland*¹; ¹Arizona State University

L-21: Twinning and Phase Transformation in Single Crystal Ti Subjected to Multiaxial Loading Situations: Comparison of Interatomic Potentials: Sunil Rawat¹; *Nilanjan Mitra*¹; ¹Indian Institute of Technology Kharagpur

L-22: Understanding the Effect of Solid-solution on Mg Alloys' High Plastic Anisotropy: *Eleftherios Andritsos*¹; Guy Skinner¹; Anthony Paxton¹; ¹King's College London

Computational Design and Simulation of Materials (CDSM 2018): Meso/Macroscale Simulations – Poster Session

Sponsored by: Chinese Society for Metals

Program Organizers: Katsuyo Thornton, University of Michigan; Mohsen Asle Zaeem, Missouri University of Science and Technology; Richard Hennig, University of Florida; Chengjia Shang, University of Science and Technology Beijing; Tong-Yi Zhang, Shanghai University; Zi-Kui Liu, The Pennsylvania State University; Alan Luo, The Ohio State University

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

L-23: A Crystal Plasticity Finite Element Simulation of Deformation Behavior Using a Real Microstructure-based RVE in a Dual-phase Steel: *Jinwook Jung*¹; Sang Sub Han¹; Siwook Park¹; MoonKi Bae²; Seung-Hyun Hong²; Kyu Hwan Oh¹; Heung Nam Han¹; ¹Seoul National University; ²Hyundai Motor Group

L-24: A Finite Element Simulation for Induction Heat Treatment of Drive Shaft Considering Transformation Plasticity: Siwook Park¹; Jinwook Jung¹; Si-yup Lee²; Heung Nam Han¹; ¹Department of Materials Science and Engineering, Seoul National University; ²Automotive Research and Development Division, Hyundai Motor Group, Hwaseong-si

L-25: A Quantitative Study of Strain Glass Transition of NiTi-base Shape Memory Alloys: *Chuanxin Liang*¹; Dong Wang¹; Zhao Wang²; Yunzhi Wang³; ¹Xi'an Jiaotong University; ²Guangxi University; ³The Ohio State University

L-26: Phase Field Study on the Formation of Lath Martensite: *Mingyu Cho*¹; Pil-Ryung Cha¹; Dong-Uk Kim²; Moon-Gi Bae³; Soon-Woo Kwon³; Min-Woo Kang³; Seung-Hyun Hong³; ¹Kookmin University; ²University of Michigan; ³Hyundai Kia Motors Namyang Institute

Computational Design and Simulation of Materials (CDSM 2018): Computational Design of Materials – Poster Session

Sponsored by: Chinese Society for Metals

Program Organizers: Alan Luo, The Ohio State University; Suveen Mathaudhu, University of California, Riverside; Yong Du, Central South University; Raymundo Arroyave, Texas A & M University; Dianzhong Li, Institute of Metal Research, Chinese Academy of Sciences; Zi-Kui Liu, The Pennsylvania State University

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

L-30: Diffusion Couple Experiments to Support the Development of a Diffusion Mobility Database for the Co-Al-W-Ni-Cr-Ta System: *Kil-won Moon*¹; Greta Lindwall¹; Maureen Williams¹; Carelyn Campbell¹; Peisheng Wang²; Ursula Kattner¹; ¹National Institute of Standards and Technology; ²Northwestern University

Computational Materials Discovery and Optimization – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers:* Richard Hennig, University of Florida; Houlong Zhuang, Arizona State University; Arunima Singh, Lawrence Berkeley National Laboratory; Eric Homer, Brigham Young University; Francesca Tavazza, National Institute of Standards and Technology

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

L-27: Computational Design of Fatigue-resistant NiTi-based Shape Memory Alloys: Chuan Liu¹; Gregory Olson¹; ¹Northwestern University

Computational Method and Experimental Approaches for Model Development and Validation, Uncertainty Quantification, and Stochastic Predictions – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee *Program Organizers*: Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory; Richard Hennig, University of Florida; Avinash Dongare, University of Connecticut; Shawn Coleman, U.S. Army Research Laboratory; Niaz Abdolrahim, University of Rochester; Joseph Bishop, Sandia National Laboratories; Fadi Abdeljawad, Sandia National Laboratories; Li Ma, National Institute of Standards and Technology

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

L-28: Extending the Angular-embedded Atom Method (A-EAM) Framework to an Al-Mg-Si Ternary System: Sumit Athikavil Suresh¹; Avinash Dongare¹; ¹University of Connecticut

Computational Thermodynamics and Kinetics – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Elif Ertekin, University of Illinois; Shawn Coleman, U.S. Army Research Laboratory; Brent Fultz, California Institute of Technology; Richard Hennig, University of Florida; Suveen Mathaudhu, University of California, Riverside

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

N-2: Compare the Energies of Different Structures in Aluminium Electrochemical Cell: *Mohsen Amerisiahooei*¹; Khirollah Mehrani¹; Mohammad Yousefi¹; ¹Islamic Azad University

N-3: First-principles Calculations of Non-dilute Solute Diffusion Coefficients in the Ag-Au System: *Harrison Lee*¹; Chelsey Hargather¹; John O'Connell¹; Shun-Li Shang²; Zi-Kui Liu²; ¹New Mexico Institute of Mining and Technology; ²The Pennsylvania State University

N-4: Interface Stability between Yb₁₄MgSb₁₁ and Ni Electrode: A Combined Study from First-principles Phonon Calculations, Thermodynamic Modeling, and Experiments: *Jorge Paz Soldan Palma*¹; Yi Wang¹; Zi-Kui Liu¹; Kurt Star²; Vilapanur Ravi³; Samad Firdosy²; Jean-Pierre Fleurial²; ¹Pennsylvania State University; ²Jet Propulsion Laboratory; ³California State Polytechnic University

N-5: Manganese Influence on Equilibrium Partition Coefficient and Phase Transformation in Peritectic Steel: *Huabiao Chen*¹; Mujun Long¹; Wenjie He¹; Dengfu Chen¹; Huamei Duan¹; Yunwei Huang¹; ¹Chongqing University

N-6: Mathematical Modeling on the Fluid Flow and Desulfurization during KR Hot Metal Treatment: *Chao Fan*¹; Lifeng Zhang²; Qingcai Liu¹; Dayong Chen¹; ¹Chongqing University; ²University of Science and Technology Beijing

Design for Mechanical Behavior of Architectured Materials via Topology Optimization – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Natasha Vermaak, Lehigh University; Andrew Gaynor, U.S. Army Research Laboratory

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Natasha Vermaak, Lehigh University; Andrew Gaynor, ARL

L-29: Mechanical Properties of Work Hardened Steel Multilayers with Bimodal Grain Size: *Marcin Kwiecien*¹; Janusz Majta²; ¹AGH; ²Akademia Górniczo-Hutnicza im. Stanislawa Staszica w Krakowie

Environmentally Assisted Cracking: Theory and Practice – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Bai Cui, University of Nebraska–Lincoln; Raul Rebak, GE Global Research; Sebastien Dryepondt, Oak Ridge National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Tuesday PM March 13, 2018 Room: Hall CD Location: Phoenix Convention Center

J-1: SCC Property Evolution of X70 Pipeline Steel in Simulated Deepsea Environments: Zixuan Yang¹; *Jinxu Li*¹; ¹University of Science and Technology Beijing

Frontiers in Advanced Functional Thin Films and Nanostructured Materials – Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Army Research Office; Srinivasa Rao Singamaneni, The University of Texas at El Paso; Haiyan Wang, Purdue University; Nuggehalli Ravindra, New Jersey Institute of Technology; Raj Singh, Oklahoma State University; Amit Pandey, LG Fuel Cell Systems Inc.

Tuesday PM March 13, 2018

Room: Hall CD Location: Phoenix Convention Center

Funding support provided by: Quantum Design and Radiant Technologies

M-13: Anisotropic Magnetic Properties in BiFeO₃/SrRuO₃ and La0.7Ca0.3MnO3/SrRuO3 Heterostructures: *Srinivasa Rao Singamaneni*¹; S. Nori²; L. M. Martinez¹; Jose Delgado¹; D Kumar³; John Prater⁴; Jay Narayan²; ¹The University of Texas at El Paso; ²North Carolina State University; ³North Carolina A&T State University; ⁴Army Research Office

M-14: Characterizing Nitrogen-vacancy (NV) Centers in Diamond Nanostructure Formed by Pulsed Laser Annealing Technique at Room Temperature and Ambient Pressure: *Anagh Bhaumik*¹; Ritesh Sachan²; Jagdish Narayan¹; ¹North Carolina State University; ²Materials Science Division, Army Research Office

M-15: How Good those are Mechanically Exfoliated MoS₂ Mono Layered Devices at the Atomic Level?: *L. M. Martinez*¹; C. Saiz¹; J. van Tol²; Srinivasa Rao Singamaneni¹; ¹The University of Texas at El Paso; ²National High Magnetic Field Laboratory

M-16: Magnetic Anisotropy in Ni/VO2 Heterostructures: Srinivasa Rao Singamaneni¹; Gabrielle M. Foley²; S Nori²; *Cosio Adrian*¹; D Kumar³; John Prater⁴; Jay Narayan²; ¹The University of Texas at El Paso; ²North Carolina State University; ³North Carolina A&T State University; ⁴Army Research Office

M-17: Nitrogen Vacancy Induced Room-temperature Ferromagnetism in TiN Epitaxial Thin Films via Ultrafast Laser Melting: *Siddharth Gupta*¹; Ritesh Sachan²; Adele Moatti¹; Jagdish Narayan¹; ¹North Carolina State University; ²Materials Science Division, Army Research Office

M-18: Q-carbon Tribological Coatings on WC and Tool Steel: Alexander Niebroski¹; Anagh Bhaumik¹; Punam Pant¹; Jagdish Narayan¹; ¹North Carolina State University

M-19: Synthesis and Mechanical Behavior of a Freestanding, Nanocrystalline NiTi Film under Cyclic Tensile Deformation: Paul Rasmussen¹; Jagannathan Rajagopalan¹; Rohit Sarkar¹; ¹Arizona State University

Frontiers in Solidification Science and Engineering – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Mohsen Asle Zaeem, Missouri University of Science and Technology; Damien Tourret, IMDEA Materials Institute; Mohsen Eshraghi, California State University, Los Angeles; Johannes Hötzer, University of Applied Science Karlsruhe

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Mohsen Asle Zaeem, Missouri University of Science and Technology

N-7: A Microstructural Approach toward Improving the Phase Stability of Planar Structure of the Peritectic Pb-Bi Alloys: *Peiman Shahbeigi Roodposhti*¹; Harold Brody¹; ¹University of Connecticut

N-9: Numerical Investigation of Macrosegregation Mechanisms in DC Casting for Different Alloy Systems: *Akash Pakanati*¹; Mohammed M'Hamdi²; Hervé Combeau³; Miha Založnik³; ¹NTNU; ²SINTEF; ³Institut Jean Lamour

N-10: Solidification Study of Spray-formed Cast Irons: *Guilherme Zepon*¹; Julia Fernandes¹; Lucas Otani²; Claudemiro Bolfarini¹; ¹Department of Materials Engineering - Federal University of São Carlos; ²Graduate Program of Materials Science and Engineering - Federal University of São Carlos

N-11: Study on the Formation and Control of TiN Inclusion in Mushy Zone for High Ti Microalloyed Steel: *Tao Liu*¹; Dengfu Chen¹; Wenjie He¹; Mujun Long¹; Lintao Gui¹; Huamei Duan¹; Junsheng Cao¹; ¹Chongqing University

General Poster Session – Poster Session

Tuesday PM March 13, 2018

TECHNICAL PROGRAM

Room: Hall CD Location: Phoenix Convention Center

O-2: A Mesoscale Model to Isolate Grain Boundary Effects in Material Failure: *Sabine Zentgraf*¹; ¹University of Colorado, Colorado Springs

O-3: Additive Manufacturing of Epoxy Resin Matrix Reinforced with Magnetic Particles: Jose Rua¹; Henry Colorado¹; ¹Universidad de Antioquia

O-4: Admixture Optimization in Concrete Using Superplasticizers: *Andrea Munoz*¹; Sergio Cifuentes²; Henry Colorado¹; ¹Universidad de Antioquia; ²Conasfaltos S. A.

O-5: Analysis of Plastic Deformation in Ti-Zr-Ni Quasicrystals: *Geunhee Yoo*¹; Eunsoo Park¹; Chaewoo Ryu¹; Jinyeon Kim¹; 'Seoul National University

O-6: Ball Milling of Machine Chips as an Alternative Feedstock for Additive Manufacturing: Jessica Bui¹; *Parnian Kiani*¹; Kaka Ma²; Julie Schoenung¹; ¹University of California, Irvine; ²Colorado State University

O-7: Bayesian Inference Based Uncertainty Quantification and Propagation Analysis of a Polycrystal Plasticity Finite Element Model Used for High Cycle Fatigue Analysis of Ti-6Al-4V: *Ritwik Bandyopadhyay*¹; Kartik Kapoor¹; Barron Bichon²; Michael Sangid¹; ¹Purdue University; ²Southwest Research Institute

O-8: Characterization Study of Binder-jet Printed of TiC-Aluminum Cermet: Cindy Waters¹; Cameron Shackleford¹; ¹NCA&T State University

O-10: Control of Prior Particle Boundary Formation in Hot Iso-statically Pressed Nickel-based Superalloys: *Benjamin Georgin*¹; Brian Welk¹; Hamish Fraser¹; ¹Center for Accelerated Maturation of Materials, The Ohio State University

O-12: Development of a Cu-alloy Seed Buffer Layer for Solder Bump Flip Chip Application: Chon-Hsin Lin¹; ¹Asia-Pacific Institute of Creativity

O-13: Direct Metal Write of Aluminum Alloys with Enhanced Surface Stability: Hunter Henderson¹; Michael Kesler¹; Max Neveau²; Zachary Sims²;

Wiliam Carter¹; Scott McCall³; Lonnie Love¹; Brian Post¹; Randall Lind¹; Mark Jaster⁴; David Weiss⁵; Orlando Rios¹; ¹Oak Ridge National Laboratory; ²University of Tennessee; ³Lawrence Livermore National Laboratory; ⁴PrintSpace 3D; ⁵Eck Industries

O-14: Effect of Colony Size on Tensile Fracture Behavior in Lamellar and Bi-lamellar Microstructures of Ti-6Al-4V Alloys: *Jangho Yi*¹; Yan Chong¹; Nobuhiro Tsuji²; ¹Department of Materials Science & Engineering, Kyoto University; ²Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University

O-16: Effect of Surface Treatment of Copper and its Alloys on the Antimicrobial Properties of the Surfaces: *Monika Walkowicz*¹; Piotr Osuch¹; Beata Smyrak¹; Andrzej Mamala¹; Tadeusz Knych¹; Anna Rozanska²; Agnieszka Chmielarczyk²; Dorota Romaniszyn²; Malgorzata Bulanda²; ¹AGH University of Science and Technology; ²Jagiellonian University Medical College

O-17: Effect of Tin Content on Microstructure and Mechanical Properties of High Carbon Steels: *Lei Zhang*¹; Hong-po Wang¹; Cong-xiao Li¹; Yu Wang¹; Yi-yi Shu²; Yuan-hua Zhou²; ¹Chongqing University; ²Chongqing Iron and Steel Co. Ltd.

O-18: Enhancement of Thermoelectric Properties of Mechanically Alloyed Bi0.4Sb1.6Te3 Nanocomposites by Addition of γ-Al2O3 Particles: *Pee-Yew Lee*¹; ¹National Taiwan Ocean University

O-19: Evaluation of the Formation of Intermetallic Compounds in Aluminum-steel Joints According to the Joining Method: *Jose Rua*¹; Edwar Torres¹; ¹Universidad de Antioquia

O-20: Fabrication of Nb-Si-B Alloys by Solidification Process and SPS Process: *Myung-Jin Suk*¹; Seong Lee²; Sung-Tag Oh³; Young Do Kim⁴; ¹Kangwon National University; ²Agency for Defence Development; ³Seoul National University of Science and Technology; ⁴Hanyang University

O-21: Fatigue Strength Characteristics of Tandem Gas Metal Arc Welding in Automotive Chassis Parts: *Jaesoo Lee*¹; Jong-deok Seo¹; Dong-yoon Kim²; Dongcheol Kim²; Munjin Kang²; Young-min Kim²; ¹Shynyoung; ²KITECH

O-22: Functional Requirements for Expected Properties of Antimicrobial Touch Surfaces Based on Copper and its Alloys: Monika Walkowicz¹; *Piotr Osuch*¹; Andrzej Mamala¹; Beata Smyrak¹; Tadeusz Knych¹; Anna Rozanska²; Agnieszka Chmielarczyk²; Dorota Romaniszyn²; Malgorzata Bulanda²; ¹AGH University of Science and Technology; ²Jagiellonian University Medical College

O-23: Gold Nanoparticles on Multilayer Graphene Sheets for Surface Enhanced Raman Spectroscopy of Glucose: Laila Al-qarni¹; Zafar Iqbal¹; ¹New Jersey Institute of Technology

O-25: High Strain Rate Deformation of Automobile Grade Steels: *Anindya Das*¹; Soumitro Tarafder¹; S Sivaprasad¹; Debalay Chakrabarti²; ¹CSIR - National Metallurgical Laboratory,India; ²Indian Institute of Technology, Kharagpur, India

O-26: Highly Ordered Nickel Cobalt Sulfide Nanowires Grown Woven Kevlar Fiber Composites: *Hyung Park*¹; ¹Ulsan National Institute of Science and Technology

O-28: Hot Isostatic Pressing and Laser Additive Manufacturing of Niobium-Based Refractory Powders: Calvin Mikler¹; Hamish Fraser¹; Brian Welk¹; Gopal Viswanathan¹; ¹The Ohio State University

O-30: In-process Microstructure Tuning in Solid-state Ambient Condition Metal Additive Manufacturing: Anagh Deshpande¹; Keng Hsu¹; ¹University of Louisville

O-31: In-situ TEM Micocantilever Measurements of Al₂O₃- SmAlO₃ Interfacial Toughness: *Yonghui Ma*¹; Jiahu Ouyang¹; Shen Dillon²; ¹Harbin Institute of Technology; ²University of Illinois at Urbana-Champaign

O-32: Indentification of Gases Evolved during Firing Processes of Oxide Ceramics by Means of Thermal Analysis Coupled to Mass Spectrometry: *Ekkehard Post*¹; ¹NETZSCH Geraetebau GmbH

O-33: Influence of Cold Spray on the Microstructure and Residual Stress of Resistance Spot Welded Steel-Mg: *Sugrib Shaha*¹; Bahareh Marzbanrad¹; Hamid Jahed¹; ¹University of Waterloo

POSTERS

O-34:Investigation of Adiabatic Heat Rise and its Effect on Flow Stresses and Microstructural Changes during High Strain Rate Deformation of Ti6Al4V Alloy: *Ashish Dawari*¹; ¹Bharat Forge Ltd, Pune

O-35: Investigation of Susceptibility of A533B SAteel to Temper Embrittlement: *Mikhail Sokolov*¹; ¹Oak Ridge National Laboratory

O-36: Investigation of the Material Dependence in the Promotion of Clathrate Hydrate Nucleation: *Christina Cox*¹; Ahmad Majid¹; Carolyn Koh¹; ¹Colorado School of Mines

O-38: Microstructural Influence on Cracking Resistance of Ti-6Al-4V ELI Alloy at Sour Environment: *Gyeong Hyeon Jang*¹; ¹GIFT POSTECH

O-39: Microstructure and Mechanical Properties of Al-Mg Based Alloy Sheets Processed by Cold Rolling: *Hyeon-Taek Son*¹; Yong-Ho Kim¹; Hyo-Sang Yoo¹; ¹Korea Institute of Industrial Technology

O-40: Nanostructured Steel Susceptibility to Sulfide Stress Cracking: *Arash Shadravan*¹; Raymundo Case¹; ¹Texas A&M University

O-41: Optimisation of Celestite Leaching by Using Respond Surface Methodology: *Rasit Sezer*¹; Aysegul Bilen²; Selim Ertürk²; Cüneyt Arslan²; ¹Karadeniz Technical University; ²Istanbul Technical University

O-42: Real Time Estimation of Resistance Spot Weld Quality by Using Artificial Neural Network: *Munjin Kang*¹; Dongcheol Kim¹; In-sung Hwang¹; Young-Min Kim¹; ¹KITECH

O-44: Resistance Spot Weldability of 980MPa Grade Steel with 24% Elongation: *Taekyung Kim*¹; In-sung Hwang²; Dongcheol Kim²; Munjin Kang²; Young-Min Kim²; ¹Asan; ²KITECH

O-45: Rheological and Fatigue Resistance of High Strength and High Conductivity Cu-Ag Alloys Wires: *Kinga Korzen*¹; Andrzej Nowak¹; Eliza Sieja-Smaga¹; Artur Kawecki¹; Tadeusz Knych¹; Andrzej Mamala¹; Beata Smyrak¹; Bartosz Jurkiewicz¹; ¹AGH University of Science and Technology

O-46: Robust Accumulation of Research Foundational Knowledge in the Thermo Material Sciences: James Kahelin¹; ¹Planarity

O-47: Scoping the Response of Materials under Fission and Fusion Conditions via Inventory Simulations: Mark Gilbert¹; ¹CCFE

O-48: Study of Temperature Dependent Elastic Properties of SnSe Using Resonant Ultrasound Spectroscopy: Ashoka Karunarathne¹; Joseph Gladden¹; Gautam Priyadarshan¹; Pai-Chun Wei²; Yang-Yuan Chen²; Sriparna Bhattacharya³; Apparao Rao³; ¹University of Mississippi; ²Academia Sinica; ³Clemson University

O-50: Study on the High-frequency Heat Treatment Process for the Dual Phase High-pressure Pipe Fabrication: Min Seok Moon¹; *MyoungHan You*¹; JoonHyuk Song¹; JeHa Oh¹; DongChul Jung¹; Kwang-Seok Kim²; ¹Korea Institute of Carbon Convergence Technology; ²Korea Institute of Industrial Technology

O-51: Superelastic Scaffolds Prepared by Sintering of Metal Fibers for Biomedical Applications: *Tae-hyun Nam*¹; Shuanglei Li¹; ¹Gyeongsang National University

O-52: Synthesis and Characterization of Novel Phosphonated and Sulfonated Poly(styrene-isobutylene-styrene) Membranes for Fuel Cell and Protective Clothing Applications: *Eduardo Ruiz Colón*¹; Maritza Pérez Pérez¹; David Suleiman¹; ¹University of Puerto Rico at Mayagüez

O-55: The Effect of Complexion Transitions on Single Grain Boundary Fracture Toughness of Alumina: *Lin Feng*¹; Shen Dillon¹; ¹University of Illinois at Urbana-Champaign

O-56: The Effect of Cooling Rate on Microstructure and Physical Properties for Alloy 625 Casting: Jaihyun Park¹; Yeungju Kim¹; ¹RIST

O-57: The Effect of Thermal Treatment on Microstructure and Mechanical Properties of Infiltrated TiB2-steel Composites: *Helen Dilman*¹; Or Rahamim¹; Shmuel Hayun¹; Nachum Frage¹; ¹Ben Gurion University of Negev

O-58: The Influence of Frequency on Ultrasonic Vibration-assisted Laser Atomization of TI-alloy: *Seyyed Habib Alavi*¹; Geremiah Charles²; Sandip Harimkar¹; ¹Oklahoma State University; ²Arizona State University **O-59: Effect of Trace Elements on Microstructure and Material Properties of an Aluminium Alloy:** Thomas Pabel¹; Tose Petkov¹; H. Schroettner²; Mihaela Albu³; A. Rossmann-Perner³; *Peter Schumacher*⁴; ¹Austian Foundry Research Institute; ²Graz University of Technology; Graz Centre for Electron Microscopy; ³Graz Centre for Electron Microscopy; ⁴Austrian Foundry Research Institute; University of Leoben

O-60: Ultra-high Strength and High Conductivity Cu-Ag Alloys Wires Designed for the Construction of High Magnetic Fields Generators: *Eliza Sieja-Smaga*¹; Artur Kawecki¹; Tadeusz Knych¹; Andrzej Mamala¹; Kinga Korzen¹; Krystian Franczak¹; Grzegorz Kiesiewicz¹; Pawel Kwasniewski¹; ¹AGH University of Science and Technology

O-61: Wear Behavior of Additive Manufactured Orthopedic Ceramics: *Jessica Hammitt-Schiltz*¹; ¹University of Notre Dame

O-62: Optimizing Microstructure, Strength and Ductility of Medium-Entropy NiCoCr and Ni-Base Superalloy IN740H: *Leah Mills*¹; Sherri Youssef¹; Taylor Thomas¹; Connor Slone¹; Michael Mills¹; Easo George²; ¹The Ohio State University; ²Oak Ridge National Laboratory

O-63: Tuning the Luminescence Properties of Eu3+ Doped SiO₂ Glasses by Additions of Amino Acids: *Javier Hernández-Paredes*¹; ¹Universidad de Sonora

O-64: Design for Thermal Cooling System Using Novel Gallium-C₆₀ Composite Material: Angelo Karavolos¹; ¹De Astris Generation LLC

High Entropy Alloys VI – Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Xie Xie, FCA US LLC; Gongyao Wang, Alcoa Technical Center; E-Wen Huang, National Chiao Tung University; Tirumalai Srivatsan, The University of Akron

Tuesday PM March 13, 2018 Room: Hall CD Location: Phoenix Convention Center

G-33: Ab Initio Assisted Design of Quinary Dual-phase High-entropy Alloys with Transformation-induced Plasticity: Zhiming Li¹; *Fritz Körmann*²; Blazej Grabowski¹; Jörg Neugebauer¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Delft University of Technology, Max-Planck-Institut für Eisenforschung GmbH

G-34: Ab Initio Calculations of the Structure and Elastic Properties of Low Density High Entropy Alloys: *Natalia Koval*¹; Maite Alducin¹; Iñaki Juaristi¹; Ricardo Díez Muiño¹; ¹Materials Physics Center, MPC/CFM

G-35: Contribution of Lattice Distortion to Solid Solution Strengthening in a Group of Body-centered Cubic (bcc) High Entropy Alloys: *Hans Chen*¹; Alexander Kauffmann¹; Stephan Laube¹; In-Chul Choi¹; Ruth Schwaiger¹; Franz Müller²; Bronislava Gorr²; Hans-Jürgen Christ²; Martin Heilmaier¹; ¹Karlsruhe Institute of Technology (KIT); ²University of Siegen

G-36: Development of HEA Foam with Ultra-low TC and High Strength: *Kook Noh Yoon*¹; Khurram Yaqoob²; Je In Lee¹; Jin Yeon Kim¹; Eun Soo Park¹; ¹Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University; ²School of Chemical and Materials Engineering, National University of Sciences and Technology

G-37: Development of High Entropy Alloy Coating Layer Using DC Magnetron Sputtering: *Young Seok Kim*¹; Hae Jin Park¹; Sang Chul Mun¹; Sung Hwan Hong¹; Hyo Soo Lee²; Jin Kyu Lee³; Ki Buem Kim¹; ¹Sejong University; ²Korea Institute of Industrial Technology (KITECH); ³Kongju National University

G-38: Development of NbMoTaW Refractory High Entropy Alloys Matrix Composites Containing Nano-scale Oxides: *Aeran Roh*¹; Daeyoung Kim¹; Seungjin Nam¹; Hyunjoo Choi¹; ¹Kookmin University

G-39: Development of Transition Metal High-entropy Silicides: Sang Jun Kim¹; Hyun Seok Oh¹; Eun Soo Park¹; ¹Seoul National University

G-40: Effect of TiB2 Addition on Tribological Properties of (AlCrFeMnV)100-xBix(x = 5 and 10) High Entropy Alloys: *Surekha Yadav*¹; Arvind Kumar¹; Krishanu Biswas¹; ¹IIT Kanpur

G-41: Effects of Additional Elements on the Microstructure and Mechanical Properties of High Entropy Alloys Based on TiZrHfNiCu System: *Hae Jin Park*¹; Young Seok Kim¹; Sung Hwan Hong¹; Ki Buem Kim¹; 'Sejong University

G-42: First-principles Calculations of Stacking Fault Energies in Refractory BCC High-entropy Alloy Systems: *Joshua Strother*¹; Alexandra Scheer¹; Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology

G-43: High Thermal Stability and Sluggish Crystallization Kinetics of High-entropy Bulk Metallic Glasses: *Ming Yang*¹; Xiongjun Liu¹; Qing Du¹; Yuan Wu¹; Hui Wang¹; Z.P. Lv¹; ¹University of Science and Technology Beijing

G-44: Martensite Reinforced High Entropy Titanium Alloy with Multiple Deformation Mechanisms: *Yuhe Huang*¹; Iain Todd¹; ¹University of Sheffield

G-45: Measurement and Optimization of FeCoNiCrCu0.5 High Entropy Alloys-to-AISI 304L Stainless Steel Parameters of Dissimilar Resistance Spot Welds for Affecting Microstructural and Properties Using Hybrid Abductor Induction Mechanism: *Jia-Chi Li*¹; Chun-Ming Lin¹; Cheng-Shun Chen¹; ¹National Taipei University of Technology

G-46: Microstructure and Magnetic Properties of FeNiCuMnTiSnx High Entropy Alloys: *Liang Liu*¹; ¹Liaoning University of Technology

G-48: Microstructure of a New Ti-containing High Entropy Alloy: *Van Thuong Nguyen*¹; Liqing Huang¹; Ma Qian²; Jin Zou¹; ¹The University of Queensland; ²RMIT University

G-49: On the Evolution of Texture and Microstructure during Rolling of Dual Phase Al16Co21Cr21Fe21Ni21 High Entropy Alloy: *Rani Agarwal*¹; Reshma Sonkusare¹; Krishanu Biswas¹; Nilesh Prakash Gurao¹; ¹IIT Kanpur

G-50: SIM Transformation and Superelasticity of TiZrHfAlNb High Entropy Alloys: Lu Wang¹; Qinjia Wang¹; Xidong Hui¹; ¹University of Science and Technology Beijing

G-51: Synthesis of FeCrVNbMn High Entropy Alloy by Mechanical Alloying and Study of their Microstructure and Mechanical Properties: *Ajay Kumar P.*¹; Chandra Perugu²; ¹University of Wisconsin Milwaukee; ²Indian Institute of Science, Bangalore India

G-52: Thermal and Structural Characterization of Magnetic High Entropy Alloys for Magnetocaloric Applications: *Alice Perrin*¹; ¹Carnegie Mellon University

G-53: Understanding the Deformation Behavior of CoCuFeMnNi High Entropy Alloy by Investigating Mechanical Properties of Binary, Ternary and Quaternary Alloy Subsets: Saumya Jha¹; Rani Agarwal²; Reshma Sonkusare²; Krishanu Biswas²; Nilesh Gurao²; ¹NIT Durgapur; ²IIT Kanpur

High Temperature Corrosion of Structural Materials – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; David Shifler, Office of Naval Research; Mark Weaver, University of Alabama; Steve Coryell, Special Metals; James Earthman, University of California, Irvine

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

J-2: An Analysis of Oxidation Mechanisms and their Influence on the Life of a Nickel-based Superalloy: *David Lewis*¹; Mark Whittaker¹; Daniel Child²; ¹Swansea University; ²Rolls-Royce plc. J-3: Effects of Post-Weld Heat Treatment(PWHT) Time on Pitting Behavior in Modified 9Cr-1Mo Steel Welds: *Byungrok Moon*¹; Sungyong Ahn²; Namhyun Kang¹; Ikmin Park¹; Kwangho Kim³; Kyungmox Cho¹; ¹Pusan National University; ²Doosan Heavy Industries and Construction; ³GFHIM, Pusan National University

J-4: Flame Resistance and YSZ and Pack Cementation Coated Steel: Kwangsoo Choi¹; Minkyu Kim¹; Jong won Lee¹; *Joon Sik Park*¹; ¹Hanbat National University

J-5: Great Performance of Nanostructured Multilayers (Ti-Cr-N) on P92 Steel for High Oxidation Temperature: S. Castañeda¹; *Francisco Pérez Trujillo*¹; ¹Complutense University of Madrid

J-6: High-temperature Coatings for Protection of Steels in Contact with a Novel Molten Salt under Static and Flow-accelerated Conditions for CSP Applications: V. Encinas-Sánchez¹; M. Lasanta¹; M. de Miguel¹; G. García-Martín¹; *Francisco Pérez Trujillo*¹; ¹Complutense University of Madrid

J-7: Investigating Intergranular Corrosion of Stainless Steel Using Hard X-ray Nanoprobe: *Simerjeet Gill*¹; Kotaro Sasaki¹; Zhixiu Liang¹; Hugh Isaacs¹; Mingyuan Ge¹; Yong Chu¹; Kim Kisslinger¹; Lynne Ecker¹; ¹Brookhaven National Lab

J-8: Oxidation in Pure Steam Atmosphere at High Temperature of Protective Coatings: Influence of Pressure and the Architecture: A. Illana¹; M. Gutiérrez²; I. Baraibar²; S. Mato¹; *Francisco Pérez Trujillo*¹; A. Agüero²; ¹Complutense University of Madrid; ²Instituto Nacional de Técnica Aeroespacial

J-9: Oxide Performance of Alumina Forming Alloys for Coking Environments: Kao Yang¹; ¹University of Wisconsin - Milwaukee

J-10: Role of Titanium on the Oxidation of Ni-based Superalloys: Mary Taylor¹; Hugh Evans¹; ¹The University of Birmingham

J-11: The Effect of Corrosion Damage on the High Temperature Fatigue Behaviour of a Ni-alloy for Disc Rotor Applications: *Michael Dowd*¹; ¹Swansea

Mechanical Behavior at the Nanoscale IV – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Christopher Weinberger, Colorado State University; Qian Yu, University of Michigan, Ann Arbor; Garritt Tucker, Colorado School of Mines; Nan Li, Los Alamos National Laboratory; Yu Zou, ETH Zurich; Jonathan Zimmerman, Sandia National Laboratories; Scott Mao, University of Pittsburgh

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Christopher Weinberger, Colorado State University; Garritt Tucker, Colorado School of Mines

M-20: High-strength and High-conductivity Sheets for High Field Bitter Magnets: *Eliza Sieja-Smaga*¹; Kinga Korzen¹; Artur Kawecki¹; Tadeusz Knych¹; Krystian Franczak¹; Marek Gnielczyk¹; Szymon Kordaszewski¹; Bartosz Jurkiewicz¹; ¹AGH University of Science and Technology

M-21: Plastic Flow in Cutting of Metals at Small Length Scales: *Gan Feng*¹; Dinakar Sagapuram¹; ¹Texas A&M University

TECHNICAL PROGRAM

Mechanical Characteristics and Application Properties of Metals and Non-metals for Technology: An EPD Symposium in Honor of Donato Firrao – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, AI Isra University; Jiann-Yang Hwang, Michigan Technological University; Bowen Li, Michigan Technological University; Pasquale Russo Spena, Free University of Bozen-Bolzano

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

N-12: Alumina Feeding System Changes in Aluminum Electrochemical Cell with D18 Technology for Energy Efficiency (Case Study: Almahdi-Hormozal Aluminum Smelter): *Mohsen Amerisiahooei*¹; Borzou Baharvand²; ¹Islamic Azad University; ²Almahdi Hormozal Aluminium Smelter

N-13: Young's Modulus and Hardness of Metal Amorphous Nanocomposites (MANCS) Determined by Nanoindentation: Yuval Krimer¹; Michael McHenry¹; ¹Carnegie Mellon University

Metal-Matrix Composites Innovations, Advances and Applications: An SMD Symposium in Honor of William C. Harrigan, Jr. – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Srivatsan Tirumalai, The University of Akron; Yuzheng Zhang, Gamma Alloys, LLC; William Harrigan, Gamma Technology, LLC

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

Session Chairs: Yuzheng Zhang, Gamma Alloys; Tirumalai Srivatsan, The University of Akron

G-54: In-situ TiB Reinforced Titanium Matrix Composites with a Network-woven Architecture Design: *Liqing Huang*¹; Van Thuong Nguyen¹; Ma Qian²; Jin Zou¹; ¹The University of Queensland; ²RMIT University

G-55: Influence of Graphene Nanoplatelet Reinforcements on Microstructural Development and Wear Behavior of An Aluminum Alloy Nanocomposite: *Mohammad Alipour*¹; Reza Eslami Farsani¹; Yu. A. Abuzin²; ¹Department of Materials Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran; ²Faculty of Materials Science and Engineering, National University of Science & Technology (MISIS)

G-56: Microstructures and Thermal Properties of Ag-carbon/Cu Composite Fabricated by Friction Stir Processing: *Hyo-Soo Lee*¹; Ki Buem Kim²; Jae-Ha Kim¹; Yeo Reum Lee¹; ¹KITECH; ²Sejong University

G-57: Strengthening Behavior of Ti/MWCNTs Composites with Modified Interfacial Structure by Utilizing Mechanical Milling: *Miran Joo*¹; Donghyun Bae¹; ¹Yonsei University

Nanocomposites V: Structure-Property Relationships in Nanostructured Materials – Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Meisha Shofner, Georgia Institute of Technology; Nikhilesh Chawla, Arizona State University

Tuesday PM March 13, 2018

Room: Hall CD Location: Phoenix Convention Center

M-22: Effects of Surface-treated Graphene Nanoplatelets on the Flexural Properties of Basalt Fibers/Epoxy Composite: *S. Navid Hosseini Abbandanak*¹; S.M. Hossein Siadati¹; Reza Eslami-Farsani¹; ¹K. N. Toosi University of Technology

M-23: Manufacturing Method and Characterization of Mechanical Properties of Laminated Metal Nanocomposites with Graded Layer Thickness: *Wojciech Dera*¹; Dariusz Jarzabek¹; Cezary Dziekonski¹; ¹Institute of Fundamental Technological Research Polish Academy of Sciences

M-24: Microstructure and Mechanical Properties of High Conductivity Nanostructured Cu-Ag Alloys Wires: *Eliza Sieja-Smaga*¹; Artur Kawecki¹; Tadeusz Knych¹; Beata Smyrak¹; Kinga Korzen¹; Bartosz Jurkiewicz¹; Marek Gnielczyk¹; Justyna Grzebinoga¹; ¹AGH University of Science and Technology

M-25: On the Tensile Properties of Surface-treated Graphene Nanoplatelets/ Basalt Fibers/ Epoxy Nanocomposite System: *S. Navid Hosseini Abbandanak*¹; S.M. Hossein Siadati¹; Reza Eslami-Farsani¹; ¹K. N. Toosi University of Technology

M-26: Pathways for Engineering Boron Nitride Nanotube Based Highstrength Aluminum Composites: *Pranjal Nautiyal*¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XVII – Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Chih-Ming Chen, National Chung Hsing University; Thomas Reichmann, Karlsruhe Institute of Technology; Yu Zhong, Worcester Polytechnic Institute; Hiroshi Nishikawa, Osaka University; Shien Ping Feng, The University of Hong Kong; Yee-Wen Yen, National Taiwan University of Science & Technology; Song-Mao Liang, Clausthal University of Technology

Tuesday PM March 13, 2018 Room: Hall CD Location: Phoenix Convention Center

Session Chairs: Shih-kang Lin, National Cheng Kung University; Yeewen Yen, National Taiwan University of Science and Technology

K-13: Interfacial Reactions between Lead-free Solders and Cu-xZn Alloys: *Chih-Hung Lin*¹; William Yu¹; Pei-Yu Chen¹; Guan-Da Chen¹; Yee-Wen Yen¹; ¹National Taiwan University of Science and Technology

K-14: Microstructure and Optical Properties of Cr1-xAlxN Films Synthesized by Reactive Magnetron Sputtering: Ting-Kan Tsai¹; Shu-Wei Yang¹; Yu Ru Li¹; ¹Nation Formosa University

K-15: The Electromigration Effect Revisited: An In Situ SEM and SRbased XRD Study: Yu-chen Liu¹; Shih-kang Lin¹; ¹National Cheng Kung University

K-20: The Role of Retained Structures in Phase Transition and Piezoelectric Properties of PMN-PT Single Crystals: *Hooman Sabarou*¹; Vadym Drozd¹; Dehua Huang²; Yu Zhong¹; ¹Florida International University; ²Navy Undersea Warfare Center

Phase Transformations and Microstructural Evolution – Poster Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Gregory Thompson, University of Alabama; Mark Aindow, University of Connecticut; Sudarsanam Babu, The University of Tennessee, Knoxville; Rajarshi Banerjee, University of North Texas; Tushar Borkar, Cleveland State University; Hai Chen, Tsinghua University; Paul Gibbs, Los Alamos National Laboratory; Peeyush Nandwana, Oak Ridge National Laboratory; Ashwin Shahani, University of Michigan; Yufeng Zheng, The Ohio State University

Tuesday PM March 13, 2018 Room: Hall CD Location: Phoenix Convention Center

N-23: Deformation Twins Induced by High-density Pt2Mo-type Superlattice Mediated Portevin-Le Chatelier-like Effect in Ni-Cr-Mo Alloy: *Yuan Liang*¹; Hu Rui²; Gao Xiangyu²; ¹Shaanxi University of Science and Technology; ²Northwestern Polytechnical University

N-24: Effect of Film Thickness on Anisotropic Grain Growth in Electroplated (111) Nanotwinned Cu: *Chih-Han Tseng*¹; Chih Chen¹; ¹National Chiao Tung University

N-25: Impact of D019 Ordering in Hf-Sc-Ti-Zr Based Hexagonal Solid Solutions upon Addition of Al and Nb: *Lukasz Rogal*¹; P. Bobrowski¹; Fritz Körmann²; Blazej Grabowski³; ¹Institute of Metallurgy and Materials Science; ²Delft University of Technology; ³Max-Planck-Institut für Eisenforschung

N-26: Influence of Deformation and Heat Treatment on the Microstructure Evolution in the Nickel Superalloy 625: *Simon Malej*¹; Jožef Medved²; Franc Tehovnik¹; Jaka Burja¹; Franci Vode¹; Arh Boštjan¹; Barbara Šetina Batic¹; Elena Chernyshova³; Matjaž Godec¹; ¹Institute of Metals and Technology; ²Faculty of Natural Sciences and Engineering; ³National Institute of Chemistry

N-27: Microstructural Evolution and Compositional Homogenization of As-cast Multicomponent Low Re-containing Ni-based Single Crystal Superalloy during Stepwise Solution and Aging Heat Treatments: *Xianglin Su*¹; Qingyan Xu¹; Baicheng Liu¹; ¹Tsinghua University

N-28: Microstructural Evolution of a New Beta Titanium Alloy during the Beta Annealing, Slow Cooling and Aging Process: Saeed Sadeghpour¹; Seyed Mahdi Abbasi¹; Maryam Morakabati¹; ¹Malek Ashtar University of Technology

N-29: Microstructural Evolution of Ti-Mo and Ti-Mo-Fe Alloys during Continuous Heating and Aging Heat Treatments: *Mariana Mello*¹; Camilo Salvador¹; Kaio Campo¹; Rubens Caram¹; ¹University of Campinas

N-31: Study of Phase Transitions in Metastable β-Ti Alloy by Various Insitu Techniques: *Pavel Zhánal*¹; Petr Harcuba¹; Jana Šmilauerová¹; Lukáš Horák¹; Jozef Veselý¹; Michal Hájek¹; Miloš Janecek¹; ¹Charles University in Prague

N-32: The Deformation-induced β-a Martensite Transformation in a Metastableb Zr-Ti Alloy: Zhongni Liao¹; Baifeng Luan¹; Qing Liu¹; ¹Chongqing University

Recent Advances in Functional Materials for Printed, Flexible and Wearable Electronics – Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Pooran Joshi, Oak Ridge National Laboratory; Nuggehalli Ravindra, New Jersey Institute of Technology; Jud Ready, Georgia Institute of Technology; Amit Pandey, LG Fuel Cell Systems Inc.; Suresh Sitaraman, Georgia Institute of Technology

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

Session Chair: Pooran Joshi, Oak Ridge National Laboratory

K-16: Highly Stretchable Metallic Interconnects on Polymer Substrates: Architecture and Mechanisms: *Yeasir Arafat*¹; Rahul Panat¹; Indranath Dutta¹; ¹Washington State University

Recent Developments in Biological, Structural and Functional Thin Films & Coatings – Poster Session Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee Program Organizers: Adele Carradò, Université de Strasbourg IPCMS; Nancy Michael, University of Texas at Arlington; Ramana Chintalapalle, University of Texas - El Paso; Heinz Palkowski, Clausthal University of Technology; Nuggehalli Ravindra, New Jersey Institute of Technology; Vikas Tomar, Purdue University; Gerald Ferblantier, Strasbourg University - ICube Laboratory

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

H-11: Effect of Interaction of CO Gas Molecules on Schottky Barrier Modulation of Pt-SnO2 Nanostructure Device: *Avneet Singh*¹; Monika Tomar¹; Vinay Gupta¹; ¹University of Delhi

H-12: Nickel Oxide Thin Film Based Electrode for Cholesterol Monitoring Using Electrochemical Biosensor: *Gurpreet Kaur*¹; Monika Tomar¹; Vinay Gupta¹; ¹University of Delhi

H-13: Zinc Oxide Thin Film as a Guiding Layer for Love Wave Acoustic Biosensors: *Lokesh Rana*¹; Reema Gupta¹; Monika Tomar¹; Vinay Gupta¹; ¹University of Delhi

Solar Cell Silicon – Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Neale Neelameggham, Ind LLC; York Smith, University of Utah

Tuesday PM March 13, 2018 Room: Hall CD Location: Phoenix Convention Center

K-17: High Temperature Pressure Filtration Applying for Separation of Silicon and Liquation Agent: *Tianyang Li*¹; Zhancheng Guo¹; ¹University of Science and Technology Beijing

K-18: Leaching of Indium from ITO Present in Amorphous Silicon Photovoltaic Modules: Pedro Forastieri de Almeida Prado¹; *Jorge Alberto Soares Tenório*¹; Denise Crocce Romano Espinosa¹; ¹University of São Paulo

K-19: The Effect of Rapid Heat Treatment on Crystal Defect Evolution and Electrical Properties of the Original High Efficient Polycrystalline Silicon: Hongyuan Shen¹; Longzhong Gao¹; *Kuiixan Wei*¹; Wenhui Ma¹; Shaoyuan Li¹; ¹Kunming University of Science and Technology

TECHNICAL PROGRAM

Surface Engineering for Improved Corrosion Resistance – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Rajeev Gupta, The University of Akron; Sandip Harimkar, Oklahoma State University; Carlos Schvezov, Institute of Materials of Misiones; Arvind Agarwal, Florida International University

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

J-12: Effect of Coating Composition on Microstructure and Corrosion Resistance of Zn-Mg-Al Hot-dip Alloy Coated Steel Sheets: *Min-suk Oh*¹; Jung-Han Kim¹; Jae-Ik Cho¹; Cheol-Woo Kim¹; ¹Korea Institute of Industrial Technology

Surface Interactions in Materials – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Carlos Schvezov, Institute of Materials of Misiones; Sandip Harimkar, Oklahoma State University; Rajeev Gupta, The University of Akron

Tuesday PM	Room: Hall CD
March 13, 2018	Location: Phoenix Convention Center

M-27: Effect of Ultrasonic Vibration Assisted Laser Surface Texturing and Melting of Ti-6Al-4V ELI (Biomedical) Alloys on their Microstructural Evolution and Tribological Properties: *Sourabh Biswas*¹; Seyyed Habib Alavi¹; Sandip Harimkar¹; ¹Oklahoma State University

M-28: Effects of Various Surface Treatment Methods on the Flexural Properties of Fiber Metal Laminates: *S. Navid Hosseini Abbandanak*¹; Hamed Aghamohammadi¹; Reza Eslami-Farsani¹; S.M. Hossein Siadati¹; ¹K. N. Toosi University of Technology

Ultrafine-grained Materials X – Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee *Program Organizers:* Suveen Mathaudhu, University of California, Riverside; Irene Beyerlein, University of California, Santa Barbara; Avinash Dongare, University of Connecticut; Chong Soo Lee, POSTECH; Terry Lowe, Colorado School of Mines; Srikanth Patala, North Carolina State University; Lee Semiatin, US Air Force Research Laboratory; Jason Trelewicz, Stony Brook University; Janelle Wharry, Purdue University; Caizhi Zhou, Missouri University of Science and Technology

Tuesday PMRoom: Hall CDMarch 13, 2018Location: Phoenix Convention Center

M-29: Effect of Microalloying Additions on the Continuous Recrystallization during Severe High Strain-rate Plastic Deformation: Janusz Majta¹; Carl Trujillo²; Ellen Cerreta²; Marcin Kwiecien¹; *Krzysztof Muszka*¹; ¹AGH University of Science and Technology; ²Los Alamos National Laboratory

M-30: Manufacturing Method and Material Characterization of Nanocrystalline Nickel Coatings with Gradient Grain Sie: Cezary Dziekonski¹; ¹Institute of Fundamental Technological Research

M-31: Possibility of Manifestation of Dynamic Strain Aging under Severe Plastic Deformation of Low-carbon Steels: *Georgy Raab*¹; Gennady Aleshin¹; Arseniy Raab¹; ¹Ufa State Aviation Technical University

M-32: Study of Densification and Microstructure of Cu-C Composite Prepared by Mechanical Alloying: *Evanildo Nunes*¹; Franciné Costa²; Suveen Mathaudhu³; ¹UCR; ²UFRN; ³University of California, Riverside

M-33: Aging-induced Microstructure and Texture Evolution of AA 6201 after High Shear Deformation: *Rilee Meagher*¹; Casey Davis¹; Joel Grzenia¹; Peter Rovira¹; Gordon Campbell¹; Mathew Hayne¹; Tamás Ungár²; Shenjia Zhang³; Terry Lowe¹; ¹Colorado School of Mines; ²Eötvös University; ³General Cable Technologies Corporation

TECHNICAL PROGRAM

Α
Aagesen, L
Aalbu, J
Aapata, A127
Aarhaug, T 184, 213, 234
Abanteriba, S
Abaza, M
Abbaschian, R
Abbasi, S
Abbott, D102
Abbott, J
Abbott, T
Abboud, A
Abboud, M105
Abdallah, G200
Abdeljawad, F 106, 176, 187, 203,
215, 216, 223, 230, 231, 245, 257,
258, 265, 266, 273, 279, 294, 300
AbdelJawad, M
Abdelkader, A
Abd El Majid, S
Abdelmawla, A
AbdelMeguid, M
Abdel-Rehim, A
Abdolrahim, N 203, 231, 258, 273, 300
Abdolvand, H
Abed, A
Abedrabbo, S
Abel, L
Aberg, B
Abernathy, D
Abid, N
Abioye, A
Abioye, O 126, 200, 294
Abioye, 0
Abke, 1
Abou-Khalil, L
-
Aboulkhair, N
Abu Bakr, N
Abu Elkhair, M
AbuEl-khier, M127
Abu-Farha, F114 Abu-Lebdeh, T157
Abu-Odeh, A209 Abuzin, Y
-
Acar, M
Acar, P
Achard, J
Acharya, R162, 220 Ackerman, A214
Acosta, M

Adejuyigbe, B126
Adekola, F
Adeleke, A
Adeniyi, A241
Adeosun, S
Adetunji, O126
Adewumi, O
Adhikari, H
Adhikari, S 127, 167, 196
Adhikary, A177
Adibi, S234
Adjanor, G202
Adkins, C
Adlakha, I 176, 235, 257, 259
Admal, N
Adnan, A
Adorno Lopes, D134
Adrian, C
Adziman, F94
Affonseca Netto, N
Afolalu, A126
Afolalu, S 186, 200, 294
Afonso, C
Agajan, S
Agaoglu, G
Agarwal, A128, 131, 158, 186,
271, 281, 305, 307
Agarwal, G
Agarwal, R
Agarwal, S
Agbeleye, A
Agbenyegah, G167
Ageh, V
Aghaie, E
Aghamohammadi, H
Agne, M
Agnew, S103, 134, 159, 180, 192,
238, 259, 292
Agnoli, A
Agrawal, A100, 297
Agrawal, R
Agren, J
Agüero, A
Agüero, H
Aguiar, J
Aguilar, G 108, 220, 224
Aguilar-Pérez, B
Agunsoye, J
Ahlfors, M
Ahli, N
Ahli, Y
Ahmad, A
Ahmad Agha, N
Ahmadzadeh, M
Ahmed, A
Ahmed, K
,

Ahmed, O	.91
Ahmed, Z	
Ahn, J	
Ahn, S	
A H V, P	
Aich, S	
Aidhy, D	
Aindow, M 106, 129, 156, 158, 1	
185, 190, 200, 214, 2	32,
243, 286, 293, 3	306
Airoldi, L	194
Aitkaliyeva, A 125, 152, 1	160
Ajayan, P	187
Ajayi, O 126, 200, 2	294
Akaiwa, T	
Akai, Y	
Akanda, S	
Akbari, A	
Akbarnejad, S	
Akdim, B 143, 194, 2	208
Akdogan, G	259
Akhmetov, S	
Akinc, M 108, 208, 2	
Akinlabi, E	
Akinlabi, S	
Akman, A	
Akpan, E	
Akram, J 163, 165, 2	
Aksenov, D	
Aksoy, D	
Alabbad, B	156
Alabi, A	186
Alabin, A	167
Alamdari, H	
Alam, M 161, 180, 239, 2	
Alam, S 107, 129, 157, 185, 2	
Alam, T107, 129, 137, 103, 2	
Alaswad, K.	
Alavi, S	
Albert, M	
Alberto Soares Tenório, J	
Albrecht, K	142
Aldeia, W	255
Al-Dojayli, M	
Alducin, M	
Aleshin, A	
Aleshin, G	
Ales, T	
Alexandeanu, B	
Alexander, D	
Alexander, K	
Alexandre, J 297, 298, 2	
Al-Harthi, S	293
Al-Heniti, S	297
Ali, A	
Alidoost, J	

Adachi, K......157, 294

Alinejad, B92
Alipour, M
Aliprandini, P
Alivisatos, A
Ali, W
Alizadeh, K
Aljabri, N
Al Jaziri, A
Allain, S 107, 111, 112, 295
Allano, B
Allanore, A104, 126, 131, 153, 158,
181, 193, 195, 223, 241,
250, 268, 293
Allard, L 129, 154, 248, 258
Allen, A
Allendorf, M231
Allen, T
Allison, J117, 139, 143, 192, 206,
214, 253, 270, 276, 292
Allison, P
Allison, T258
Alluru, R272
Allwood, J104
Alman, D 101, 193, 223, 250, 268
AlMangour, B154
Al-Marzouki, F
Almehairi, S
Almeida, A
Almeida Cutrim, A
Almer, J
245, 295
Almirall, N 87, 110, 210, 252, 262, 276
Alm, M262
Alomari, A 161, 205, 276
Al-Omari, I
Alonso, P
Al-qarni, L
Al Rahal Al Orabi, R92
Alrawahi, Z
Al-Samman, T
Alshehhi, S
Altenbach, C
Altenbuchner, C
Altenhof, W276
Altinsel, Y131
Altmann-Rinck, M252
Altschuh, P172
Altunbasak, T
Alvarado, F
Alvarenga, R
Alves, M
Alyousif, O
Alzarooni, A
Alzarouni, A
Alzate-Vargas, L
-
Amador Martinez, K

Amalraj, M101, 237
Amaral, L
Amatya, J
Ambad, M
Ambad, M
Ameri, A
Amerisiahooei, M 230, 288, 291,
Amerisianooei, M
Amilkanthwar, C
Aminpour, M140
Amireh, B
Amirkhanlou, S
Amroussia, A
Anai, K
Anand, S
Anantharaman, M
Anapolsky, A
Anastasijevic, N
Anber, E
Anderoglu, O
Anderson, A
Anderson, B
Anderson, C107
Anderson, D118
Anderson, E252
Anderson, I112, 157, 193, 224,
250, 269, 282
Anderson, K
Anderson, R155, 157
Anderson, T150
Andersson, D 97, 110, 134, 231
Andersson, T171, 172
Andrade, I
Andrade, M228
Andrade Teles, M
Andreaco, A124
Andreassen, E
Andrejka, F
Andresen, P121
Andrews, G
Andrieux, J151
Andritsos, E180, 300
Anes, I
Ang, C
Angrisani, G157
An, K
101, 192, 236, 237, 248,
268, 271, 286, 290
Ankem, S204
Ankit, K
An, L
Annamareddy, V
An, Q
Antillon, E 143, 194, 208
Antoniou, A104, 221
Antoniswamy, A
·

Antonov, S	
An, X	
Aoki, T	236, 257, 274
Aono, Y	
Ao, Q	
Aoued, S	
Aoyagi, K	
Aoyama, H	
Ao, Z	
Aparicio, C	
Apelian, D	
Apel, M 167,	168, 207, 217, 274
Apetre, N	194
Aphale, A	
Appleget, C	
Appolaire, B	
Arafat, Y	
Aragon, N	
Aramayo, R	
Aramide, F	
Aranas Jr, C	
Aranas Jr., C	
Aranda, V	
Arantes, M	
Aras, M	
Arava, L	
Ardeljan, M	
Arenas-Islas, D	
Ares, A	
Argade, G	
Argibay, N	
Ari-Gur, P	
Arindam, P	
Arjona, J	
Arkhipov, A	
Armitage, T	146
Armstrong, A	141
Armstrong, D	
Arnold, W	169
Arola, D	141, 168, 198
Aronhime, N	
Arora, A	. 90, 131, 142, 286
Arora, G	
Arowosola, A	
Arroyave, R 96,	
	172, 202, 203, 209,
	214, 230, 253, 300
Arróyave, R	
Arslan, C	
Artvin, Z	
Arul Kumar, M	
Arutyunyan, A	
Arvikar, V	
Asadi, E	
	251, 268, 272, 274
Asadikiya, M	

Asadpoure, A
Asatani, N
Asfandiyarov, R267
Ashby, M102
Ashcroft, I 90, 112, 136, 164, 193,
219, 220, 222, 249, 287
Ashok Kumar, A142
Ashouri Choshali, H
Ashour, R153
Ashrafi, H192
Ashraf, M174
Ashuri, M
Asif, S
Askarinejad, S115, 257
Aslam, I
Asle Zaeem, M95, 96, 106, 117, 118,
129, 138, 143, 156, 166, 171, 177,
194, 201, 207, 223, 227, 230, 236,
241, 251, 257, 260, 268, 274, 277,
283, 289, 299, 300, 302
Asta, M 102, 143, 184, 185, 254, 261
Aswath, P168
Atalasy, A92
Athènes, M202
Athikavil Suresh, S 185, 257, 300
Atkinson, M221
Atluri, S144, 269
Atoba, R
Atre, S
Attari, V
Attia, N
Atwood, R 119, 139, 140, 177, 286
Atzmon, M271
Augustyn, B
Augustyn, V103
Aune, R
Auyeskhan, U
Avallone, J
Avasthi, D
Averback, R 97, 246, 266
Avery, D
Avila, J
Awad, K
Aworinde, A
Aydiner, C
Aydogan, E 180, 210, 239, 263
Ayers, N
Ayinla, K
Aytug, T
Ayyagari, A
Azadehranjbar, S
Azar, M
Azeem, M
Azevedo, A
Azimi, G 107, 129, 157, 185, 233, 294

B

Baars, D
Baba, A
Baba, T
Babis, J
Babitskiy, N
Babu, B
Babu, M166
Babu, S 91, 92, 99, 102, 106, 119, 129,
145, 156, 159, 173, 183, 184, 195,
204, 205, 214, 221, 224, 232, 243,
247, 251, 269, 293, 306
Bacaicoa, I
Bachmann, F
Bäcke, O
Bacroix, B
Badowski, M115, 141, 169, 199, 227,
254, 271, 288, 289
Badr, H240
Badwe, N
badwe, S
Bae, C
Bae, D
Bae, J
Baek, E
Baek, S
Bae, M
Báez Cruz, K
Bagot, P197, 252
Bagri, A146, 289
Baharvand, B
Baharvand, K
Bahei-El-Din, Y154
Bahena, J
Bahl, S
Bahmani, A
Bahman Nejad, B
Bahr, D 104, 114, 209 Bai, C 94, 116, 142, 157, 160, 170, 189,
Bai, C 94, 116, 142, 157, 160, 170, 189,
200, 215, 218, 228, 229, 234, 247,
255, 256, 271, 272, 284, 292, 297
Baig, N
Baik, S
Bailey, N
Bair, J
Bai, S
Bai, X
Bai, Y
-
Bajaj, R
Bakas, M
Baker, A 91, 112, 137, 165, 194,
223, 250, 287
Baker, B
Baker, N
Baker, S

Bakst, I
Balachandran, G142
Balachandran, S216
Balachandran, U155, 279
Balamuralikrishnan, R
Balasubramaniam, R
Balasubramanian, B144
Balasubramanian, G 97, 101, 261
Balaz, S107, 131
Balbuena, P
Balbus, G
Balcha, G
Balde, M
Baldo, P106, 218
Baldwin, J105, 184
Baldwin, K163, 285
Baldwin, M263
Bale, C
Bale, H 94, 105, 128, 259
Bale, R
Balint, D 117, 119, 148, 173
Balit, Y
Balke, N
Balk, T
Balle, F
Ballor, J
Ball, S
Balogh, L
Balogun, O
Balomenos, E196
Balooch, M 151, 189, 240, 285
Balu Naik, B
Banadaki, A95
Bandyopadhyay, A 88, 155, 247, 286
Bandyopadhyay, R
Bandyopadhyay, T
Banerjee, D 173, 214, 272, 295
Banerjee, D 173, 214, 272, 295 Banerjee, R 101, 102, 106, 123, 129, 145,
146, 156, 165, 173, 184, 204, 214,
222, 223, 232, 243, 256, 270, 274,
293, 306
Banerjee, S 104, 146, 173, 181, 283, 299
Banerjee, T
Banlusan, K174
Banner, J
Banobre, A108, 158
Bansal, A114
Bantounas, I
Banu, M114
Ban, Y 175, 206, 269
Bao, C120, 175
Bao, J
Bao, S
Baraibar, I
Baral, A157
Barandiaran, J

Barandiarán, J136
Barani, T110
Barashev, A261
Barati, H170
Barati, M
Barbadikar, D255
Barbati, A
Barber, R109
Bardet, B196
Barkam, S
Barker, E258
Barkey, M
Barnard, H159
Barnard, L
Barnes, C
Barnett, B 154, 183, 212, 242
Barnett, M
Barraclough, W120
Barr, C106, 175, 176, 187, 216,
218, 241, 274
Barrett, C 89, 166, 192, 194, 248, 262
Barrette-Bédard, S130
Barrett, T98, 289
Barriault, P139
Barriobero-Vila, P251
Barron Romero, D
Barros, K
Barsoum, M219
Barthelat, F 93, 99, 120
Bartolazzi, V
Bartolo, L
Barton, I241
Barton, N 146, 183, 203
Baruffi, C
Baskan, M182
Baskes, M 134, 166, 207, 231
Bassman, L
Basu, R
Basu, S 87, 126, 152
Bateman, A
Batista, E
Batnasan, A
Batra, R203
Battaglia, C166
Battaglioli, S
Raffaile ($\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$
Battaile, C98, 102, 124, 147, 150, 151, 179, 209, 238
151, 179, 209, 238
151, 179, 209, 238 Battu, A
151, 179, 209, 238 Battu, A
151, 179, 209, 238 Battu, A
151, 179, 209, 238 Battu, A
151, 179, 209, 238 Battu, A

Bay, R
Beake, B
Beal, R
Bean, G
Bean, S
Beaudoin, A 98, 192, 227
Becasse, S
Béchet, D173
Bechly, M
Becker, C
Becker, M 177, 207, 271
Beckermann, C 94, 274, 282
Beckmann, F
Beckman, S
Beck, T
Bedard, B156, 185
Beddingfield, R
Beeh, E151, 276
Beeler, B110, 134
Beese, A
191, 220, 248, 286
Beetz, C163
Beghini, L
Begley, M 191, 242, 286
Begum, N
Behravesh, S
Beigmohamadi, M146
Bei, H 101, 133, 149, 150, 207, 218,
227 237 263 270 271 285 200
227, 237, 263, 270, 271, 285, 290
Bekkevold, P141
Bekkevold, P141 Béland, L261
Bekkevold, P .141 Béland, L .261 Belcher, C .198
Bekkevold, P .141 Béland, L .261 Belcher, C .198 Belgasam, T .230
Bekkevold, P .141 Béland, L .261 Belcher, C .198 Belgasam, T .230 Bel Haj Salah, S .211
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172
Bekkevold, P .141 Béland, L .261 Belcher, C .198 Belgasam, T .230 Bel Haj Salah, S .211 Belkacémi, L .172 Bell, J .152
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172
Bekkevold, P .141 Béland, L .261 Belcher, C .198 Belgasam, T .230 Bel Haj Salah, S .211 Belkacémi, L .172 Bell, J .152
Bekkevold, P .141 Béland, L .261 Belcher, C .198 Belgasam, T .230 Bel Haj Salah, S .211 Belkacémi, L .172 Bell, J .152 Bell, N .278 Bellomy, R .113
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 229, 238
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N. 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 229, 238 Belov, N 280
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 280 Belt, C 86, 141, 142
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 280 Belt, C 86, 141, 142 Belyakov, S .222, 250
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 280 Belt, C 86, 141, 142 Belyakov, S 222, 250 Benarosch, A 134
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C 86, 141, 142 Belyakov, S 222, 250 Benarosch, A 134 Bendezú, R 283
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C 86, 141, 142 Belyakov, S 222, 250 Benarosch, A 134 Bendezú, R 283 Benedict, M 193
Bekkevold, P 141 Béland, L 261 Belcher, C. 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N. 278 Bellomy, R 113 Bellon, P. 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C. 86, 141, 142 Belyakov, S. 222, 250 Benarosch, A 134 Bendezú, R. 283 Benedict, M. 193 Benensky, K. .133, 276
Bekkevold, P 141 Béland, L 261 Belcher, C. 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N. 278 Bellomy, R 113 Bellon, P. 97, 246, 266 Belova, I 280 Belt, C. 86, 141, 142 Belyakov, S. 222, 250 Benarosch, A. 134 Bendezú, R. 283 Benedict, M. 193 Benensky, K. 133, 276 Bengio, D. 129
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellony, R 113 Bellony, R 113 Bellova, I 229, 238 Belov, N 280 Belt, C 86, 141, 142 Belyakov, S 222, 250 Benarosch, A 134 Bendezú, R 183 Benedict, M 193 Benensky, K 133, 276 Bengio, D 129 Bennett, J 223
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellony, R 113 Bellon, P 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C 86, 141, 142 Belyakov, S 222, 250 Benarosch, A 134 Bendezú, R 283 Benedict, M 193 Benensky, K .133, 276 Bennett, J 223 Bennett, R .116
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellomy, R 113 Bellon, P 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C 86, 141, 142 Belyakov, S 222, 250 Benarosch, A 134 Bendezú, R 283 Benedict, M 193 Benensky, K 133, 276 Bengio, D 129 Bennett, J 223 Bennett, R 116 Benoit, G 174
Bekkevold, P 141 Béland, L 261 Belcher, C 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N 278 Bellony, R 113 Bellon, P 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C 86, 141, 142 Belyakov, S 222, 250 Benarosch, A 134 Bendezú, R 283 Benedict, M 193 Benensky, K .133, 276 Bennett, J 223 Bennett, R .116
Bekkevold, P 141 Béland, L 261 Belcher, C. 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N. 278 Bellomy, R 113 Bellon, P. 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C. 86, 141, 142 Belyakov, S. 222, 250 Benarosch, A 134 Bendezú, R. 283 Benentt, M. 193 Bennentt, J. 223 Bennett, J. 223 Bennett, R 116 Benoit, G 174 Benson, M .97, 103
Bekkevold, P 141 Béland, L 261 Belcher, C. 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N. 278 Bellomy, R 113 Bellon, P. 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C. 86, 141, 142 Belyakov, S. 222, 250 Benarosch, A 134 Bendezú, R. 283 Benedict, M. 193 Benenesky, K. 133, 276 Bengio, D. 129 Bennett, J. 223 Bennett, R 116 Benoit, G 174 Benson, M .97, 103 Benson Marshall, L. .224, 264
Bekkevold, P 141 Béland, L 261 Belcher, C. 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N. 278 Bellomy, R 113 Bellon, P. 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C. 86, 141, 142 Belyakov, S. 222, 250 Benarosch, A 134 Bendezú, R. 283 Benedict, M. 193 Benensky, K. 133, 276 Bengio, D. 129 Bennett, J. 223 Bennett, R. 116 Benoit, G 174 Benson Marshall, L. 224, 264 Benzerga, A 122, 254, 292
Bekkevold, P 141 Béland, L 261 Belcher, C. 198 Belgasam, T 230 Bel Haj Salah, S 211 Belkacémi, L 172 Bell, J 152 Bell, N. 278 Bellomy, R 113 Bellon, P. 97, 246, 266 Belova, I 229, 238 Belov, N 280 Belt, C. 86, 141, 142 Belyakov, S. 222, 250 Benarosch, A 134 Bendezú, R. 283 Benedict, M. 193 Benenesky, K. 133, 276 Bengio, D. 129 Bennett, J. 223 Bennett, R 116 Benoit, G 174 Benson, M .97, 103 Benson Marshall, L. .224, 264

Benzing, J164, 293
Denzing, 1
Berche, A166
Berdard, B
Beretta, S
Bergeon, N
Berger, L
Berglund, I
Berkoun, G97
Berlia, R
Berlijn, T
Berman, T 139, 253, 270
Bermingham, M165
Bernacki, M98
Bernard, G198
Bernardi, M145
Berndt, R192
Bernier, J 98, 119, 146, 151
Bernstein, J
Bernstein, N114
Bertheau, D
Berwind, M
Besser, M199, 249
Besson, S
Bettles, C151
Betts, B254
Bewlay, B
Beyerlein, I
111, 126, 128, 132, 135, 143, 153,
155, 159, 163, 184, 187, 188, 192,
199, 204, 216, 217, 221, 223, 224,
231, 246, 248, 266, 267, 279, 280,
231, 246, 248, 266, 267, 279, 280, 292, 295, 307
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M150
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M150 Bharadwaj, S183
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M Bharadwaj, S Bharadwaj, S Bhaskar, K 228 Bhassyvasantha, S Bhat, S 113 Bhat, S Bhattacharjee, A 143 Bhattacharjee, T 150 Bhattacharjee, T 150 Bhattacharya, A 128, 156, 216 Bhattacharya, S 90, 108, 190, 222,
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M Bharadwaj, S Bharadwaj, S Bhaskar, K 228 Bhassyvasantha, S Bhattacharjee, A 243 Bhattacharjee, P Bhattacharjee, T 150 Bhattacharya, A 128, 156, 216 Bhattacharya, R Bhattacharya, S 292, 29303 Bhattacharyya, D
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M Bharadwaj, S Bharadwaj, S Bharadwaj, S Bhaskar, K 228 Bhassyvasantha, S Bhat, S 113 Bhat, S Bhattacharjee, A 243 Bhattacharjee, P Bhattacharjee, T 150 Bhattacharya, A 128, 156, 216 Bhattacharya, R Bhattacharya, R 229, 303 Bhattacharya, S 90, 108, 190, 222, 229, 303 Bhattacharya, S 292 Bhattacharya, J 292 Bhattacharya, S 292 Bhattacharya, S 292 Bhattacharya, S 292 Bhattacharyya, J 292 Bhattacharyya, S 292 Bhattacharyya, S 292 Bhattacharyya, S 292 Bhattacharyya, S
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M Bharadwaj, S Sharadwaj, S Bhaskar, K 228 Bhasyvaantha, S Bhatsol Shatacharjee, A 174, 192 Bhattacharjee, P Shattacharjee, T 150 Bhattacharya, A 128, 156, 216 Bhattacharya, R Bhattacharya, R 128, 156, 216 Bhattacharya, S 90, 108, 190, 222, 229, 303 Bhattacharya, S 292 Bhattacharyya, J 292 Bhattacharyya, S 272 Bhattacharyya, S 272 Bhatta, E
231, 246, 248, 266, 267, 279, 280, 292, 295, 307 Bharadwaj, M

Bichler, L
Bichon, B
Bieberdorf, N
Bielec, B
Bieler, T 89, 111, 135, 151, 163, 192,
204, 216, 221, 227, 248, 251, 295
Bigdeli, S
Biggs, K
Bilen, A
Bilheux, H
Bilheux, J 101, 268, 286
Billeux, H
Billia, B
Bindas, E
Bin Norizan, M
Birbasar, O
Birbilis, N 103, 125, 131, 204, 259
Birdsall, D
Birosca, S
Birringer, R
Bischoff, J
Bishop, C
Bishop, J 163, 198, 203, 220, 231, 251,
258, 273, 300
Biswas, K158, 304
Biswas, S 131, 215, 244, 299, 307
Biven, L152
Bi, Y106, 216
Bizarri, G
Blacker, T120
Blackstock, G115
Blanco, J
Bland, L
Blanpain, B
Blawert, C
Bleck, W90
Blinn, B134
Blomqvist, A
Blomstrand, K190
Blosser, P
B, M
Bobadilla, M
Bobkov, I
Bobrowski, P
Bochvar, S
Bockenstedt, K 98, 119, 146, 173,
205, 233, 289
Bocklund, B117, 238
Boczkal, S
Boddeti, V
Boehlert, C163, 204, 214, 221, 227,
251, 267
Boesl, B 128, 281, 305
Bogala, M
Bogle, S
Bogno, A158, 225

Bogust, P
Bohlen, J 180, 262, 276
Bohling, J
Boillat, E
Bojarevics, A
Bojarevics, V
Bo, L
Boland, T
Boles, S 154, 183, 212, 242, 277
Bolfarini, C 176, 260, 287, 291, 302
Bolger, F239
Bolind, A102
Bolintineanu, D230
Bollada, P274
Boller, E
Boll, T
Boluki, S172
Bolzoni, L
Bomarito, G
Bombac, D
Bommidi, D
Bommier, C
Bong, H
Bonifaz, E
Bonini, J
Bonora, N
Book, T
Boone, K
Bordeenithikasem, P
Borgonia, J102, 219
Borgonia, J102, 219 Borisov, E286
Borgonia, J
Borgonia, J.
Borgonia, J.
Borgonia, J.
Borgonia, J. .102, 219 Borisov, E. .286 Borkar, T .106, 129, 156, 165, 184, 214, 222, 223, 243, 293, 306 Borkowski, L .225 Borman, D. .142 Borovikov, V .231, 277 Borrel, L .262 Bose, A .212, 248 Bose, S .286 Bosi, F. .244 Bostype, A
Borgonia, J. .102, 219 Borisov, E. .286 Borkar, T .106, 129, 156, 165, 184, 214, 222, 223, 243, 293, 306 Borkowski, L .225 Borman, D. .142 Borovikov, V .231, 277 Borrel, L .262 Bose, A. .212, 248 Bose, S .286 Bosi, F. .244 Bossuyt, F .244 Bostjan, A .306 Bosworth, K. .91
Borgonia, J.

220, 224, 248, 2	
Bourgier, A2	34
Bourke, M	
Bourret-Courchesne, E2	
Bourricaudy, E1	07
Boussinot, G 167, 168, 2	07
Boutheina, B	43
Bowden, D2	
Bowden, P	
Bowen, P 148, 185, 208, 2	
Bower, A1	
Bowers, R 114, 196, 2	25
Bowie, S	49
Bowman, R	
Bo, X2	42
Boyce, B 89, 100, 102, 122, 124, 13	\$4,
149, 150, 176, 179, 187, 19	91,
209, 227, 238, 241, 2	
Boyer, C	33
Bozorg-Grayeli, E	65
Bozzolo, N	98
Bracq, G	
Brady, M 171, 205, 2	53
Braga, F2	98
Brahme, A	21
Braithwaite, C2	90
Branch Kelly, M1	13
Brandl, C 187, 201, 211, 215, 24	ł5,
265, 266, 279, 2	
Brand, M	
Brandt, F	
Brandt, M 162, 223, 2	
Brandvik, T	
Branicio, P	53
Braulio, M	
Braun, C2	
Bray, S	19
Brechet, Y2	06
Brechtl, J	61
Breen, A	97
Breitkreutz, H	
Brennan, M	
Brennan, P2	61
Brennan, R 114, 185, 2	
Brenne, F	
Brese, R2	
Brewer, G1	
Brewer, L 116, 139, 192, 212, 2	
Briant, N1	92
Brice, C 91, 137, 165, 194, 223, 24	ł7,
250, 2	
Bridges, D2	
Bridier, F	89
Briggs, S 87, 161, 218, 2	99
Brindley, K	79
Brinkman, K	11

Brinson, L
Briseño Murguia, S
Brito, G241
Britton, B 119, 165, 173
Britton, T119, 159, 192, 205, 221,
227 228
Britt, T
Britt, 1
Broadbridge, C141, 237
Broberg, D102
Brochu, M
Brockman, R 100, 122, 179
Broderick, T106, 214
Brody, H
Broek, S
Brokmeier, H
Bronkhorst, C 100, 111, 155, 204
Brookins, J
Brooks, G 86, 133, 148
Brooks, J
Brooks, L
Brothers, M
Brown, A 94, 116, 117, 142, 170, 200,
205, 228, 229, 255, 256, 271,
297, 298
Brown, C
Brown, D 98, 102, 135
Brown, E191, 253
Browne, D
Brown, F
Brown, I
Brown, J147, 220
DIOWII, J
Brown, R142
Brown, R
Brown, R
Brown, R .142 Brown, S .116, 142 Brown-Shaklee, H .230 Brown, T .136
Brown, R
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299 Buey, D .256
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299 Buey, D .256 Bufford, D .175, 187, 215, 216, 241,
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299 Buey, D .256 Bufford, D .175, 187, 215, 216, 241, 245, 265, 266, 279, 294
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299 Buey, D .256 Bufford, D .175, 187, 215, 216, 241, 245, 265, 266, 279, 294 Bugajska, M .229
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299 Buey, D .256 Bufford, D .175, 187, 215, 216, 241, 245, 265, 266, 279, 294 Bugajska, M .229 Bugdayci, M. .110
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299 Buey, D .256 Bufford, D .175, 187, 215, 216, 241, 245, 265, 266, 279, 294 Bugajska, M .229
Brown, R .142 Brown, S. .116, 142 Brown-Shaklee, H .230 Brown, T .136 Brozek, C .127, 243 Brück, E .164 Brueckner-Foit, A .146 Brundidge, C .133 Brunelli, D .299 Brust, A .107, 204 Buchanan, D .100, 179 Buck, M .100 Bucsek, A .245 Budiansky, N .238 Bud'ko, S .182 Budko, S .211 Budna, K .160 Bueno, J .299 Buey, D .256 Bufford, D .175, 187, 215, 216, 241, 245, 265, 266, 279, 294 Bugajska, M .229 Bugdayci, M. .110

Bulanda, M
Bulatov, V
Bulter, B
Bunn, J
Buranova, Y
Burgess, J
Burggraf, S
Burja, J
Burke, G
Burke, R
Burkhardt, I
Burlatsky, S
Burnes, R
Burns, J
Burr, P
Busche, M104
Buschhaus, W162
Busch, R271
Bustamante, M225
Butcher, D142
Buterbaugh, I
Butler, B 137, 165, 278
Butler, T
Butskhrikhidze, D181
Butt, D
Buzolin, R
Buzunov, V
Byerly, K90, 222
Byler, D
Bylya, O
Byrd, D
Byun, T
С
Cabrera, J
Cabrera Serrenho, A104
Cademartori, S
Cady, C
Cai, B 94, 242, 260
Cai, H285
Cai, L
Cai, P235
Cairney, J
Cai, S243

Calmunger, M147
Calo, P
Calta, N
Camarda, K
Camerini, A
Cameron, B135
Campanelli, L176, 291
Campbell, A 103, 125, 151, 180, 210,
239, 240, 262, 263, 276, 293
Campbell, C96, 150, 152, 163, 179,
198, 201, 221, 227, 253,
268, 270, 300
Campbell, G156, 212, 234, 266,
280, 307 Campbell, M230
Campo, K 94, 232, 306
Camposo Pereira, A
Canadinc, D 150, 168, 178
Candeger, K247
Canfield, P
Cang, D
Cann, J
Cannon, P94
Cannova, F120
Cantin, K167
Cao, C159, 213
Cao, F124
Cao, J
Cao, L
Cao, P
Cao, Q 170, 227, 254, 297
Cao, S 165, 249, 251
Cao, W 96, 254, 294
Cao, X 186, 200, 252
Cao, Y113, 299
Capek, J
Capolungo, L172, 173, 192, 194,
221, 224, 276
Capps, N
Cappucci, S
Cappucel, 5
Caram, R 94, 232, 243, 306
Caratini, Y
Cardinal, S270
Cardoso, F
Carino, R166
Carlson, M276
Carlson, N
Carlton, H
Carmack, J
Carney, C
Caro, A172
Carpenter, J 89, 94, 102, 111, 116, 135,
142, 163, 170, 188, 191, 200, 219,
220, 228, 229, 248, 255, 256, 271,
286, 297
Carpenter, R

Carpenter, W198
Carpentier, D
Carradò, A 107, 130, 149, 157, 186, 306
Carr, C
Carrier, J
Carrilho, L111
Carrizosa, S123
Carroll, J 88, 98, 100, 111, 124, 147,
149, 191, 241
Carroll, M 198, 227, 253, 270
Carson, R119
Carstensen, J
Carter, B233
Carter, J
231, 262
Carter, K
Carter, R
Carter, W
Carvalho, J
Carvalho, M170
Casas Rodriguez, J
Case, R
Casillas-Trujillo, L172
Caspi, E91
Castaneda, H
Castaneda Lopez, H
Castañeda Montoya, M290
Castañeda, S
Casteletti, L
Castillo-Rodriguez, M187
Castro, M
Castro, R
Castro, W94
Catalano, J116
Cataldo, J248
Catlett, M99
Caton, M179
Cavalcante, I
Cawkwell, M
Cazacu, O
Cebon, D
Cefalu, R
Ceguerra, A
•
Celebrini, P
Celikin, M
Çelikin, M
Celik, O
Cerqueira, N
Cerreta, E100, 122, 135, 149, 176,
291, 295, 307
Cetinel, S
Chae, D
Chai, D196, 225
Chai, G 147, 205, 206, 226, 249
Chai, W
Chai, Y

Cha, J
Chakrabarti, D 127, 295, 302
Chakrabarty, R
Chalmab arts: A 112, 204, 249
Chakraborty, A 113, 204, 248
Chakraborty, R
Chakraborty, S
Chakravarty, D272
Chaktaborty, S260
Chalastara, K
Chalaturnyk, R248
Chalavadi, P163, 165
Chamelot, P184
Champagne, V 124, 185, 191, 203,
228, 232, 282 Chan, C103
Chancey, M
Chandola, N
Chandross, M187, 269
Chang, C
Chang, F
Chang, H
Chang, J
Chang, K 95, 96, 107, 258
Chang, L
Chang, M
Chang, S
Chang, T 195, 281, 296
Changting, T120
Chang, Y 140, 164, 165, 197
Chan, M 117, 231, 232, 258
Chan, P152
Chaodong, L
Cha, P
Chapman, J
Chaput, K 92, 130, 137, 139, 165, 167
Charit, I 97, 130, 148, 161, 191, 205,
239, 240, 276
Charles, G
Charpagne, M
Chartier, A155
Chason, E
Chatterjee, K98
Chatterjee, R
Chaudhary, A91
Chaudhary, V
Chaudhry, A
Chaudhuri, S
Chauhan, V
Chaves, M
Cha, W163
Chawla, K176
Chawla, N 94, 105, 113, 128, 155, 161,
165, 176, 183, 213, 241, 251,
255, 257, 259, 295, 305
Chawla, R
Chelliah, N

Chen, B 146, 186, 234, 261
Chen, C 91, 97, 112, 137, 165, 193,
195, 213, 222, 242, 250, 264,
266, 274, 278, 281, 283, 296,
304, 305, 306
Chen, D 100, 108, 129, 161, 180, 185,
221, 231, 249, 285, 301, 302
Chen, F 132, 183, 211, 237
Chen, G 165, 170, 185, 241, 269, 305
Cheng, C
Cheng, G
•
Cheng, H
Cheng, J
Cheng, L
217, 294
Cheng, T 110, 143, 152
Cheng, X
Chen, H 106, 112, 116, 124, 129, 144,
156, 181, 184, 214, 224, 225,
243, 250, 251, 274, 282, 293,
301, 303, 306
Chenhui, L160
Cheniour, A
Chen, J
Chen, K 106, 166, 181, 193, 264, 266,
285, 290
Chen, L 92, 95, 96, 135, 166, 167, 178,
209, 230, 261, 268
Chen, M 149, 160, 169, 176, 216, 260,
265, 284, 292
Chen, N
Chen, P 93, 101, 114, 115, 123, 140,
198, 236, 262, 264, 305
Chen, Q
Chen, S 92, 96, 113, 138, 147, 166,
181, 195, 214, 252, 254,
260, 261, 271, 296
Chen, T 186, 239, 298
Chen, W
237, 242, 246
Chen-Wiegart, Y99
Chen, X 90, 95, 131, 143, 148, 171,
179, 186, 201, 206, 229, 242,
247, 256, 272, 273, 290, 299
Chen, Y 87, 138, 143, 159, 160, 161,
174, 184, 200, 209, 212, 216,
235, 236, 246, 251, 266, 272,
285, 286, 303
Chen, Z 93, 103, 111, 130, 222, 230
Cheon, G
Chernyshova, E
Cherukara, M163, 231
Chesser, I 97, 106, 216, 217
Chetri, S
Cheung, N
Che, Y
Circ, 1

C1
Chiang, R158
Chiang, S
Chiang, Y
Chiba, A 163, 191, 247, 260
Chien, S
Child, D 159, 208, 304
Childers, M
Chin, M244
Chintalapalle, R107, 126, 130, 157,
-
186, 306
Chipara, A
Chisholm, M
Chistyakov, D
•
Chiu, C115
Chiu, W 195, 281, 296
Chlup, Z173
Chmelar, J175
Chmelik, F116, 228
Chmielarczyk, A
Chmielewski, M
Chmielus, M
Cho, H
Choi, E
Choi, H 126, 213, 237, 283, 303
Choi, I
Choi, J 126, 217, 264
Choi, K 245, 275, 288, 290, 304
Choi, P141
Choi, S 244, 262, 277
Choi, W 150, 165, 205
Choi, Y137, 288
Cho, J 183, 287, 288, 307
Cho, K 113, 114, 275, 287, 304
Cho, M
Chomyn, K139
Chong, Y
Chong, Y
Chong, Y
Cho, O165
Cho, O
Cho, O165
Cho, O
Cho, O 165 Choo, H 89, 141, 169, 199, 223, 227, 236, 248, 254, 270, 271, 282, 297 Choquette, S 250 Chorney, J 133 Cho, S 127 Choudhary, A 100 Choudhary, K 118, 138, 258 Choudhuri, D101, 123, 129, 165, 173,
Cho, O

Christ, H 122, 228, 274, 303
Christodoulou, J
Christofidou, K123, 233
Chrominski, W
Chrzan, D
Chuang, C
Chuang, W
Chuaypradit, S228
Chu, C137
Chueh, Y109
Chu, H
Chu, J
Chumbley, S
Chumlyakov, Y
Chung, D
Chung, G
Chung, H
Chung, J
Chung, K
Chung, P
Chung, Y
Chun, H
Chun, T
Chun, Y
Chu, P
Chu, Y
Ciemiorek, M
Cift Karagul, S259
Cifuentes, S
Cihova, M
Cinbiz, M
Cisko, A
Ciston, J
Ciuca, O
Ciupinski, L
Clare, A
Clark, B
Clarke, A90, 111, 136, 164, 179,
192, 198, 220, 221, 227,
249, 253, 270, 295
Clarke, K100, 239
Clark, M134
Clark, T 98, 123, 249, 272
Clausen, B
Clayton, K
Cleek, C
Clegg, W 111, 156, 187
Clemente, M
Clifford, A
Cloetens, P
Clouet, E
Clough, E
Cluff, S
Coakley, J
Cochrane, R
Cockeram, B 210, 239, 240

Coe, H
Coffey, G
Coffey, K
Coffin, P149
Cola, G
Cola, M
Colegrove, P
Cole, J 87, 110, 133, 160, 161, 189,
218, 240, 285
Cole, L
Coleman, D
Coleman, J93
Coleman, S
203, 231, 232, 246, 258,
273, 300, 301
Coley, K104, 194
Collette, R
Collino, R
Collins, D
Collins, L
Collins, P 91, 92, 134, 137, 145, 163,
165, 173, 194, 195, 204, 223,
224, 232, 250, 251, 256, 269, 287
Colombo, L109
Colorado, H 290, 291, 297, 302
Combeau, H 207, 228, 274, 302
Comer, M
Compton, C
Co, N
Conde, A164
Congo, F
Cong, X
Conle, A
Conner, B 88, 89, 112, 153, 154
Connick, R
Connor, M239
Conradi, M
Conti, M
Conversano, R
Conway, P
Cook, A 139, 230, 278
Cook, L
Cook, M134
Cook, R176
Cooley, J102, 135
Cool, T
Cooper, C
Cooper, M97
Cooper, V
Cordero, Z154
Cordill, M 153, 265, 279
Cordova, S
Cormier, J
Cornell, J
Cornett, J
Corni S 93

Cornu, J107
Corona, T
Correa, M
Cortes, P154
Coryell, S 208, 237, 261, 275, 304
Costa, F
Costa, T116
Cote, D 124, 203, 228, 232, 282
Côté, J
Cotts, E
Couet, A
Coughlin, D
Coulombe, P
Couret, A
Couzinié, J
Cowden Dahl, K114
Cox, C 212, 250, 303
Cox, M
Cox, R
Craig, J
Cramer, J
Craparo, J
Crawford, G 141, 217, 264, 281, 283
Cresko, J
Crespillo-Almenara, M240
Crespillo, M
Crespo Roldan, C
Creuziger, A
Greuzigei, 11
Crimp M 163 204 221 227
Crimp, M163, 204, 221, 227
Crimp, M163, 204, 221, 227 248, 251, 264
Crimp, M163, 204, 221, 227 248, 251, 264 Crocce Romano Espinosa, D306
Crimp, M
Crimp, M.
Crimp, M.
Crimp, M.
Crimp, M

Currelli, M	105
Curtin, W 97, 103, 256, 2	274
Curtis, I	.97
Curtis, T114, 2	226
Cus, Z	288
Czerniak, M	242
Czerwinski, F	292

D

Dabas, B	258
Dabney, T	
Dabo, I	
D'Abreu, J	110
DaCosta, L	271
Da Costa, W	283
Dada, T	213
Dadfarnia, M	175
Daehn, G	290
Daehn, K	104
Dagavalli, R	288
Dagel, D	220
Dahal, J	245
Dahmen, K 178, 260, 261,	
Dahms, M197,	
Dai, C118,	
D'Aiuto, F	
Dai, Y	
Dai, Z	
Dakka, A	
Dalai, B	
Dalaq, A	
Dal Bó, M	
Dale, D	
Dalla Torre, F	280
Daloz, D	
da Luz, F	
Daly, S 111, 148, 192,	
Damaskin, A	
Danaei, R	
Danard, Y127,	
Dancette, S	
Dandekar, A	
Dang, D	
Dang, J	
Dang, K	
Dang, T	199
Daniewicz, S 88, 134, 162, 191,	286
Danilov, A	254
Danoix, F 107, 111, 112, 225,	
Danoix, R	
Daramola, T	
Darell, O	131
Darell, O Darling, K 99, 159, 187, 238, 240,	280
Darsell, J	280
Darvish, S	23(

Das, A	302
Das, B	272
Dasgupta, D	
Dashti, H	
da Silva Dias, J	
Da Silva, J	
da Silva, P	
da Silva, T	
da Silva Vieira, J	
Das, K 155, 185,	
Das, R	
Das, S 111, 139, 155, 162, 196, 277,	
Dassylva-Raymond, V	
Daughtery, T	
Davare, S	
David, C	
Davidson, M	120
Davies, H	287
Davies, P	287
Davies, S	
Dávila, L	
Davis, B	
Davis, C	
Davis, J	
Davis, T	
Davis, 1	
Davris, P	
Dawari, A.	
Dawicke, D149,	
Dawson, P	
Dayani, S	
Daymond, M118,	
de Almeida Pontes, L	
De Andrade, V 94, 241,	
de Assis, F	298
De Bellefon, G	276
Debierre, J	236
de Boor, J	
DeBow, L	
Debroy, T	
DebRoy, T	
Deb, S	
Décamps, B	
De Carlo, F 94, 241,	
De Carvalho, G	
de Cavalho, T	
Deckarm, M	
Deck, C	
Decker, R	
DeCost, B 102, 116, 228,	
de Diego Rincón, J	142
Deffrennes, G	
de Freitas, C	
De Geuser, F	
De Graef, M	
228, 256, 281,	
,,,,	

Degueldre, C
Dehm, G
Dehoff, R 91, 102, 124, 137, 162, 173,
191, 193, 223, 247, 268, 269, 286
DeHosson, J237
Deibler, L
Dein, E
De Jong, M202
DeJong, S
Delafoy, C
Delalande, S
Delathauwer, L
Delgado, A
Delgado, J
Delhaise, A222
D'Elia, C220
Dellacorte, C206
del-Rio, E251
Del Rio, F176
DelRio, F
Del Rose, T
De Luca, A197
Del Val Garcia, J140
del Val, J
Damahanlar D
Demchenko, P
de Mello, M
Demetriou, M
de Miguel, M304
Demkowicz, M 95, 96, 106, 128,
Demkowicz, M95, 96, 106, 128,
Demkowicz, M95, 96, 106, 128, 145, 188, 216, 217, 272, 285
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M 95, 96, 106, 128, 145, 188, 216, 217, 272, 285 de Moor, E
Demkowicz, M

Derby, B95, 96
Derby, R
Derimow, N123, 260
Deriy, A94
Derlet, P 169, 211, 254
DeRousseau, M238
De Saro, R
Deschamps, A156, 249
Deshmane, M
Deshmukh, S
Deshpande, A
Desilets, M148
Desmeules, J115
de Sousa Oliveira, L
de Souza, A
Desrosin, W
Detrois, M 119, 123, 146, 174, 179, 260
Detsi, E
Detwiler, D201
Devaraj, A103, 140, 168, 197, 225,
240, 252, 292
Devaux, A
Devendranath, R235
Devi, A
DeWald, A
DeWitt, S 117, 223, 257
Dey, G
DeYoung, D109
Dey, P192, 272
Dezellus, O
Dezerald, L
Dhanunjaya, M149
Dharmaiah, P
Dharmendra, C
Dhouib, A
Dial, L
Diallo, M101
Diao, H 127, 178, 207, 237, 261, 274
Diaz, A245
Díaz A., S114
Diaz, F
Diaz, J
Díaz, J
Diaz Pares, M
Dichtl, C
Dickel, D 166, 194, 231
Diederichs, A
Diehl, M146
Dienstfrey, A
Dieringa, H 151, 209, 292
Dietrich, J
Diez Muiño, R
Di Fonzo, F
Di Gioacchino, F
Dillon, P102
Dillon, R 141, 154, 219

	104 015 045 060
Dillon, S	
	266, 302, 303
Dilman, H	
Dima, A	
Dimiduk, D	
Dinda, G	
Ding, C	142, 160, 228
Ding, F	
Ding, J	
Ding, R	
Dingreville, R	118, 189, 264
Ding, X	
Ding, Z	
Dion, L	
Dion-Martin, O	
Diplas, S	
Dippenaar, R	
Dive, A	
Divinski, S	
Dixit, U	
Dixon, M	
Djambazov, G	
D., M	
Dmowski, W	169, 227, 271
Doak, J	
Doblin, C	157
Dobron, P 116,	228, 255, 262, 276
Dodaran, M	
Doerner, R	
Dogan, N	
Dogan, O	
Dogan, Ö	
Dogdibegovic, E	
Doglione, R	
Dögnes, B	
Dolgos, M	
Dollé, M	
Doll, G	
Domnich, V	
Donahue, C	
Donaldson, O	
Donchev, A	
Donegan, S	
0	204, 251, 253, 270
Dongare, A	
U	201, 203, 216, 217,
	257, 258, 266, 267,
	273, 280, 300, 307
Dong, B	
Dong, C	
Dong, F	
Dong, H	
Dong, K	
Dong, L	
Dong, P	
Dong. S.	

Dong, W120
Dong, X
Dong, Y 153, 251, 259
Donic, T
Donohue, N
Donthula, H
Dora, J
Dorari, E
Dorin, T 107, 114, 158
Dotsenko, A
Doubek, G
Dougherty, E
Dougherty, M
Doughty, G
Douglas, J164
Doung, T171
Dou, Z 104, 139, 157, 239
Dovgyy, B92
Dowd, M
Dowling, D167
Downey, J
218, 247, 267, 283, 284
Doyle, P
Draper, S
Dreisinger, D107
Dreissigacker, C
Drelich, J 197, 226, 253, 270, 296
Drlicek, A
Drozdenko, D
Drozd, V
Drüe, M
Dryepondt, S121, 154, 161, 175, 206
208, 235, 239, 259, 269, 282, 301
D'souza, F
Duan, H 100, 301, 302
Duan, W
Duarte Cordon, C
Du, B
Dubey, M244
Dubey, P
Dubiel, S
Duchemin, Y
Duchesne, C114
Dudarev, S
Dudzinski, D179
Duechting, J
Duerloo, K
Dufresne, E
Dugic, I
Du, H
Du, J
198, 226, 296
Du K 125
Du, K
Duley, P

Dumont, R
205, 243, 247, 251, 252, 296 Dunlap, B
Dunstan, M
Duoss, E
Dupuis, M
Du, Q
Durmaz, A100 Dusoe, K128, 182, 211
Dutt, A161, 281 Dutta, A150, 164, 275
Dutta, B 91, 145, 201, 237, 272 Dutta, D
Dutta, I
Dutta Majumdar, J 158, 275, 286 Dutta, P
Du, W
Du, Y 92, 96, 117, 144, 171, 202, 222, 230, 240, 284, 293, 300
Duyvesteyn, W
Dye, D
Dziekonski, C
Ε
Eakins, D
East, D

Easton, M. 92, 151, 167, 180, 210

Edick, J	
Edmondson, P	151, 161, 180, 210, 239
Edwards, D	110, 125, 189
Edwards, T	
	218, 263, 289, 295
	163, 180, 248
Egami, T.	
Eisenlohr, P	98, 113, 119, 146, 151,
	163, 173, 204, 221, 227,
	248, 251, 289, 295
	tner, C195
	156, 218, 262, 263
El-Azab, A	97, 173, 202, 231, 257,
	289, 300
	289, 300 99, 286
Elder, K	289, 300
Elder, K Elhalawaty, S	289, 300 99, 286 223 165
Elder, K Elhalawaty, S Elias, C	289, 300 99, 286 223 165 197, 270
Elder, K Elhalawaty, S Elias, C Elias, H	289, 300
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O	289, 300 99, 286 223 165 197, 270 270 270
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O	289, 300
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H	289, 300 99, 286 223 165 197, 270 270 270
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K	289, 300 99, 286 223 165 197, 270 270 154 192, 248, 257, 262 253
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A	289, 300 99, 286 223 165 197, 270 270 154 192, 248, 257, 262 253 181
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K	289, 300 99, 286 223 165 197, 270 270 270 154 192, 248, 257, 262 253 181 254
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Elliott, A	289, 300
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Elliott, A Ellis, D	289, 300 99, 286 223 165 197, 270 154 192, 248, 257, 262 253 181 254 254 133, 193, 242 88
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Elliott, A Ellis, D Ellis, T	289, 300 99, 286 223 165 197, 270 197, 270 192, 248, 257, 262 154 192, 248, 257, 262 154 192, 248, 257, 262 154 192, 248, 257, 262 181 254
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Elliott, A Ellis, D Ellis, T El Mahallawi, I .	289, 300 99, 286 223 165 197, 270 270 154 192, 248, 257, 262 253 181 254 133, 193, 242 88 233 88
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Ellingsen, K Elliott, A Ellis, D Ellis, T El Mahallawi, I . Elmer, J	289, 300 99, 286 223 165 197, 270 270 154 192, 248, 257, 262 253 181 254 254 133, 193, 242 88 233
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Ellingsen, K Ellis, D Ellis, T El Mahallawi, I . Elmer, J Elsässer, C	289, 300 99, 286 223 165 197, 270 270 154 192, 248, 257, 262 253 181 254 133, 193, 242 88 233 228, 240 91, 92 144
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Ellingsen, K Ellis, D Ellis, T El Mahallawi, I . Elmer, J Elsässer, C Elsebaie, O	289, 300 99, 286 223 165 197, 270 270 154 192, 248, 257, 262 253 181 254 133, 193, 242 88 233 228, 240 91, 92 144 91, 92
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKholy, A Ellingsen, K Ellingsen, K Elliott, A Ellis, D Ellis, T El Mahallawi, I . Elsässer, C Elsebaie, O El-Shabasy, A	289, 300
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKhodary, K Elkholy, A Ellingsen, K Elliott, A Ellis, D Ellis, T El Mahallawi, I . Elsässer, C Elsebaie, O El-Shabasy, A	289, 300 99, 286 223 165 197, 270 270 154 192, 248, 257, 262 253 181 254 133, 193, 242 88 233 228, 240 91, 92 144 130 228 105
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKhodary, K Elkholy, A Ellingsen, K Elliott, A Ellis, D Ellis, T El Mahallawi, I . Elsässer, C Elsebaie, O Elshabasy, A Elsharkawi, M El Star, A	$\begin{array}{c} 289,300\\99,286\\223\\165\\197,270\\270\\154\\192,248,257,262\\253\\181\\254\\254\\88\\233\\228,240\\91,92\\144\\130\\228\\105\\114\end{array}$
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K Elkholy, A Ellingsen, K Ellingsen, K Ellis, D Ellis, T Ellis, T El Mahallawi, I . Elmer, J Elsässer, C Elsebaie, O Elsharkawi, M El Star, A El-Tahawy, M	$\begin{array}{c} 289, 300\\99, 286\\223\\165\\197, 270\\270\\154\\192, 248, 257, 262\\253\\181\\254\\133, 193, 242\\88\\233\\228, 240\\91, 92\\144\\130\\228\\105\\114\\210\end{array}$
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKholy, A Ellingsen, K Ellingsen, K Ellis, D Ellis, T El Mahallawi, I . Elmer, J Elsässer, C Elsebaie, O Elsharkawi, M El Star, A El-Tahawy, M	$\begin{array}{c} 289, 300\\99, 286\\223\\165\\197, 270\\270\\154\\192, 248, 257, 262\\253\\181\\254\\133, 193, 242\\88\\233\\228, 240\\91, 92\\144\\130\\228\\105\\114\\210\\220\\ \end{array}$
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKhodary, K Elkholy, A Ellingsen, K Ellingsen, K Ellis, D Ellis, T Ellis, T Elsässer, C Elsebaie, O Elsebaie, O Elsharkawi, M El Star, A El-Tahawy, M El-Wardany, T	$\begin{array}{c} 289, 300\\99, 286\\223\\165\\197, 270\\154\\197, 270\\154\\192, 248, 257, 262\\253\\181\\254\\133, 193, 242\\88\\233\\228, 240\\91, 92\\144\\130\\228\\105\\114\\210\\220\\192\end{array}$
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKhodary, K Elkholy, A Ellingsen, K Ellingsen, K Elliott, A Ellis, T Ellis, T El Mahallawi, I . Elmer, J Elsässer, C Elsebaie, O Elsharkawi, M El Star, A El-Tahawy, M El-Wardany, T Emadi, R Emani, S	289, 300 99, 286 223 165 197, 270 154 192, 248, 257, 262 253 181 254 254 254 254 28, 240 91, 92 144 91, 92 144 228 91, 92 144 228 130 228
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKholy, A Ellingsen, K Ellingsen, K Elliott, A Ellis, D Ellis, T Ellis, T Elmer, J Elsässer, C Elsebaie, O Elsharkawi, M El-Shabasy, A El-Tahawy, M El-Wardany, T Emadi, R Emadi, A	289, 300 99, 286 223 165 197, 270 154 197, 270 154 192, 248, 257, 262 253 181 254 254 254 233 228, 240 91, 92 144 30 228 105 114 210 210 210 220 210
Elder, K Elhalawaty, S Elias, C Elias, H Eliseeva, O El Kadiri, H ElKhodary, K ElKholy, A Ellingsen, K Elliott, A Elliott, A Ellis, T El Mahallawi, I . Elmer, J Elsebaie, O Elsebaie, O Elsharkawi, M El Star, A El-Tahawy, M El-Wardany, T Emadi, R Emadi, A Emar, J	289, 300 99, 286 223 165 197, 270 154 192, 248, 257, 262 253 181 254 254 254 254 28, 240 91, 92 144 91, 92 144 228 91, 92 144 228 130 228

Emigh, M266
Encinas-Sánchez, V
Engelbrecht-Wiggans, A176
Engh, T199
Engler-Pinto, C162
Enoki, M 124, 201, 203
Enos, D
Enright, P199
Enriquez Gutierrez, R
Enugala, S
Enz, J
Eone II, J
Epishin, A
Eravelly, J
Erazmus-Vignal, P
Erdeniz, D 197, 243, 252
Erdogan, M 131, 183, 244
Erhart, P
Eriksson, G
Eriksson, J
Erlebacher, J
Ermagan, R
Ermisyam, I114
Ernst, A
Erol, M
Ertekin, E
232, 258, 301
Ertürk, S
Ervin, A
Esawi, A
Escamilla, N
Escobar Claros, C
Escobedo-Diaz, J94, 116, 117, 142,
170, 174, 200, 228, 229,
255, 256, 271, 297, 298
Escobedo, J
Esezobor, D
Eshraghi, M177, 207, 236, 260,
274, 302
Esin, V
Eskin, D
Eslami Farsani, R
Eslami-Farsani, R
Esper, F
Espinosa, D
Espinosa, H
Espinoza-Nava, L
Esquivel, E 218, 262, 263
Esquivel, J158
Estevez, R174
Estrada, S198
Estrin, Y
Eswarappa Prameela, S181
Eswarappa-Prameela, S185
Etesami, S

Etrick, N
Euh, K
Evans, H
Evanson, H
Evans, S
Everhart, W
Evgenov, A
Ewenz, L
Exertier, F168
Exil, A
Eybers, A

F

Fabregue, D
Fadi, A
Faehsing, D
Fafard, M
Fahrenholtz, W143
Fahrmann, M98
Faierson, E134, 223
Fakhretdinova, E280
Falasi, S
Falero, E
Fallah Fini, M148
Fallah, V158
Fan, C285, 301
Fan, F
Fan, G 113, 126, 160
Fang, B
Fang, C
Fang, D
Fangfang, S
Fang, J
Fang, L
Fang, S
Fang, Y
Fang, Z124, 157, 185, 215, 244,
264, 278, 294
264, 278, 294 Fan, J
Fan, M292
Fan, X127, 185
Fan, Y106, 128, 155, 184, 227, 241
Fan-Yi, O
Fan, Z 103, 127, 183, 227, 292
Farac, N
Faraji, M207
Farkas, D156, 266
Farkas, N292
Farrahi, G
Fattebert, J
Faure, A174
Fecht, H141, 153
Fedelich, B
Fedyaev, A

Feitosa de Deus, J170
Feldhaus, D
Feldmann, M
Feldmann, T
Felfer, P
Felicelli, S236
Fellinger, M
Feng, B
Feng, C
Feng, F
Feng, G
Feng, J
Feng, L
Feng, P
Feng, Q
Feng, R101, 102, 127, 178, 207,
208, 236
Feng, S 213, 242, 264, 278, 305
Feng, Z 159, 163, 202, 217, 292
Fensin, S 99, 106, 120, 135, 147, 163,
174, 205, 234, 290 Ferber, A
Ferblantier, G107, 130, 157, 177,
106 206
Ferencz, R
Feret, F
Fergus, J
Fernandes, D
Fernandes, J
Fernandes Salvador, C
Fernandez, C
Fernandez, V
Ferraro, C
Ferreira, M229
Ferreira, S
Ferreira, T
Ferrier, N
Ferris, J137
Feyerabend, F
Feyissa, F
Fezzaa, K94, 135
Fichtner, P
Field, D 95, 111, 229, 257
Fielden, D123
Fielder, M140
Field, K 87, 110, 161, 210, 218, 239
Fields, K 110, 210, 252
Fife, J
Figueroa, A103
Figueroa, S
Fikar, J
Filmer, M
Fima, P
Finamore, T114, 226
Findley, K
Finel, A

Finkeldei, S
Finlay, R100
Fiory, A
Firdausi, S
Firdosy, S
Firestone, M
Firrao, D 94, 116, 142, 170, 182, 200
207, 228, 229, 255, 256, 271, 292
Fisher, G
Fitzgerald, C
Fitzgerald, E
Fitz-Gerald, J
Fitzpatrick-Schmidt, K
Flanagan, R
Flanagan, T
Fleissner Sunding, M
Fletcher, P
Fleurial, J
Fleuriault, C
Fleurisson, R
Flor, A
Florando, J
Flores, F
Flores Gerrero, M294
Flores G., M
Flores Guerrero, M
Flores-Guerrero, M
Flores, K 101, 123, 169, 297
Florez Meza, R
Florian-Algarin, D
Floro, J
Foden, A
Foiles, S
216, 223, 245
Foley, D
Foley, G
Foley, J 195, 224, 251, 269
Foley, M90
Fonda, R
Fong, A
Fonseca, J146, 204
Fonseca, R
Fontaine, B
Fontana, R
Forastieri de Almeida Prado, P300
Ford, K
Forien, J
Forman, J
Forrest, D
Forslund, A
Forsmark, J
Forte, L
Fortier, A
Fortin, E
Fossati, P
Fossheim, H

Foster, I152
Foster, S
Fostervoll, H
Fox, S
Fraczkiewicz, A102, 275
Fradet, C167
Frage, N
Franchet, J
Francisco, D
Francis, T146, 228
Franco, A
Franco, V
Franczak, K
Frandsen, D
Frankel, D
Frankel, P 160, 189, 219, 235, 240
Franklin, K
Frank, M 114, 115, 287
Frank, S
Frantziskonis, G171
Fraser, A
Fraser, D
Fraser, H 101, 106, 134, 165, 173,
214, 243, 295, 302
Fratoni, M102
Fratto, E
Frazer, D 102, 152, 189, 285
Freedy, K
Free, M
Freitas, H
French, M154
Freund, L
Freyer, P
Friák, M
Friedrich, B 169, 184, 242
Friedrich, H
Friedrich, L
Friis, J
Frint, P
Frishkoff, J
Frith, M
Frith, S
Fritzen, C
Frolov, A
Frolov, T 128, 129, 215, 245
Frolov, V
Frost, D
Frost, M
Fu, C
Fuchs, G
Fu, D
Fu, E
Fu, H
Fujieda, T
Fujit, H
Fujii, S

Fujisaki, K
Fujiwara, K253
Fuka, M
Fukami, K157, 294
Fukumoto, T
Fullwood, D 111, 136, 155, 171, 268
Fulop, R191, 212
Fultz, B
238, 258, 301
Fung, K
Furnish, T
Furrer, D
Furst, B
Furuhara, T
Fu, S
Fu, X
Fu, Z237, 246

G

Gabb, T162
Gaboury, S
Gabriel, J
Gaertner, H
Gahnbari, S
Galarraga, H
Galenko, P236
Galetz, M
Galindo-Nava, E 122, 147, 233, 235
Galitskiy, S99
Galiullin, T
Gallagher, R166
Galler, J159
Gallerneault, M158
Gallino, I
Galli, S253
Galstyan, E265
Galvan, E
Gambino, L
Gamble, K110
Gan, B 123, 187, 208
Gandha, K
Gandin, C 177, 207, 260
Gandy, D
Ganesan, K137
Ganesan, S214
Ganesha, G132
Gan, G244
Gangireddy, S 134, 175, 178, 205
Gangloff, R
Gang, S
Gan, J 103, 160, 218
Ganti, S 94, 116, 297, 299
Gao, B167
Gao, F 132, 193, 285, 296
Gao, H135

Cap I 02 160 164 105 226 242
Gao, J 92, 160, 164, 195, 236, 243
Gao, K
Gao, L 189, 272, 306
Gao, M 101, 102, 123, 124, 127, 149,
150, 178, 207, 208, 209, 236,
237, 238, 260, 261, 270, 271,
274, 275, 303
Gao, P132, 185
Gao, S120, 175
Gao, W143
Gao, X 100, 175, 177, 181, 218
Gao, Y 98, 141, 145, 149, 160, 169,
178, 199, 202, 215, 227, 254,
265, 270, 271, 297
Garcés, G
Garcia, A
Garcia, D
Garcia Ferre, F
Garcia Ferré, F
Garcia Filho, F
Garcia, G
Garcia-Gonzalez, M245
Garcia-Hernandez, L
García Hernández, L
García-Martín, G
Garcia Taormina, A108
Garcin, T
Gardiola, B151
Gargalis, L
Garg, P 151, 176, 235
Garibaldi, M
Gariépy, R
Garlea, E
Garmestani, H
Garner, A
Garner, F
Garner, S
Garrity, K
Gasanov, P
Gascoin, F 92, 113, 138, 166, 195, 296
Gaskey, B
Gasper, A
Gasper, P
Gattu, V
Gaudez, S 111, 112, 295
Gault, B 106, 124, 140, 197, 293
Gaustad, G169, 238
Gauthier, M
Gautier, R92
Gavini, V166
Gavras, A102, 124, 150, 179, 209, 238
Gavras, S
Gaynor, A 99, 120, 134, 147, 174, 301
Gbenebor, O
Gbur, J
Geandier, G 107, 111, 112

Gebelin, J
Gebert, A
Geiser, P213
Gelb, J 139, 259, 295
Ge, M
Genau, A
Geng, L 95, 96, 103, 294
Geng, W
Geng, X
Gennesson, M
Gentile, D 99, 202, 205
Gentry, S
Georgarakis, K
George, E 101, 150, 178, 260, 303
George, T
Georgin, B
e
Ge, Q
Gerard, C
Gerberich, W176
Gerbeth, G183
Gerbig, D122
Gerczak, T 151, 152, 239, 263
Gerdes, K152
Geringer, J
Germann, T
Germaschewski, K
Gervais, B168
Gesing, A139
Getman, R
Getto, E
Ge, Z
G, G
Ghahreman, A107
Ghalsasi, O
Ghamarian, I 134, 195, 256
Ghanbari, S
Gharbi, O204
Ghayoor, M
Ghazisaedi, M
Ghazisaeidi, M144, 145, 146, 163,
173, 204, 256, 289
Gheno, T
Ghodrat, M 87, 121, 233, 241
Ghods, S198
Gholami Bazehhour, B257
Ghorbani, H
Ghorbanpour, S
Ghosh, A
Ghosh, D
Ghosh, G
Ghosh, M157
Ghosh, P 159, 188, 266
Ghosh, S144, 146, 213, 226, 270,
273, 289, 299
Gianesi Bastos Andrade, C 116, 255
Gianola, D 149, 242, 245, 266

Gibbins, D	290
Gibbons, B	
Gibbs, J.	
Gibbs, P 106, 129, 156, 184, 2	
2 12 202	201
243, 293, Gibilaro, M	306
Gibson, m	
Gibson, M 92, 151, 154, 180, 1	
212, 242, 248, Gierlotka, S	270
Gigueres, N	253
Gihleengen, B	254
Gilbert, M	303
Gildemeister, D	228
Gill, A	
Gillen, C	
Gill, S	
Gil-Santos, A	
Giri, A127, 160, 167, 196, 240,	
Giri, D	
Givord, D	
Gioka, M	
G. Koppad, P	
Gladden, J	
Glaessgen, E	
Glagolenko, I	
Gleason, M	
Gleeson, B 162, 178,	
Glicksman, M	
Glória, G	
Glowacki, A	
Gludovatz, B 101, 159, 178, 227,	275
Glushko, O	266
Gneiger, S	180
Gnielczyk, M	305
Gobber, F	
Godaliyadda, G	
Goddard III, W	
Goddin, J 236, 253,	
Godec, M	
Godfrey, D	
Goel, A	
Goel, K	
Goel, S157,	
Gogotsi, Y	
Gohda, Y	
Goiri, J	
Göken, M 119, 233,	
Gokhale, A	
Gokuldoss, P	
Golden, P122,	179
Golden, T	
Goldman, J	
Goldstein, H	
Golem, L	
Golubev V	

a. 1. 1. 1. 1
Golumbfskie, W167, 225
Gombola, C108
Gomes, A
Gomes de Oliveira, C170
Gomes, M170
Gómez, J
Gonçalves, M142
Gong, J
Gong, P
Gong, S
Gong, T
Gong, W
Gong, X
Gong, Y
Gonzales Rosas, A
Gonzalez, D
González-Hernández, J
Goodfellow, A
Goodlet, B173
Goodnick, S100
Goodship, V157
Goodwin, F
Gopalakrishnan, A99
Gopalan, R
Gopalan, S126, 152
Gorbachev, S
Gordon, J
Gorr, B
Gorsse, S
Gorti, S 117, 268, 286
Goswami, A177
Goswami, R94, 114, 116, 142, 170,
200, 228, 229, 235, 255,
200, 228, 229, 235, 255, 256, 271, 297
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G159, 216
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G159, 216 Gougerot, F115
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G159, 216 Gougerot, F115 Goulart, M297 Goune, M107
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G159, 216 Gougerot, F115 Goulart, M
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G159, 216 Gougerot, F115 Goulart, M297 Goune, M107 GOUNE, M225 Gouné, M111, 112, 286, 295
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G
200, 228, 229, 235, 255, 256, 271, 297 Gottstein, G

Grandfield, J
Grange, D
Grant, J186
Grants, I
Grapes, M234
Gras, J95, 96
Gravell, J
Gray, G 99, 120, 135, 147, 155, 163,
174, 182, 205, 219, 234, 290
Gray, S231
Graziano, D
Greaney, A
Greaney, P
Greave, O115
Greeley, D
Greene, J
Green, W175
Greenzweig, A94
Greer, J 199, 219, 248
Gregg, A
Gregurek, D
218, 247, 267, 283, 284
Grehk, M
Grendahl, S
Greuter, F191
Griebel, A
Grierson, D
Griffiths, S
Grigorescu, A
Grigorian, C
Grijalva, C
Grilli, N120, 273
Grin, Y92
Gripenberg, H141
Groeber, M
204, 251, 253
Gröger, R
Grote, C
Gruber, B
Gruber, J 106, 210, 223, 245, 265
Gruen, N
Grüner, D
Grün, N
Grzebinoga, J
Grzenia, J
Granial D
Grzesiak, D
Gualtieri, T247
Guangsheng, W
Guangzhi, W
Guan, X 107, 129, 152, 157, 185, 294
Guba, P
Gubicza, J

Gueninchault, N
Guest, J 102, 120, 134, 174, 183, 286
Guetard, G235
Gu, F
Gui, L
Guildenbecher, D120
Guilhem, Y135
Guillemot, G 177, 207, 260
Guillen, D
286, 291, 293
Guillory, R
Guillot, I
Guimond, L
Guiton, B
Gu, J
Gu, K 104, 284, 293
Gu, L
Güler, B
Gulizia, S
Gullino, A105
Gulliver, E
Gulsoy, E
Gülver, M
Gunda, N
Gunnæs, A247
Günther, J191
Günyüz, M271
Gunzburger, M
Guo, B
Guo, C
Guo, D
Guo, E
Guo, F 91, 112, 296
Guo, H
231, 249, 292, 293
Guo, J 87, 92, 103
Guo Jiang
Guo, M 218, 223, 247
Guo, Q 100, 232, 246, 268
Guo, S 123, 150, 168, 229
Guo, W 87, 102, 178, 207, 236, 247
Guo, X 87, 153, 189
Guo, Y 110, 214, 284, 294
Guo, Z 285, 290, 306
Guozhi, L
Gupta, A
Gupta, M 183, 237, 292
Gupta, R108, 131, 158, 186, 281,
306, 307
Gupta, S 101, 123, 127, 153, 167, 196,
211, 217, 240, 265, 294, 301
Gupta, V 237, 265, 281, 290, 306
Gurao, N
Gurgen, A
Gurnani, L
Gur, S

Gursoy, D
Gürsoy, D
Gussev, M 129, 161, 180, 183, 239
Guss, G
Gussone, J
Gustmann, T
Gu, T165
Gutfleisch, O164, 249
Gutian, M267
Gutiérrez, M
Guven, O
Gu, W
Gu, X
Guyer, J
Gu, Z
Guziewski, M143, 153
Guzman, D253
Gwalani, B 101, 102, 123, 178, 274, 282
Gylver, S196

H

Ha, C262
Hachiuma, H138, 296
Hackett, G152
Hackett, M160
Hack, J
Hack, K
Hacopian, E
Haden, C
Hadjipanayis, G112, 136
Haga, K
Haga, Y241
Haghayeghi, R228
Haghgouyan, B
Haghpanah, B
Haghshenas, M
Hagmann, J118
Hague, R 111, 212, 219, 222
Hahn, E 99, 147, 174, 234, 272
Hahn, H 216, 237, 246
Haiber, D
Haifei, X234
Haines, K
Haitao, J
Hájek, M
Hakim, I
Hakim, I
Håkonsen, A254
Håkonsen, A
Håkonsen, A
Håkonsen, A
Håkonsen, A .254 Hald, J .107 Hale, C .150 Hale, L .277 Hales, J .110
Håkonsen, A
Håkonsen, A .254 Hald, J .107 Hale, C .150 Hale, L .277 Hales, J .110
Håkonsen, A .254 Hald, J .107 Hale, C .150 Hale, L .277 Hales, J .110 Halet, J .92 Haley, B .253, 254

Halli, P259
Hamdy, A253
Hamidy, A
Hamerton, R
Hamid, M
Hamilton, B120
Hammel, J
Hammitt-Schiltz, J
Hamouda, A
Hamoush, S157
Hamuyuni, J
Han, C
Hancock, M156
Handwerker, C137, 250
Han, G 95, 113, 116, 224, 255, 299
Han, H
Han, I
Hanisch, R253
Han, J106, 112, 136, 164, 181,
216, 247, 266
Han, K108, 254
Hanlon, T100
Han, R 202, 225, 277
Han, S 164, 264, 300
Hansen, G
Hansen, L 111, 155, 171
Hansen, N
Hanson, L
Hanson, W161
Hansson, C161
Hanusova, P
Hanwell, M
Han, X
Han, Y
Han, Z
Hao, N
Hao, S 158, 160, 267
Hao, Y
Haque, A
Haque, N
Harada, H
Harahap, R
Hara, T
Harcuba, P141, 184, 243, 265,
267, 278, 306
Harder, R
Harding, I
Hardwick, N
242, 250
Hardy, M98, 99, 119, 146, 156,
173, 205, 208, 233, 289
Hargather, C 102, 118, 124, 150, 178,
201, 209, 238, 261, 301, 304
Harhash, M107
Hariharan, A

Harimkar, S108, 131, 158, 186, 224,
271, 297, 303, 307
Harjo, S
Harlow, D 134, 176, 194
Harmer, M 106, 234, 241
Harp, J
Harrison D 105
Harrigan, B
Harrigan, W 105, 127, 154, 182, 305
Harris, A
Harrison, R
Harris, W
Harr, M148
Hart, A242, 286
Harte, A
Harter, J
Hart, G128
Hart, J 191, 203, 212
Hartley, W
Hartlieb, M254
Hartmann, J
Hartwig, K 109, 130, 188, 267, 282, 292
Harvey, C
Ha, S
Hasannaeimi, V
Hasan, S
Hasegawa, Y154
Hashiguchi, D183
Hashimoto, T 195, 281, 296
Haskins, J95, 272
Haslam, J
Hassan, K
Hassan, M
Hatakeyama, T152
Hatano, K241
Hatcher, N
Hatem, T 154, 245, 253, 268, 299
Hathwar, R100
Hattar, K 87, 100, 106, 130, 139, 156,
160, 175, 176, 187, 189, 216,
218, 241, 245, 266
Hattori, K154
Hatzoglou, C168
Haubrich, J
Haupt, M90
Haus, S
Haverkamp, R
Hawkins, C
Hawk, J 101, 102, 119, 143, 174, 223,
235, 236, 260, 289
Haxhiaj, A
Haxhiaj, B157
Hayamizu, Y140
Hayat, M132
Hayes, B134
Нау, Ј

Hayne, M 266, 280, 307
Haynes, J
Hayrettin, C
Hayun, S
Hazan, J
Hazeli, K
Hazell, P 117, 205, 298
He, A195
Hearn, W225
Heaume, A
He, B164, 195
Hebert, R 92, 190, 286
He, C
Hecht, U
Heckman, N176
Hector Jr, L
Hector, L
Hedstrom, M
Hedström, P
Heer, B
Hefferan, C128, 156
Hegazi, H154
Hegedus, M
Hegedüs, M
Heigel, J163
Heilmaier, M108, 130, 187, 208,
274, 303
Heim, F
Heinonen, O
Heinz, H
He, L 88, 110, 120, 133, 134, 152, 160,
161, 190, 219, 285, 300
Hell, J 107, 111, 112
Hellman, O145, 238
He, M116, 121, 142, 239, 271, 299
Hemker, K 120, 134, 146, 188, 286
Henager, C
Henderson, H 196, 247, 249, 302
Henein, H 158, 224, 225
Hennig, R95, 96, 97, 102, 117, 118,
124, 138, 143, 144, 145, 150, 171,
172, 178, 201, 203, 209, 230, 231,
232, 238, 257, 258, 273, 300, 301
Henry, H106, 217
Henry, J
Heo, D
Heo, H
Heo, M
Heo, S
Heo, T231
He, Q211
Herbert, J141, 169
Herbig, M
Heremans, J
Herlach, D
Herman, G

Hermann, R
Hernadez Santiago, C
Hernandez, A
Hernández C., L
Hernandez Escobar, D
Hernández-Paredes, J
Hernandez-Rodríguez, M
Hernandez, V
Herper, H
Herrema, J
Herrmann, A
Herrmann, L
Hertzman, S
Herwig, P154
He, S
Hess, B
Hesterberg, J
Heurtebise, V
Heuser, B
He, W 160, 285, 301, 302
He, X
He, Y 132, 182, 214
Heyen, M
Hibbert, K
Hickel, T90, 111, 124, 136, 145
146, 164, 192, 201, 221
237, 249, 272, 295, 299
TT: 1 T 150 100 000
Hickey, J 159, 192, 228
Hickey, J 159, 192, 228 Hickman, J
Hickman, J245
Hickman, J
Hickman, J
Hickman, J. .245 Hidayat, F .269 Hidebrando, E. .298 Higgins, W .279
Hickman, J. .245 Hidayat, F .265 Hidebrando, E .298 Higgins, W .275 Hightower, N .104
Hickman, J. .245 Hidayat, F .265 Hidebrando, E .298 Higgins, W .275 Hightower, N .104 Hight Walker, A .118, 258
Hickman, J. .245 Hidayat, F .269 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184
Hickman, J. .245 Hidayat, F .269 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252
Hickman, J. .245 Hidayat, F .269 Hidebrando, E .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158
Hickman, J. .245 Hidayat, F .269 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122
Hickman, J. .245 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220
Hickman, J. .245 Hidayat, F .266 Hidebrando, E .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hill, S .210
Hickman, J. .245 Hidayat, F .265 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hill, S .210 Hills, C .265
Hickman, J. .245 Hidayat, F .265 Hidebrando, E. .298 Higgins, W .275 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .117
Hickman, J. .244 Hidayat, F .269 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .117 Hill, T .155
Hickman, J. .244 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .117 Hills, G .125 Hillas, G .143
Hickman, J. .245 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hills, G .265 Hilly, R .158, 209
Hickman, J. .244 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hills, G .265 Hilly, R .155 Hilly, R .158
Hickman, J. .244 Hidayat, F .265 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hills, G .265 Hilly, R .265 Hilly, R .265 Hilly, R .206 Hilly, R .210 Hilly, R .220 Hindy, M .253, 299
Hickman, J. .244 Hidayat, F .265 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .118, 258 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hills, S .117 Hilly, R .158 Hilly, R .158 Hilty, R .158, 209 Hin, C .110, 262 Hindy, M .253, 299 Hinkle, A .132
Hickman, J. .244 Hidayat, F .269 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hills, C .265 Hilly, R .162, 220 Hill, S .210 Hill, R .162, 220 Hill, R .162, 220 Hill, S .210 Hilly, R .210 Hill
Hickman, J. .244 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .184 Hilck, A .252 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hills, S .117 Hilly, R .158 Hilly, R .110, 262 Hindy, M .253, 299 Hinkle, A .132 Hinterleitner, B .195 Hintsala, E .212
Hickman, J. .244 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .118, 258 Hilderman, G .158 Hilderman, G .158 Hill, M .162, 220 Hill, S .210 Hills, S .210 Hills, G .265 Hilly, R .162, 220 Hill, M .162, 220 Hill, R .162, 220 Hill, R .162, 220 Hill, S .210 Hills, S .210 Hills, S .211 Hills, S .212 Hill, T .155 Hilmas, G .110, 262 Hin, C .110, 262 Hindy, M .253, 299 Hinkle, A .132 Hinterleitner, B .195 Hintsala, E .212 Hirai, N .115
Hickman, J. .244 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .118, 258 Hilderman, G .158 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hilly, R .265 Hilly, R .210 Hilly, R .211 Hilly, R .212 Hilly, R .213 Hilly, R .158 Hilly, R .158 Hilly, R .122 Hindy, M .253, 299 Hinkle, A .132 Hinterleitner, B .195 Hintsala, E .212 Hirai, N .115
Hickman, J. .244 Hidayat, F .265 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .104 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hills, S .211 Hill, M .162, 220 Hills, S .210 Hills, C .265 Hills, S .117 Hill, S .210 Hills, S .117 Hill, T .152 Hilmas, G .110 Hilty, R .158, 209 Hin, C .110, 262 Hindy, M .253, 299 Hinkle, A .132 Hinterleitner, B .195 Hintsala, E .212 Hirai, N .116 Hirawi, T .169 Hirami, S .154
Hickman, J. .244 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .118, 258 Hilderman, G .158 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hills, S .210 Hills, S .210 Hilly, R .265 Hilly, R .210 Hilly, R .211 Hilly, R .212 Hilly, R .213 Hilly, R .158 Hilly, R .158 Hilly, R .122 Hindy, M .253, 299 Hinkle, A .132 Hinterleitner, B .195 Hintsala, E .212 Hirai, N .115
Hickman, J. .244 Hidayat, F .265 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .104 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hill, S .210 Hills, S .210 Hills, S .211 Hilly, R .265 Hilly, R .210 Hilly, R .211 Hilly, R .212 Hilly, R .158 Hilly, R .158 Hilly, R .153 Hilly, R .153 Hilly, R .153 Hilly, R .153 Hinterleitner, B
Hickman, J. .244 Hidayat, F .266 Hidebrando, E. .298 Higgins, W .279 Hightower, N. .104 Hight Walker, A .118, 258 Hilairet, N .104 Hilderman, G .158 Hilgendorff, P .122 Hill, M .162, 220 Hill, S .210 Hills, S .210 Hills, S .211 Hilly, R .265 Hilly, R .210 Hills, S .210 Hilly, R .265 Hilly, R .210 Hilly, R .210 Hilly, R .210 Hilly, R .211 Hilly, R .212 Hilly, R .212 Hilly, R .158 Hilty, R .158 Hilty, R .158 Hindy, M .253, 299 Hinkle, A .132 Hinterleitner, B .194 Hiraki, T .164 Hiraki, T .164

Hire Math, V
Hirsch, M
Hirst, C
Hirt, G
Hirt, G
Hirzberger, D
Hitt, A
Hoagland, R
Hoar, E
Hobbs, D
Hochhalter, J 100, 122, 149, 176, 179, 268, 291 Höck, M
179, 268, 291 Höck, M
Hodder, K
Hodder, K
176, 279 Hodge, N
Hodge, N
Hodges, J
Hodges, J
Hodgson, P
Usasha D 102
Hoeche, D103
Hoelzer, D
Hoffman, A 226, 246, 282
Hoffmann, K
Hoffman, R100, 122
Hofman, G97, 110
Hofmann, D 105, 141, 154, 199, 219
Hofmeister, C94, 137
Hogan, J116
Hoggan, R134
Hoggard, G
Höglund, L
Hohenwarter, A 105, 130, 150, 188, 266
Hojjatzadeh, S268
Но, К
Holcombe, E124, 167
Holcomb, G
Holesinger, T161
Holesinger, T161 Holland, K259
Holesinger, T
Holland, S

Hong, G113
Hong, H 127, 182, 276
Hong, J126, 267
Hongming, L
Hong, Q
Hong, S 92, 101, 113, 138, 166, 195,
237, 244, 271, 296, 300, 303, 304
Hong, T
Hong, W91, 112, 137, 165, 193,
222, 250, 296
Honma, S115
Hono, K 112, 140, 179, 180
Hood, Z
Hook, M
Hooks, D
Hooper, P
Hooshmand, M145
Hope, A
Hopkins, P
Horák, L
Horita, T
Horita, Z 109, 188, 246, 266
Horky, J
Hornbuckle, C
Horn, S
Horsfield, A
Horstemeyer, M138, 166, 194, 198,
223, 231, 251, 268, 289
Horst, F
226, 236, 253, 270, 291, 292, 296
Horváth, K
Hosemann, P87, 102, 110, 133, 140,
152, 160, 189, 190, 212,
218, 263, 276, 285
Hossain, R129
Hosseini Abbandanak, S 305, 307
Hosseini, S
Hosseini, Z175
Hosseinpour, A265
Hosseinzadeh, A105
Hötzer, J172, 177, 207, 236, 260,
274, 302
Hou, G
Hou, P 121, 248, 282
Houser, C
220, 247, 268, 285
Houshyar, S
Hou, W
Hou, X
Hou, X
Hou, Y
Hou, Y
Hou, Y

Howarter, J
233, 259, 273, 290, 291
Howell, R
Howells, A
Howes, J233
Hoyt, J
Hoziefa, W
Hrabe, N 88, 134, 135, 162, 191, 286
Hrizo, C116
Hryn, J150
Hsiao, A
Hsieh, H138
Hsin Jay, W138
Hsiong, R168
Hsu, K
Hsu, P294
Hsu, W 100, 214, 283, 291
Hsu, Y
Hu, A 123, 236, 265, 278, 282
Huang, A
Huang, B
Huang, C
Huang, D
Huang, E101, 123, 140, 149, 178,
207, 208, 236, 237, 260, 261,
274, 275, 279, 286, 303
Huang, G
Huang, J250
Huang, L 221, 304, 305
Huang, M 90, 111, 112, 136, 164,
192, 221, 249, 295
Huang, P
Huang, Q
Huang, R207
Huang, S 100, 155, 186, 274, 286
Huang, T 140, 207, 217, 292
Huang, W 93, 229, 279, 285
Huang, X 132, 144, 163, 174, 217, 292
Huang, Y 95, 113, 116, 157, 180, 224,
226, 299, 301, 304
Huang, Z 138, 226, 285, 292, 295
Huasai, L
Hu, B
Hu, C
Hufnagel, T192, 227
Hughes, D
Hughes, T
Ни, Н
Huhn, J
Huimin, L
Huin, T192
Hui, W 136, 256, 298
Hui, X 208, 227, 238, 304
Hui Yi, S
Hu, J
219, 226, 265, 290

Hu, K 136, 160, 202, 218
Hu, L
Hulan, T116
Húlan, T255
Huleux, V
Hulse, R
Hu, M
Humberson, J
Hummelt, E124
Humphreys, N
Hundley, J
Hung, C
Hung, F
Hung, H
Hung, W
Hunn, J
Hunter, A 143, 184, 194, 223, 224
Hunter, L
Hunter, S
Hunyadi Murph, S188
Hu, P
Hupa, L 181, 241, 259
Hu, Q196, 201
Hurley, M158
Hur, S
Hu, S 170, 218, 262
Husar, R129
Huskins-Retzlaff, E88
Hussain, S
Hussein, M118
Hu, T
Hu, X 133, 167, 240, 245, 285
Hu, Y94, 130, 202, 232, 238, 248
Hu, Z
Hwang, B
Hwang, D
Hwang, I
-
Hwang, J
116, 127, 133, 142, 154, 160, 170,
182, 189, 200, 213, 218, 228, 229,
237, 247, 255, 256, 267, 270, 271,
283, 284, 297, 305
Hwang, K127
Hwang, S
Hyde, C159
Hyland, M167
Hysen, T
Hyuga, H
т
I
Iacobescu, R
Iadicola, M
Iams, A190
Iannitti, G 99, 202, 205
Ibitoye, B

Ibrahim, H.		 		 .272
Ibrahim, Y .		 		 .253
Ibru, T		 		 .104
Idrees, M				
Idrobo, J				
Ignacio, M.				
Iikubo, S				
Ikeda, M				
Ikeda, T				
Ikeda, Y				
Ikegai, H				
Ikeo, N				
Ikhmayies, S				
			200,	
			256,	
			, 297,	
Ikoma, Y				
Ikumapayi, (
Ilevbare, G.				
Illana, A				
Illsley, H				
Iloeje, C				
Ilya, L				
Imam, M				
Imholte, D .				
Im, J				
Im, S				
Inal, K				
Inazu, N				
Indacochea,				
Indeck, J				
Inden, G				
Injeti, Y				
Innocentia, (
Inoue, A				
Inoue, S				
Instasi, S				
Inui, H				
Ipatov, M				
-				
Ipek, S Iplikçioglu, A				
Iqbal, K				
Iqbal, Z				
Iraizoz, M				
Ireland, M .				
Irfan, S				
Irimata, L				
Irrinki, H				
Isaacs, H				
Isheim, D				
Ishiguro, Y.				
Ishikawa, N				
Ishizawa, S.				
Isiksaçan, C				
Iskakov, A .				
Islamgaliev.	К			246

Islam, M 117, 120, 138, 298
Islas Hernández, M
Ismonov, S
Issa, M
Itakura, M
Ito, H
Itoh, G
Ivancic, R
Ivanisenko, J
Ivankovic, A167
Ivanoff, T
Ivanov, D
Ivanov, E
Ivano, D
Ivey, D
Iwamoto, F
Iwamoto, K
Iyer, A
Iyyer, N
Izadi, E264, 267
Izui, H154

J

Jaansalu, K	108, 130
Jablonski, P	
Jacimovic, J	
Jackson, B	
Jackson, J	
Jackson, M	
Jackson, T	
Jacobsen, C	
Jacobson, D	
Jacobson, N	
Jacobs, R	
Jacques, C	
Jacques, V	
Jafarpoorchekap, H	
Jafarzadeh, H	
Jafek, A	
Jafek, B	
Jagdale, V	
Jägle, E	139, 226, 251, 269
Jahed, H	176, 276, 302
Jahrsengene, G	
Jain, A	
Jain, J	
Jain, M	106, 192
Jain, N	
Jain, S	
Jaiswal, Y	
Jakes, J	
Jalani, G	
Jalilvand, G	
Jamalian, M	
Jamshidinia, M	

Jana, S	103
Janecek, M 141, 265, 267, 278,	306
Jang, C161,	276
Jang, D 159, 187, 216,	
Jang, G	303
Jang, J 213, 229,	
Jang, M	
Jang, S	
Janis, D	
Janish, M	
Janis, J	
Janney, D	
Janotova, I	
Janovská, M	
Janssen, J	
Janssen, M	
Janzen, A	
Jao, Y	
Jaquemetton, L	
Jaques, B	
Jaques, D	
Jaramillo, D	
Jared, B 89, 163,	
Jaroni, B	
Jarry, P	
Jarvis, D	
Jarvis, T	
Jarzabek, D127,	
Jasiuk, I	
Jassim, A148,	
Jaster, M	
Jasthi, B198,	
Javadi, A159,	
Javaheri, I	
Javaheri, V	
Javaid, A	
Javanbakht, M	269
Jawaharram, G	266
Jayalakshmi, S	182
Jayaraman, S	
Jayaraman, T	255
Jayawardana, W	277
Jeffs, S	286
Jelis, E	268
Jelliss, P	277
Jena, S	
Jena, T	
Jensen, B112,	
Jensen, J	
Jensen, W	
Jeong, D	
Jeong, H	
Jeon, J	
Jerred, N97,	
Jesus, P	
Jesus Sánchez Rodríguez, R	
Jesus Janenez Rounguez, R	447

Jiang, J. 125, 141, 146, 152, 169, 199, Johnson, W. 141 227, 254, 270, 271, 283, 297 Johns, R. 189 Jiang, L. .184, 188 Jokilaakso, A. 259 Jiang, M. .164 Jokisaari, A. 273 Jiang, Q. 95, 143, 171, 201, 229, 256, Jolly, B. 263 272, 299 Jolly, M. .141, 142, 175, 260 Jiang, S. .100, 287 Jo, M. .136 Jiang, T. .87, 91, 109, 133, 142, 160, Jonas, J. .221, 243 189, 196, 218, 247, 248, 256, Jonas, R. .139 267, 273, 283, 284, 285, 299 Jones, D. .135, 147 Jiang, W. .160, 189, 202, 221, 233, Jones, J. .140, 159, 186 267, 276 Jiang, X. .130, 133, 249, 255, 272, 299 Jones, K. .163 Jiang, Y. .175, 262 Jones, N. .120, 151, 179, 183 Jiang, Z. .246 Jones, R. .240 Jones, R. .240 Jian, J. .130, 133, 249, 255, 272, 299 Jones, R. .240 Jian, J. .120, 151, 179, 183 Jiang, Z. .246 Jones, R. .240 Jones, R. .240 Jones, R. <td< th=""><th>Jha, R97, 144</th><th>208, 253</th></td<>	Jha, R97, 144	208, 253
jian, F.	Jha, S 100, 122, 179, 304	Johnson, F 90, 112, 136, 164, 193,
Jiang, C.	Jia, B	
Jiang, F.	Jia, F	Johnson, G
Jiang, H.	Jiang, C	Johnson, K 134, 163, 200, 203, 219, 220
Jiang, J. 125, 141, 146, 152, 169, 199, Johns, R. 141 227, 254, 270, 271, 283, 297 Johns, R. 184 Jiang, L. 184, 188 Jokiaakso, A. 259 Jiang, Q. 95, 143, 171, 201, 229, 256, Jolly, B. 263 Jiang, S. 100, 287 Jo, M. 141, 142, 175, 260 Jiang, T. 87, 91, 109, 133, 142, 160, Jonas, R. 136 Jiang, W. 160, 189, 202, 221, 233, Jones, D. 135, 147 Jiang, X. 130, 133, 249, 255, 272, 299 Jones, N. 120, 151, 179, 183 Jiang, Z. 160, 189, 202, 221, 233, Jones, N. 120, 151, 179, 183 Jiang, Z. 160, 189, 202, 221, 233 Jones, N. 120, 151, 179, 183 Jiang, Z. 160, 189, 202, 221, 233 Jones, N. 120, 151, 179, 183 Jiang, Z. 246 Jones, N. 120, 151, 179, 183 Jiang, Z. 246 Jones, N. 120, 151, 179, 183 Jiao, Y. 251 Jones, N. 120, 151, 179, 183 Jiao, Z. 87, 110, 121, 210 Joni, B. 150 Jia, X. 147 Jonsson, P. 104	Jiang, F157	Johnson, M107
227, 254, 270, 271, 283, 297 Johns, R.	Jiang, H	Johnson, O 128, 172, 251, 273
Jiang, L.	Jiang, J 125, 141, 146, 152, 169, 199,	Johnson, W
$\begin{split} & \text{Jiang, M} \dots \dots 164 & \text{Jokisaari, A} \dots 273 \\ & \text{Jang, Q} \dots 95, 143, 171, 201, 229, 256, \\ & \text{Jolly, B} \dots 141, 142, 175, 260 \\ & \text{Jiang, S} \dots 100, 287 & \text{Jo, M} \dots 141, 142, 175, 260 \\ & \text{Jiang, T} \dots 87, 91, 109, 133, 142, 160, \\ & \text{Jonas, R} \dots 139 \\ & 267, 273, 283, 284, 285, 299 & \text{Jones, D} \dots 135, 147 \\ & \text{Jiang, W} \dots 160, 189, 202, 221, 233, \\ & \text{Jones, J} \dots 140, 159, 186 \\ & 267, 276 & \text{Jones, K} \dots 120, 151, 179, 183 \\ & \text{Jiang, X} \dots 130, 133, 249, 255, 272, 299 & \text{Jones, N} \dots 120, 151, 179, 183 \\ & \text{Jiang, X} \dots 130, 133, 249, 255, 272, 299 & \text{Jones, N} \dots 120, 151, 179, 183 \\ & \text{Jiang, Z} \dots 175, 262 & \text{Jones, R} \dots 123, 208, 233 \\ & \text{Jiang, Z} \dots 246 & \text{Jones, R} \dots 2239 \\ & \text{Jiang, Y} \dots 175, 262 & \text{Jones, R} \dots 240 \\ & \text{Jian, J} \dots 157 & \text{Jones, R} \dots 2239 \\ & \text{Jiao, Y} \dots 296 & \text{Jonsson, P} \dots 104 \\ & \text{Jiax, R} \dots 101, 121, 210 & \text{Joni, B} \dots 150 \\ & \text{Jiax, R} \dots 218, 249, 284 & \text{Jonsson, P} \dots 104, 268 \\ & \text{Jia, Y} \dots 218, 249, 284 & \text{Jonsson, P} \dots 1042, 268 \\ & \text{Jia, Y} \dots 2267 & \text{Joosson, P} \dots 1042, 268 \\ & \text{Jia, P} \dots 2276 & \text{Jooster, J} \dots 168 \\ & \text{Jimenez Correa, M} \dots 290 & \text{Jooster, J} \dots 168 \\ & \text{Jimenez Correa, M} \dots 290 & \text{Jooster, J} \dots 168 \\ & \text{Jin, H} \dots 299 & \text{Jooster, S} \dots 235 \\ & \text{Jin, K} \dots 101, 133, 150, 207, 218, & \text{Josters, S} \dots 242, 252, 278, 279, 306 \\ & \text{Jin, N} \dots 295, 96, 112, 127, 171, 235, 294 & \text{Jouter, J} \dots 103, 125, 180, 239, 252, 216, 104, 1163, 104, 1172 & 1054, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1164, 1054, 1166, 1164, 1164, 1164, 1166, 1164, 1164, 1164, 1166, 1164, 1164, 1$	227, 254, 270, 271, 283, 297	Johns, R
$\begin{split} & \text{Jiang, M} \dots \dots 164 & \text{Jokisaari, A} \dots 273 \\ & \text{Jang, Q} \dots 95, 143, 171, 201, 229, 256, \\ & \text{Jolly, B} \dots 141, 142, 175, 260 \\ & \text{Jiang, S} \dots 100, 287 & \text{Jo, M} \dots 141, 142, 175, 260 \\ & \text{Jiang, T} \dots 87, 91, 109, 133, 142, 160, \\ & \text{Jonas, R} \dots 139 \\ & 267, 273, 283, 284, 285, 299 & \text{Jones, D} \dots 135, 147 \\ & \text{Jiang, W} \dots 160, 189, 202, 221, 233, \\ & \text{Jones, J} \dots 140, 159, 186 \\ & 267, 276 & \text{Jones, K} \dots 120, 151, 179, 183 \\ & \text{Jiang, X} \dots 130, 133, 249, 255, 272, 299 & \text{Jones, N} \dots 120, 151, 179, 183 \\ & \text{Jiang, X} \dots 130, 133, 249, 255, 272, 299 & \text{Jones, N} \dots 120, 151, 179, 183 \\ & \text{Jiang, Z} \dots 175, 262 & \text{Jones, R} \dots 123, 208, 233 \\ & \text{Jiang, Z} \dots 246 & \text{Jones, R} \dots 2239 \\ & \text{Jiang, Y} \dots 175, 262 & \text{Jones, R} \dots 240 \\ & \text{Jian, J} \dots 157 & \text{Jones, R} \dots 2239 \\ & \text{Jiao, Y} \dots 296 & \text{Jonsson, P} \dots 104 \\ & \text{Jiax, R} \dots 101, 121, 210 & \text{Joni, B} \dots 150 \\ & \text{Jiax, R} \dots 218, 249, 284 & \text{Jonsson, P} \dots 104, 268 \\ & \text{Jia, Y} \dots 218, 249, 284 & \text{Jonsson, P} \dots 1042, 268 \\ & \text{Jia, Y} \dots 2267 & \text{Joosson, P} \dots 1042, 268 \\ & \text{Jia, P} \dots 2276 & \text{Jooster, J} \dots 168 \\ & \text{Jimenez Correa, M} \dots 290 & \text{Jooster, J} \dots 168 \\ & \text{Jimenez Correa, M} \dots 290 & \text{Jooster, J} \dots 168 \\ & \text{Jin, H} \dots 299 & \text{Jooster, S} \dots 235 \\ & \text{Jin, K} \dots 101, 133, 150, 207, 218, & \text{Josters, S} \dots 242, 252, 278, 279, 306 \\ & \text{Jin, N} \dots 295, 96, 112, 127, 171, 235, 294 & \text{Jouter, J} \dots 103, 125, 180, 239, 252, 216, 104, 1163, 104, 1172 & 1054, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1054, 1164, 1164, 1054, 1166, 1164, 1164, 1164, 1166, 1164, 1164, 1164, 1166, 1164, 1164, 1$		Jokilaakso, A
Jiang, Q. 95, 143, 171, 201, 229, 256, Jolly, B.		Jokisaari, A
272, 299 Jolly, M. 141, 142, 175, 260 Jiang, S. .100, 287 Jo, M. .136 Jiang, T. .87, 91, 109, 133, 142, 160, Jonas, R. .139 267, 273, 283, 284, 285, 299 Jones, D. .135, 147 Jiang, W. .160, 189, 202, 221, 233, Jones, M. .120, 151, 179, 183 Jiang, X. .130, 133, 249, 255, 272, 299 Jones, N. .123, 208, 233 Jiang, Z. .246 Jones, N. .123, 208, 233 Jian, J. .175, 262 Jones, N. .123, 208, 233 Jian, Z. .246 Jones, R. .240 Jian, Y. .251 Jones, T. .239 Jiao, X. .171 Jons, J. .230 Jia, X. .147 Jonsson, J. .230 Jia, X. .147 Jonsson, P. .104 Jiaxin, L. .267 Jonsson, T. .275 Jidong, L. .276 Joo, S. .155 Jimack, P. .274 Joosten, J. .68 Jiay, Y. .218, 249, 248 Jonsson, T. .204 Jin, K. .205		
Jiang, S.		•
Jiang, T. 87, 91, 109, 133, 142, 160, 189, 196, 218, 247, 248, 256, 267, 273, 283, 284, 285, 299 Jonas, R.	Jiang, S	
189, 196, 218, 247, 248, 256, jonas, R		
267, 273, 283, 284, 285, 299 Jones, D		
Jiang, W.		-
267, 276 Jones, K		
Jiang, X 130, 133, 249, 255, 272, 299 Jones, M		
Jiang, Y <td>Jiang, X 130, 133, 249, 255, 272, 299</td> <td></td>	Jiang, X 130, 133, 249, 255, 272, 299	
Jiang, Z. 246 Jones, R. 240 Jian, J. 157 Jones, T. 239 Jiao, Y. 296 Jong Bong, H. 171 Jiao, Z. 87, 110, 121, 210 Joni, B. 150 Jia, Q. 251 Jonson, J. 230 Jia, X. 147 Jonsson, P. 104 Jiaxin, L. 267 Jönsson, P. 104 Jiax, Y. 218, 249, 284 Jonsson, T. 275 Jidong, L. 287 Joo, M. 305 Jie, W. 276 Joo, S. 155 Jimack, P. 274 Joosten, J. 168 Jimenez Correa, M. 299 Joot, W. 204 Jin, T. 255 Jordon, B. 235 Jin, K. 101, 133, 150, 207, 218, Jorgensen, D. 174 228, 263, 285 Josefsson, S. 192 Jin, N. 172 Joshi, K. 246 Jin, X. 90, 230 Joshi, V. 103, 125, 180, 239, 252, 252 Jinxia, M. 273 262, 276, 280, 292 Jin, Y. 96, 23		
Jian, J. 157 Jones, T. 239 Jiao, Y. 296 Jong Bong, H. 171 Jiao, Z. 87, 110, 121, 210 Joni, B. 150 Jia, Q. 251 Jonson, J. 230 Jia, X. 147 Jonsson, P. 104 Jiaxin, L 267 Jönsson, P. 104 Jia, Y. 218, 249, 284 Jonsson, T. 275 Jidong, L. 287 Joo, M. 305 Jie, W. 276 Joo, S. 155 Jimack, P. 274 Joosten, J. 168 Jimenez Correa, M. 290 Joost, W. 204 Jing, T. 255 Jordon, B. 235 Jin, K. 101, 133, 150, 207, 218, Jorgensen, D. 174 228, 263, 285 Josefson, S. 192 Jin, M. 174 210, N. 122, 197, 214 Joshi, K. 246 Jin, S. 122, 197, 214 Joshi, S. 165, 246 Jin, X. 90, 230 Joshi, V. 103, 125, 180, 239, 252, Jin, X. 90, 239, 252, 288 Juang, J. </td <td></td> <td></td>		
Jiao, Y.		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Jia, Q. 251 Jonson, J. 230 Jia, X. 147 Jonsson, P. 104 Jaxin, L 267 Jönsson, P. 104 Jiaxin, L 267 Jönsson, P. 104, 268 Jia, Y. 218, 249, 284 Jonsson, T. 275 Jidong, L. 287 Joo, M. 305 Jie, W. 274 Joosten, J. 168 Jimenez Correa, M. 290 Joost, W. 204 Jing, T. 255 Jordon, B. 235 Jin, H. 299 Jordon, J. 88, 192, 212 Jin, K. 101, 133, 150, 207, 218, Jorgensen, D. 174 228, 263, 285 Josefsson, S. 192 Jin, M. 172 Joshi, K. 246 Jin, P. 261 Joshi, S. 165, 246 Jin, X. 102, 197, 214 Joshi, S. 165, 246 Jin, X. 2030 Joshi, V. 103, 125, 180, 239, 252, 250 Jinxia, M. 273 262, 276, 280, 292 Jin, Z. Jin, Z. 196, 239, 252, 288 Juang, J. 193 <t< td=""><td>-</td><td></td></t<>	-	
Jiaxin, L 267 Jönsson, P 104, 268 Jia, Y 218, 249, 284 Jonsson, T 275 Jidong, L 287 Joo, M 305 Jie, W 276 Joo, S 155 Jimack, P 274 Joosten, J 168 Jimenez Correa, M 290 Joost, W 204 Jing, T 255 Jordon, B 235 Jin, H 299 Jordon, J 88, 192, 212 Jin, K 101, 133, 150, 207, 218, Jorgensen, D 174 228, 263, 285 Josefsson, S 192 Jin, N 172 Joshi, K 244, 265, 278, 279, 306 Jin, S 122, 197, 214 Joshi, S 165, 246 Jin, X 90, 230 Joshi, V 103, 125, 180, 239, 252, Jinxia, M 273 262, 276, 280, 292 101, 172, 202 Jin, Y 196, 239, 252, 288 Juang, J 193 13, 14, 202 Ji, X 196, 239, 252, 288 Juang, J 193 133 Ji, X 196, 239, 252, 288 Juang, J 193 133 Ji, X </td <td>Jia, Q251</td> <td></td>	Jia, Q251	
Jia, Y. 218, 249, 284 Jonsson, T. 275 Jidong, L. 287 Joo, M. 305 Jie, W. 276 Joo, S. 155 Jimack, P. 274 Joosten, J. 168 Jimenez Correa, M. 290 Joost, W. 204 Jing, T. 255 Jordon, B. 235 Jin, H. 299 Jordon, J. 88, 192, 212 Jin, K. .101, 133, 150, 207, 218, Jorgensen, D. .174 228, 263, 285 Josefsson, S. .192 Jin, M. .172 Joshi, K. .246 Jin, S. .122, 197, 214 Joshi, S. .165, 246 Jin, X. .90, 230 Joshi, V. .103, 125, 180, 239, 252, Jinxia, M. .273 262, 276, 280, 292 Jourdan, T. .172, 202 Jin, Y. .95, 96, 112, 127, 171, 235, 294 Jourdan, T. .172, 202 Jia, S. .196, 239, 252, 288 Juarg, J. .193 Ji, X. .196, 239, 252, 288 Juarg, J. .193 Juar, P. .118 Ji, Y. .196, 239, 252, 288 Juaristi, I. .303<	Jia, X147	Jonsson, P104
Jidong, L.	Jiaxin, L	Jönsson, P104, 268
Jie, W. .276 Joo, S. .155 Jimack, P. .274 Joosten, J. .168 Jimenez Correa, M. .290 Joost, W. .204 Jing, T. .255 Jordon, B. .235 Jin, H. .299 Jordon, J. .88, 192, 212 Jin, K. .101, 133, 150, 207, 218, Jorgensen, D. .174 228, 263, 285 Josefsson, S. .192 Jin, M. .172 Joshi, K. .246 Jin, P. .261 Joshi, K. .246 Jin, S. .122, 197, 214 Joshi, S. .165, 246 Jin, X. .90, 230 Joshi, V. .103, 125, 180, 239, 252, Jinxia, M. .273 .262, 276, 280, 292 .213, 127, 171, 235, 294 Jouedra, T. .172, 202 Jourdan, T. .172, 202 Ji, S. .196, 239, 252, 288 Juang, J. .193 Ji, X. .277 Juan, P. .118 Ji, Y. .167, 178 Juárez, J. .299 Jiyun, S. .120 Juaristi, I. .303 Jochum, T. .256 <t< td=""><td>Jia, Y</td><td>Jonsson, T</td></t<>	Jia, Y	Jonsson, T
Jimack, P	Jidong, L	Joo, M
Jimenez Correa, M.	Jie, W	Joo, S155
Jing, T.	Jimack, P	Joosten, J168
Jin, H	Jimenez Correa, M290	Joost, W
Jin, K. .101, 133, 150, 207, 218, 228, 263, 285 Jorgensen, D. .174 228, 263, 285 Josefsson, S. .192 Jin, M. .172 Joshi, K. .246 Jin, P. .261 Joshi, P. .244, 265, 278, 279, 306 Jin, S. .122, 197, 214 Joshi, S. .165, 246 Jin, X. .90, 230 Joshi, V. .103, 125, 180, 239, 252, Jinxia, M. .273 262, 276, 280, 292 Jin, Y. .95, 96, 112, 127, 171, 235, 294 Joubert, J. .243, 274 Jin, Z. .90 Jourdan, T. .172, 202 Ji, S. .196, 239, 252, 288 Juang, J. .193 Ji, X. .196, 239, 252, 288 Juang, J. .193 Ji, X. .196, 239, 252, 288 Juang, J. .193 Ji, X. .196, 239, 252, 288 Juang, J. .193 Ji, Y. .167, 178 Juárez, J. .299 Jiyun, S. .100 Juarsti, I. .003 Jochum, T. .168, 214 Juhasz, M. .88 Johal, A. .287 Jund, P. .92, 113, 138, 144, 166,	Jing, T255	
228, 263, 285 Josefsson, S		
Jin, M	Jin, K 101, 133, 150, 207, 218,	
Jin, P261Joshi, P244, 265, 278, 279, 306Jin, S122, 197, 214Joshi, S165, 246Jin, X90, 230Joshi, V103, 125, 180, 239, 252,Jinxia, M273.262, 276, 280, 292Jin, Y95, 96, 112, 127, 171, 235, 294Joubert, J243, 274Jin, Z290Jourdan, T172, 202Ji, S196, 239, 252, 288Juang, J193Ji, X277Juan, P118Ji, Y167, 178Juárez, J299Jiyun, S120Juaristi, I303Jochum, T256Juds, M90Joester, D168, 214Juhasz, M88Johal, A287Jund, P92, 113, 138, 144, 166,Johansson, S100, 122, 179Jung, D303		
Jin, S122, 197, 214Joshi, S		· ·
Jin, X90, 230Joshi, V103, 125, 180, 239, 252,Jinxia, M273.262, 276, 280, 292Jin, Y95, 96, 112, 127, 171, 235, 294Joubert, J243, 274Jin, Z290Jourdan, T172, 202Ji, S196, 239, 252, 288Juang, J193Ji, X277Juan, P118Ji, Y167, 178Juárez, J299Jiyun, S120Juaristi, I303Jochum, T256Juds, M90Joester, D168, 214Juhasz, M88Johal, A287Jund, P92, 113, 138, 144, 166,Johansson, S100, 122, 179Jung, D303		
Jinxia, M.		
Jin, Y95, 96, 112, 127, 171, 235, 294 Joubert, J		
Jin, Z.		
Ji, S 196, 239, 252, 288 Juang, J 193 Ji, X 277 Juan, P 118 Ji, Y 167, 178 Juárez, J 299 Jiyun, S 120 Juaristi, I 303 Jochum, T 256 Juds, M 90 Joester, D 168, 214 Juhasz, M 88 Johal, A 287 Jund, P 92, 113, 138, 144, 166, Johansson, S 147 195, 256, 296 303		
Ji, X		-
Ji, Y .167, 178 Juárez, J .299 Jiyun, S .120 Juaristi, I .303 Jochum, T .256 Juds, M .90 Joers, S .190 Jue, J .103 Joester, D .168, 214 Juhasz, M .88 Johal, A .287 Jund, P .92, 113, 138, 144, 166, Johansson, S .100, 122, 179 Jung, D .303		
Jiyun, S. 120 Juaristi, I. 303 Jochum, T. 256 Juds, M. 90 Joers, S. 190 Jue, J. 103 Joester, D. 168, 214 Juhasz, M. 88 Johal, A. 287 Jund, P. 92, 113, 138, 144, 166, Johansson, S. 100, 122, 179 Jung, D. 303		
Jochum, T	-	
Joers, S	•	
Joester, D		
Johal, A.Jund, P.92, 113, 138, 144, 166,Johansson, S.147195, 256, 296John, R.100, 122, 179Jung, D.303	-	
Johansson, S 195, 256, 296 John, R 100, 122, 179 Jung, D 303		
John, R		
John, S		
	John, S	Jung, J

Johnson, D. 101, 112, 123, 129, 157,

Jha, M..... 107, 129, 157

Jung, S
Jung, Y
Junior, W
Jun, T
Jurkiewicz, B 303, 304, 305
Ju, S157
Juul, N

Κ

Kaban, I
Kabel, J
Kacher, J106, 128, 155, 159, 184,
187, 216, 241, 245
Kachur, S
Kadambi, S
Kad, B174
Kader, M117, 298
Kadkhodaei, S150
Kadota, N
Kaduk, J
Kaefer, S
Kaffash, H160
Kageyama, K94
Kahelin, J
Kainer, K 103, 151, 180, 226, 236, 262
Kainuma, R108
Kaira, C94, 105, 113, 241, 251, 257
Kairy, S
Kaithwas, C
Kajihara, M
Kakegawa, T178
Kakiuchi, R162
Kalaga, K181
Kalapos, T152
Kalappattil, V164
Kalay, E 94, 95, 116, 142, 170, 182,
200, 228, 229, 255, 256,
271, 297, 299
Kalay, I
Kalay, Y
Kale, C 99, 259, 292
Kalentics, N
Kalia, R120
Kalidindi, A
Kalidindi, S 100, 171, 172, 198, 211,
243, 249, 272, 273, 292
Kalkan, A
Kalvala, P
Kalyanaraman, R101
Kamada, K133
Kamado, S179, 180
Kamali, T
Kamath, R
Kamat, R196
Kambampati, S

Kamijo, T	115
Kamikoriyama, Y	
Kamimura, G	
Kamlah M	. 105
Kamlah, M	o, 90
Kammenzind, B118,	
Kammler, D	
Kamphaus, E	.181
Kanatani, T	.296
Kanatzidis, M	.258
Kanayama, S	.214
Kan-Dapaah, K	.226
Kandlikar, S	
Kaneko, N	296
Kaneko, Y	.112
Kanematsu, H	115
Kangas, P	240
Kang, B	101
Kang D	151
Kang, D	240
Kang, J	248
Kang, K 171, 226,	277
Kang, M 300, 302,	
Kang, N	
Kang, S 164, 180, 231,	
Kang, X	
Kannadasan, G	.114
Kannan, S	91
Kan, S	.285
Kantzos, C	
Kanungo, B	
Kao, A	2.60
Kao, C	250
Kaoumi, D 87, 121, 180, 245,	
Kapinos, D	
Kaplan, D	.122
Kapoor, K	
Kapoor, M 106, 187, 208, 235,	
Kappes, B	
Kapp, M105,	188
Kapustina, A	
Karadge, M	.100
Karagadde, S	
Karahan, T	
Karakaya, E	273
Karakaya, I 131, 183, 244, 259,	273
Karaman, I 150, 154, 178, 230,	252
291,	
Karandikar, K	115
	104
Karasev, A	
Karas, M.	
Karasz, E	
Karavolos, A	
Karewar, S	.299
Kargl, F 177, 207,	236
Karhausen, K.	.271
Karkkainen, M116,	139
Karma, A	258

Karnesky, R175
Kar, S 93, 174, 282
Karunarathne, A
Kashaev, N
Kashiwar, A
Kashyap, B
Kashyap, I
Kasprzak, W
Kassen, A 112, 193, 282
Kassen, M
Kassoumeh, S
Kassburnen, 5
Kasturi, H
Kasturi, II
Katinuna, K
Kato, H140
Kato, H
Kato, K
Katti, D
Katti, K
Kattner, U 96, 150, 179, 190, 300
Kattoura, M 176, 204, 290
Katz, M268
Kauffmann, A 108, 274, 303
Kaufman, M123
Kaur, G
Kautz, E252
Kavousi, S
Kawabata, T257
Kawabe, N
Kawagishi, K
Kawaguchi, K132
Kawaji, J
Kawalla, C
Kawamura, Y
Kawanishi, S101, 223
Kawano, S96
Kawarabuki, R255
Kawasaki, J
Kawasaki, M 140, 213, 266, 267
Kawata, M
Kawecki, A
Kaya, S
Kayser, M
Kazemi, H
Kazenii, 11
Keçkeş, L
Kecskes, L
238, 292 Ke, H104
Keicher, D
Keiper, W
Keiser, D 103, 125, 151, 180, 210, 239,
240, 262, 263, 276, 293
Keiser, J
Keist, J137

Ke, J	.279
Ke, L	
Keles, O167,	
Keller, T	220
Kelley, A	209
Kelley, D	
Kellner, M	
Kellogg, F	
Kelly, J	1.10
Kelly, T	
Kelton, K	
Kempf, N	
Kenel, C	
Kenesei, P103, 119, 121, 149,	
155, 161, 204, 227, 271,	
Ken, K	.296
Kennedy, M	160,
189, 218, 247, 267, 283,	284
Keppens, V	164
Kergaye, O	
Kernan, B 89, 212,	
Kernen, B.	
Keshavarz, A	
Keshtgar, A	194
Keskinkilic, E 87, 109, 133, 160,	189
218, 247, 267, 283,	
Kesler, M	
Keslel, Wi	202
Ketkaew, J	
Keum, D	
Key, J	
Khachaturyan, A.	
Khademi, V	
Khafagy, K	253
Khafizov, M134,	
Khairallah, S 91, 163,	
Khalifa, W	240
Khalil, S	.202
Khan, A	163
Khanal, L	125
Khanal, R 97, 283,	299
Khan, M	
Kharicha, A	
Khatiwada, D	
Khattab, N	
Khayat, Z	
Khazdozian, H	
Khazraie, T	
Khedr, M	
Khmeleva, M	
Khosravani, A 249, 272,	
Khovaylo, V	
Khramenko, S	
Khrustalev, A	
Kiani, P	
Kibartas, D	
Kiener, D	.173

Kiesiewicz, G
Kilicli, V154
Kilmametov, A
Kim, A
Kim, B
Kim, C 104, 161, 243, 287, 288, 307
Kim, D 95, 96, 118, 127, 137, 159,
181, 213, 238, 244, 267, 286,
300, 302, 303
Kimes, K
Kim, G
Kim, H 104, 107, 129, 155, 157, 161,
180, 181, 185, 188, 236, 237,
276, 285, 294
Kim, I
Kiminami, C
Kimizuka, H
Kim, J 86, 94, 103, 104, 109, 116, 123,
133, 141, 142, 157, 170, 181, 182,
188, 200, 221, 228, 229, 241, 243,
254, 255, 256, 271, 277, 285, 287,
288, 293, 297, 302, 303, 305, 307
Kim, K 103, 145, 244, 271, 303,
304, 305
Kim, M137, 159, 214, 237, 262,
275, 289, 304
Kim, N 104, 145, 174
Kimoto, Y193
Kim, R
Kim, S 108, 126, 136, 176, 188, 227,
255, 274, 276, 288, 303
Kim, T 107, 297, 303
Kimura, Y 138, 293, 296
Kim, W116, 141, 186, 195, 263, 267
Kim, Y 101, 104, 108, 116, 139, 180,
185, 253, 281, 283, 287, 294,
302, 303, 304
Kinaci, A117, 231
King, A
King, C104
King, D 116, 145, 172
King, J
King-Ning, T
King, P
King, W
Kinsey, D
Kirchain, R
Kirchheim, R146, 216
Kirchhoff, G
Kirchlechner, C163
Kirka, M 102, 124, 139, 162, 173,
191, 193, 268, 269, 286
Kirk, M 106, 208, 218, 219
Kirk, T
Kirnstötter, S
Kirschner, M

Kirubanandham, A113
Kisailus, D93
Kisku, N
Kiss, A
Kiss, L
Kisslinger, K
0
Kistler, E
Kitada, A
Kitahara, A102, 116
Kitamura, S
Kitchin, J
Kjellqvist, L
Kjos, O
Klarner, A150
Klassen, T197, 292
Klecka, M220
Klein, J
Klein, M102, 134
Klein, S177
Klobes, B92
Kloenne, Z
Klose, C
Knapek, M
Knapp, C
Knapp, I
Knezecvic, M
Knezevic, M
153, 163, 192, 217, 221, 224,
248 273 280 202 205
248, 273, 289, 292, 295
Knez, M
Knez, M. .86 Knight, K. .88 Knight, N. .122 Knipling, K. .140, 168, 197, 225, 226, 237, 252 Knowles, A. .130 Knyazeva, M. .226, 229 Knych, T. .302, 303, 304, 305 Kobayashi, S. .201 Kobayashi, T. .290 Kocaefe, D. .234 Koç, E. .271 Koch, B. .116 Koch, C. .149, 216 Kociubczyk, A. .228 Kodama, T. .217 Koeck, F. .100, 188 Koenig, A. .290 Koenig, T. .89 Koermann, F. .272
Knez, M
Knez, M
Knez, M

Koizumi, Y	
Ko, J	
Koju, R	
Kolås, S	
Kolay Ersoy, M	
Kolbe, M 177, 207, 236	
Kolb, M	
Kolbus, L	
Kolli, S 166, 203, 247	
Komai, R	
Komarasamy, M 123, 178, 217, 282	
Komazaki, S	
Komiya, Y	
Konar, M200	
Konda Gokuldoss, P 156, 237	
Kondoh, K	
Kondori, B254, 292	
Kongstein, O	
Kong, Y	
Konishi, H	
Konkova, T214	
Kontis, P124, 140	
Kontsevoi, O	
Kontsos, A100, 122, 148, 151, 176,	
206, 235, 291	
206, 235, 291 Konzen, D	
Koo, J	
Koparde, P167	
Korbuly, B	
Kordaszewski, S	
Kord, M	
Kord, S	
Kores, S	
Korey, M	
Körmann, F 261, 303, 306	
Kornecki, M	
Körner, W	
Korolev, V	
Korsunsky, A94	
Korte-Kerzel, S	
Korzen, K	
Kosinova, A	
Koslowski, M 120, 263, 273	
Kossuth, M270	
Kostin, I	
Kostka, A178	
Kosugi, M255	
Kota, D217	
Kothari, D157	
Kotoul, M	
Kottman, M295	
Kou, H	
Kou, M284, 293	
Kou, M	

Kovarik, L	
Ko, W	
Ко, Ү	103
Koyama, T96,	201
Koyanagi, T	190
Kozlík, J	
Kozlov, A	
Kozyrev, A	
Kral, M	
Kramer, D	
Kramer, G	
Kramer, M	123
139, 199, 208, 222,	
249, 260, 275, 282,	
Kramer, S	
Krane, M 93, 129, 160,	
Krane, P	
Kranjc, K	
Krastins, I	
Krause, A106,	
Krause, D	
Krauss, G	
Kreller, C	
Kremmer, T	
Kreuzer, D	
Kriegel, S	
Kriegner, D	
Krimer, Y	
Krings, D	.199
Krishnan, P	.292
Kristensen, T	
Krogstad, J187, 188, 215, 245,	
266, 279,	294
Krokhin, A 131, 139, 158, 167,	
Krueger, K	.238
Krugel, G	144
Krüger, D	.253
Kruizenga, A	208
Kruml, T	.173
Krumphals, F	
Kruska, K	
Kruszewski, M	
Kruzer, S	
Kruzic, J 149, 162, 168, 227,	271
Krywopusk, N 117, 185, 192,	
Kuang, W	
Kuball, A	
Kuball, M	
Kubatur, S	
Kubatul, S	
Kube, S141,	
Kubic, R	
Kubic, K	
Kudo, A	
Kudzal, A	
NUCLEI I	10

Kuechemann, S
Kuech, T166
Kuehmann, C
Kuelper, K
Kugler, G148
Kühn, U
Kuhr, S
Kui, H
Kuila, S
Kukkadapu, R
Kuklja, M
Kuk, S
Kulakov, M
Kulitcki, V
Kulikarni, Y
Kuikarini, 1
Kul, M
Kumar, A 150, 186, 217, 279, 304
Kumar, B
Kumar, C
Kumar, D 131, 193, 301
Kumar, G
Kumari, A107
Kumar, M125, 183
Kumar, N 161, 205, 276
Kumar, R248
Kumar, S 108, 192, 249, 287, 290, 293
Kumar, U
Kunca, B
Kundu, A
Kundu, T
Kunèická, L
Kunimine, T
Kunioshi, C
Kuntz, J
Kuo, C 129, 150, 205, 229
Kuo, L
Kuo, Y
Kupresanin, A
Kuramoto, S
Kurniawan, C 128, 251, 273
Kurniawan, F
Kürnsteiner, P251, 269
Kuroda, D
Kurosaki, K 293, 296, 299
Kurosawa, S
Kurosu, H 195, 281, 296
Kurtz, R
Kurz, G
Kushima, A155
Kustas, A
Kutchko, B99
Kutsal, M
Kuwabara, K
Kuwahara, M165
Kuznetsova, N196

Kvithyld, A 199, 233, 254	
Kwasniewski, P	
Kwiatkowski da Silva, A 106, 164, 293	
Kwiatowski da Silva, A140	
Kwiecien, M	
Kwong, A	
Kwong Hong Tsang, D114	
Kwon, J 107, 247, 258	
Kwon, S	
Kwon, Y 95, 96, 185, 230, 294	
Kyratsi, T	

L

Labukas, J
Lach, T
Ladani, L
Ladeira, J
Lados, D 102, 124, 150, 179, 191,
200, 220
209, 238 Laeveren, D94
Lafata, M
La Fontaine, A
La romane, A
Lagoudas, D
Lahoda, E
Lai, L
Lai, P
Laird, B
Laitila, E185
Lai, W162
Lai, Y
Lakra, S185
Lakshmanan, A282
Lakshmi, K181
Lalire, F
Lamaka, S103
Lamberson, L
Lambert, D
Lamberti, V157
Lambert, O
Lamberty, M141
Lamb, J
Lambotte, G 104, 126, 153, 181,
241, 293 Lam, M
Lancaster, R
Landa, M
Landham, J
Landman, U
Landry, J
Landry, J
Lane, J
Lane, M
Lan, G
Langan, T114, 158

I 1 TH 100 010
Langdon, T
Langer, S
Lang, G
Langlais, J
Langley, B
Langlois, S
Lang, M
Langrud, S
Lang, S
Langston, T
Lan, P200
Lan, S
Lan, T238
Laplanche, G
Lara-Curzio, E
LaRosa, C
Larsen, J100, 179
Larsen, M162
Larson, B145, 237
Larson, D140
Larsson, F104
Larsson, H
Lasalvia, J
LaSalvia, J234
Lasanta, M
Lass, E 88, 96, 134, 162, 164, 190,
219, 220, 247, 268, 285
Latuch, J
Latypov, M
Laube, S
Lauener, C
Lauener, C
Laughlin, J239 Laukkanen, A171, 172
Laughlin, J

Leary, M247
Lebbad, H
LeBeau, S
Lebensohn, R 98, 135, 224, 289
Lebon, B116
Le Bouar, Y 172, 185, 258
Le Brun, P
Lechartier, A
Lech-Grega, M
8
Lecouturier, F
Ledal, R
Lee, A165
Lee, B
Lee, C 101, 109, 123, 132, 159, 164,
166, 171, 182, 188, 216, 217,
236, 244, 246, 248, 266, 267,
271, 276, 280, 296, 307
Lee, D 181, 273, 286
Lee, G107
Lee, H 96, 118, 120, 159, 171, 177,
264, 276, 286, 301, 303, 305
Lee, J 86, 95, 96, 101, 104, 107, 109,
112, 117, 126, 153, 165, 176, 181,
188, 196, 213, 228, 241, 242, 246,
247, 254, 264, 270, 276, 278, 293,
302, 303, 304, 305
Lee, K
Lee, M 198, 227, 253, 270, 283
Lee, N
Lee, P 94, 119, 139, 140, 143, 167,
177, 216, 228, 260, 286, 302
Lee, S 127, 128, 136, 152, 164, 171,
120, 0, 127, 120, 100, 102, 101, 171,
177, 181, 182, 185, 205, 211,
177, 181, 182, 185, 205, 211,
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138,
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139,
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221,
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302 Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
$\begin{array}{c} 177, 181, 182, 185, 205, 211,\\ 277, 281, 288, 294, 295, 300, 302\\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138,\\ 165, 193, 222, 246, 250, 296\\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139,\\ 155, 162, 164, 167, 192, 221,\\ 240, 249, 264, 295, 296, 305\\ \mbox{Leff, A} \dots 156\\ \mbox{Le Gall, Y} \dots 177\\ \mbox{Legrand, B} \dots 272\\ \mbox{le Graverend, J} \dots 100, 122, 148, 174,\\ 176, 206, 235, 282, 291\\ \mbox{Leibner, A} \dots 264\\ \mbox{Leidermark, D} \dots 159\\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leibner, A} \dots 159 \\ \mbox{Leikola, M} \dots 259 \\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211,\\ 277, 281, 288, 294, 295, 300, 302\\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138,\\ 165, 193, 222, 246, 250, 296\\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139,\\ 155, 162, 164, 167, 192, 221,\\ 240, 249, 264, 295, 296, 305\\ \mbox{Leff, A} \dots 156\\ \mbox{Le Gall, Y} \dots 177\\ \mbox{Legrand, B} \dots 272\\ \mbox{le Graverend, J} \dots 100, 122, 148, 174,\\ 176, 206, 235, 282, 291\\ \mbox{Leibner, A} \dots 264\\ \mbox{Leidermark, D} \dots 159\\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leibner, A} \dots 159 \\ \mbox{Leikola, M} \dots 259 \\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leibner, A} \dots 259 \\ \mbox{Leibnen, C} \dots 89, 135, 163, 166, 191, \\ 195, 220, 247, 248, 286 \\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leidermark, D} \dots 159 \\ \mbox{Leikola, M} \dots 259 \\ \mbox{Leinenbach, C} \dots 89, 135, 163, 166, 191, \\ 195, 220, 247, 248, 286 \\ \mbox{Leinert, T} \dots 131 \\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leidermark, D} \dots 159 \\ \mbox{Leikola, M} \dots 259 \\ \mbox{Leinenbach, C} \dots 89, 135, 163, 166, 191, \\ 195, 220, 247, 248, 286 \\ \mbox{Leinert, T} \dots 131 \\ \mbox{Lei, T} \dots 271 \\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leidermark, D} \dots 155 \\ \mbox{Leidermark, D} \dots 259 \\ \mbox{Leinenbach, C} \dots 89, 135, 163, 166, 191, \\ 195, 220, 247, 248, 286 \\ \mbox{Leinert, T} \dots 131 \\ \mbox{Lei, T} \dots 271 \\ \mbox{Leitner, H} \dots 127 \\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leidermark, D} \dots 159 \\ \mbox{Leikola, M} \dots 259 \\ \mbox{Leinenbach, C} \dots 89, 135, 163, 166, 191, \\ 195, 220, 247, 248, 286 \\ \mbox{Leinert, T} \dots 131 \\ \mbox{Lei, T} \dots 271 \\ \end{array}$
$\begin{array}{c} 177, 181, 182, 185, 205, 211, \\ 277, 281, 288, 294, 295, 300, 302 \\ \mbox{Lee, T} \dots 88, 91, 112, 116, 137, 138, \\ 165, 193, 222, 246, 250, 296 \\ \mbox{Lee, Y} \dots 90, 111, 116, 136, 138, 139, \\ 155, 162, 164, 167, 192, 221, \\ 240, 249, 264, 295, 296, 305 \\ \mbox{Leff, A} \dots 156 \\ \mbox{Le Gall, Y} \dots 177 \\ \mbox{Legrand, B} \dots 272 \\ \mbox{le Graverend, J} \dots 100, 122, 148, 174, \\ 176, 206, 235, 282, 291 \\ \mbox{Leibner, A} \dots 264 \\ \mbox{Leidermark, D} \dots 155 \\ \mbox{Leidermark, D} \dots 259 \\ \mbox{Leinenbach, C} \dots 89, 135, 163, 166, 191, \\ 195, 220, 247, 248, 286 \\ \mbox{Leinert, T} \dots 131 \\ \mbox{Lei, T} \dots 271 \\ \mbox{Leitner, H} \dots 127 \\ \end{array}$
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A
177, 181, 182, 185, 205, 211, 277, 281, 288, 294, 295, 300, 302Lee, T 88, 91, 112, 116, 137, 138, 165, 193, 222, 246, 250, 296 Lee, Y 90, 111, 116, 136, 138, 139, 155, 162, 164, 167, 192, 221, 240, 249, 264, 295, 296, 305 Leff, A

Lemke, J
Lenart, R
Leng, H
Leng, W
Lenling, M190
Lennon, A
Lenthe, W 89, 100, 146, 269
Leonard, H
Leonard, K
Leon-Cazares, F122
Léon, O
Lerch, B
Lesar, R173
LeSar, R 92, 165, 194, 195, 199, 224
Leser, P179
Letzig, D 180, 210, 262
Leu, B
Leuchtenmueller, M273
Leuders, S191
Leu, J
Leu, M111
Leung, C 139, 140, 286
Leung, K
Lévesque, L
Levi, Ĉ 261, 270, 275
Levine, L
Levine, S
Levin, I
Levin, Z
Levitas, V143, 269
Levkulich, N119
Lewandowska, M 267, 280, 288
Lewandowski, J88, 105, 134, 141, 154,
162, 176, 183, 191, 239, 259, 286
Lewis, D
Lewis, G141
Leyland, S116
Ley, M94
Liang, B
Liang, C
Liang, G 133, 225, 299
Liang, H143
Liang, J 112, 137, 181, 196
Liang, L
Liang, Q243
Liang, S 213, 242, 264, 278, 305
Liang, W196, 292
Liang, Y
Liang, Z
Lian, J
Lian, Y
Liao, C
Liao, H 139, 202, 214
Liao, S247
Liao, T121, 140 Liao, X120, 147, 175, 197, 205, 234

Liao, Z
Liaw, P 101, 102, 123, 124, 127, 141,
149, 150, 169, 178, 199, 205, 207,
208, 226, 227, 236, 237, 254, 260,
261, 270, 271, 274, 275, 297, 303
Li, B 94, 105, 116, 127, 142, 154, 157,
170, 180, 181, 182, 185, 196, 200,
215, 228, 229, 244, 255, 256, 262,
264, 271, 278, 294, 297, 305
Li, C 133, 137, 142, 145, 155, 181, 185,
238, 247, 254, 261, 279, 284, 299,
302
Li, D 87, 96, 117, 133, 144, 171, 202,
230, 278, 300
Liebscher, C146, 225
Lienert, T
Lienert, U
Lienshoeft, L
Lierfeld, T207
Lietz, R
Li, G 87, 139, 142, 160, 189, 196, 218,
228, 241, 256, 259, 267, 273, 299
Ligda, J 137, 212, 234, 278, 292
Li, H 112, 148, 163, 186, 204, 208,
233, 284, 294, 297, 298
Li, J 90, 93, 94, 111, 116, 121, 142,
155, 170, 177, 179, 183, 188, 196,
107 200 207 200 210 227 220
197, 200, 207, 208, 210, 227, 228,
197, 200, 207, 208, 210, 227, 228, 229, 238, 240, 254, 255, 256, 270
229, 238, 240, 254, 255, 256, 270,
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297,
229, 238, 240, 254, 255, 256, 270,
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297,
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K221, 262
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
229, 238, 240, 254, 255, 256, 270, 271, 273, 274, 279, 285, 288, 297, 301, 304 Li, K
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, É} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, É} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, É} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 104, 126, 147, 153, 182, 184, 211, \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, E} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, É} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 104, 126, 147, 153, 182, 184, 211, \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ Li, K \dots 221, 262 \\ Li, L \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ Lilensten, L \dots 127, 243 \\ Li, M \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ Lima Junior, É \dots 262 \\ Limbäck, M \dots 262 \\ Lim, H \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ Limmer, K \dots 131, 144, 158 \\ Lim, R \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ Lin, A \dots 198 \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, E} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, A} \dots 198 \\ \text{Lin, B} \dots 221 \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, É} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, A} \dots 198 \\ \text{Lin, B} \dots 221 \\ \text{Lin, C} \dots 125, 163, 208, 264, 274, 302, \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, É} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, A} \dots 198 \\ \text{Lin, B} \dots 221 \\ \text{Lin, C} \dots 125, 163, 208, 264, 274, 302, \\ 304, 305 \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, E} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, A} \dots 195, 163, 208, 264, 274, 302, \\ 304, 305 \\ \text{Lincopan, N} \dots 298 \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, É} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, A} \dots 198 \\ \text{Lin, B} \dots 221 \\ \text{Lin, C} \dots 125, 163, 208, 264, 274, 302, \\ 304, 305 \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, E} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, A} \dots 198 \\ \text{Lin, B} \dots 221 \\ \text{Lin, C} \dots 125, 163, 208, 264, 274, 302, \\ 304, 305 \\ \text{Lincopan, N} \dots 298 \\ \text{Lin, D} \dots 86, 109, 132, 160, 188, 208, \\ \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, E} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, B} \dots 221 \\ \text{Lin, G} \dots 125, 163, 208, 264, 274, 302, \\ 304, 305 \\ \text{Lincopan, N} \dots 298 \\ \text{Lin, D} \dots 86, 109, 132, 160, 188, 208, \\ 217, 294 \end{array}$
$\begin{array}{c} 229, 238, 240, 254, 255, 256, 270, \\ 271, 273, 274, 279, 285, 288, 297, \\ 301, 304 \\ \text{Li, K} \dots 221, 262 \\ \text{Li, L} \dots 92, 113, 138, 158, 162, 166, 171, \\ 190, 195, 196, 232, 237, 254, 296 \\ \text{Lilensten, L} \dots 127, 243 \\ \text{Li, M} \dots 101, 123, 128, 153, 155, 161, \\ 181, 200, 208, 218, 219, 240, \\ 254, 256, 285, 289 \\ \text{Lima Jr., É} \dots 298 \\ \text{Lima Junior, E} \dots 170 \\ \text{Limbäck, M} \dots 262 \\ \text{Lim, H} \dots 98, 147, 151, 198, 223, 227, \\ 253, 270, 288 \\ \text{Limmer, K} \dots 131, 144, 158 \\ \text{Lim, R} \dots 192, 289 \\ \text{Li, N} \dots 104, 126, 147, 153, 182, 184, 211, \\ 212, 219, 241, 263, 277, 285, 304 \\ \text{Lin, A} \dots 198 \\ \text{Lin, B} \dots 221 \\ \text{Lin, C} \dots 125, 163, 208, 264, 274, 302, \\ 304, 305 \\ \text{Lincopan, N} \dots 298 \\ \text{Lin, D} \dots 86, 109, 132, 160, 188, 208, \\ \end{array}$

Lind, R
Lindroos, M
Lindsay, L
Lindwall, G 96, 163, 190, 268, 300
Lin, E
Lin, F
Linga, H175
Lingzhi, Y
Lin, H
Lin, J 101, 214, 250, 268
Lin, K 91, 112, 137, 165, 193, 222,
250, 296
250, 296 Link, T
Linley, V
Lin, M
Linne, M
Lin, S 100, 213, 214, 242, 264, 278,
282, 283, 291, 305
Linscheid, A117
Linton, K
Lin, W
Lin, X
Lin, Y 92, 132, 183, 192, 193, 198,
208, 237, 264 Liou, F250
Li, P 112, 140, 205, 260, 297
Liping, N
Lipinska-Chwalek, M146
Lipkin, D
Li, Q 86, 101, 127, 183, 200, 246
Li, R
Li, S 128, 148, 156, 160, 168, 200,
221, 236, 281, 303, 306
Lisha, R
Liss, K 90, 187, 266
List, F 91, 239, 269
Li, T 196, 200, 212, 234, 288, 292, 306
Littrell, K
Litwin, P
Liu, A
Liu, B 87, 142, 174, 184, 186, 201,
257, 273, 306
Liu, C 92, 100, 111, 115, 121, 141,
147, 156, 175, 202, 208, 264,
271, 281, 300
Liu, D 159, 189, 196, 233, 284
Liu, F 159, 167, 170, 221, 246
Liu, G 196, 197, 284, 287
Liu, H 192, 197, 226, 239, 253, 268,
270, 289, 295, 296, 300
1/10, 1.,, 110, 1.39, 141, 147, 143, 130
Liu, J 116, 139, 141, 142, 145, 150, 157, 175, 178, 183, 193, 206
157, 175, 178, 183, 193, 206,
157, 175, 178, 183, 193, 206, 224, 249, 265, 269, 274, 277, 293
157, 175, 178, 183, 193, 206, 224, 249, 265, 269, 274, 277, 293 Liu, K
157, 175, 178, 183, 193, 206, 224, 249, 265, 269, 274, 277, 293 Liu, K
157, 175, 178, 183, 193, 206, 224, 249, 265, 269, 274, 277, 293 Liu, K

Liu, N 129, 161, 185, 221, 231, 249, 293
Liu, P 91, 133, 165
Liu, Q 139, 247, 301, 306
Liu, R 120, 170, 175
Liu, S
Liu, T 103, 104, 116, 139, 178, 248, 302
Liu, W 86, 95, 111, 113, 145, 204,
227, 279, 285, 287, 293
Liu, X 124, 144, 155, 167, 178, 181,
200, 240, 263, 270, 304
Liu, Y 122, 127, 133, 148, 153, 165,
174, 195, 199, 214, 227, 235, 237,
242, 251, 252, 255, 257, 282, 283,
292, 305
Liu, Z 95, 96, 102, 117, 131, 132, 137,
143, 144, 150, 154, 162, 171, 178,
201, 202, 208, 209, 229, 230, 238,
247, 256, 257, 261, 272, 279, 282,
297, 299, 300, 301
Livescu, V 111, 135, 155, 182, 219
Li, W 90, 127, 131, 134, 225, 230, 260,
270, 279
-
Li, X 105, 153, 159, 160, 164, 166,
175, 185, 195, 213, 244, 266,
277, 283, 284, 285
Li, Y 90, 91, 101, 110, 112, 114, 120,
128, 132, 137, 141, 165, 167, 169,
175, 193, 195, 214, 218, 222, 231,
175, 193, 195, 214, 218, 222, 231, 236, 248, 250, 252, 265, 290, 296, 305
236, 248, 250, 252, 265, 290, 296, 305
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z290
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 290 Li, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 290 Li, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 290 Li, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 290 Li, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 290 Li, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175 Loge, R 220
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278 Lombard, D 148
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278 Lombard, D 148
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 225 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278 Lombard, D 148 Lombardo, S 288 Lomello, M 151
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 225 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278 Lombard, D 148 Lombardo, S 288 Lomello, M
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 105, 187 Lo, C 105, 187 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 253 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278 Lombard, D 148 Lombardo, S 288 Lomello, M
236, 248, 250, 252, 265, 290, 296, 305 Liya, Z 104, 113, 123, 132, 150, 181, 189, 193, 205, 215, 234, 237, 256, 290, 292, 303 Llorca, J 105, 187 Lo, C 116 Locke, J 259 Lockhart, C 190 Locock, A 158 Lodin, J 141 Loehlé, S 144 Löffl, C 275 Löffler, J 226 Loffredo, S 225 Loganathan, A 271, 281 Logan, R 175 Loge, R 220 Loghin, A 100 Lo, K 278 Lombard, D 148 Lombardo, S 288 Lomello, M

Long, S
Long, T
Long, Z
Lookman, T143
Loomis, E99
Lopano, C99
Lopes, É
Lopes, F
Lopes, M
Lopes, P
Lopez Calero, J
Lopez-Hirata, V
Lopez Massa, Y
Lordi, V144
Lorenzo, N
Loretto, M145
Lorreto, M
Losko, A152, 228
Lossius, L
Loto, C
Lou, J 86, 128, 182
Louro, L
Lou, X 99, 121, 135, 180, 239
Love, C
Love, I
Love, L
Løvøy, M
Lowden R 242
Lowden, R
Lowder, S

Lugão, A255
Lu, H
Lui, E
Lui, T
Luitjohan, K
Lu, J
Lujan Regalado, I
Lu, K
Lukasak, D
Lukasak, D
Lukaszczyk, w
Lu, M 87, 142, 273, 298
Lund, B
Lundin, C
Lundström, M
Luo, A 95, 96, 117, 143, 144, 150,
151, 171, 179, 201, 202, 210, 229,
230, 256, 257, 272, 291, 299, 300
Luo, G166, 183
Luo, H 116, 209, 235, 237
Luo, J 95, 116, 245, 259, 287
Luo, S
Luo, X 183, 217, 292
Lu, P 123, 269, 278
Lupercio, A
Luque, A
Luscher, D
Luscher, W
Lu, T
Luthringer, B
Lu, W
Lu, X
Lu, Y121, 152, 192, 201, 211, 226, 259
Lu, Z 123, 124, 178
Luzanski, T
Luz, F
Luz, 1
Lv, D
Lv, W
Lv, X 94, 142, 157, 160, 218, 228,
279, 283, 284, 285
Lv, Z
Ly, R
Ly, S
Lyu, G 113, 139, 186, 195, 239
М
Ma, A

Ma, A
Maalekian, M91, 112, 137, 165, 193,
222, 250, 296
Maass, R141, 169, 199, 211, 227,
254, 270, 271, 297
Ma, B
Macabú de Moraes, Y117, 170
Macaulay, C168

MacDonald, B
MacDonald, E
Macedo, E195
MacKain, O
MacNair, V
Macziewski, C
Ma, D
Madavali, B
Maddavan, D
Maddan, J
Mader, B
Madhumanti, M
Madigan, B 134, 191, 300
Mading M
Madison, J
Madrid, M
Madrigal Camacho, M
Madshus, S
Maeda, M
Maeda, T
Maeder, X
Maegawa, T104
Maeno, H
Ma, G175
Magagnosc, D
Magnússon, D167
Magnusson, M
Magnusson, T
Maguin, V
Magwaneng, R
Ma, H 260, 279, 291
Mahaffey, D119
Mahajan, R113
Mahajan, S 146, 161, 188
Mahata, A
Mahfuz, H
Mahmoud, M
Maier, B
Maier, H
Maier, P 197, 226, 253, 270, 296
Mai, J
Maimi, P
Maiolo, J142
Maiti, T151
Maity, T105
Ma, J 154, 215, 226
Majid, A
Majidi, S94
Majta, J
Majumdar, B
Majumder, S
Majzoub, E
Ma, K
Maker, Y
Makeswaran, N130

Makhraja, M278
Makineni, S
Ma, L 91, 163, 203, 231, 258, 273,
285, 300
Malak, R
Maldar, A
Malej, S
Malhotra, R
Malik, A
Malik, J
Mallard, A133
Maloy, S 163, 180, 181, 210, 218,
239, 263, 276
Maltais, B115
Maltais, J
Mamala, A
Mamivand, M
Ma, N
Manandhar, S
Mandal, S 164, 291, 298
Mandrus, D
Manepalli, R
Mangal, A
Manga, V
Manga, V
Mangelinck, N
Mangelinck-Noel, N
Manger, E
Mangolini, L
Mani, B
Manion, C
Mankovsky, S
Manley, M118
Mann, A
Mannava, S 125, 158, 176, 204, 212, 290
Mann, V 139, 158, 167, 254, 269
Manogharan, G153
Manoharan, S
Manohar, M136
Manolescu, P114, 213
Manonukul, A
Manoylov, A
Mansoor, B 125, 252, 292
Mantel, M
Mantese, J
Mantovani, D 170, 226, 253
Mantri, S 106, 123, 165, 223
Manuel, M 145, 151, 209
Manzano, J
Mao, J 175, 206, 269
Mao, K
Mao, S 104, 113, 126, 127, 132, 153,
182, 211, 212, 214, 216, 241,
248, 263, 277, 289, 304
Mao, X
Mao, Y 175, 201, 206, 222, 269, 290
Mapar, A151

Maraka, H
Mara, N 105, 106, 147, 176, 184, 187,
188, 192, 212, 217, 218
Marçal, R
Marceau, D
Marceau, R
Marcella, V107
Marcelo Suarez, O
Marchisio, S
Marcin, J
Marcotte, R
Marder, M100
Margem, F 170, 171, 229
Margem, J 117, 170, 171
Margem, M
Mariani, F116
Mariani, R 97, 103, 190
Marian, J
Marian, J
Marinho, D
Marinica, M
Mariyappan, A188
Marks, J
Marks, N145, 172
Marom, N144
Marques, L
Marquez, A
Marquis, E 168, 210, 218, 252, 275
Marsden, K
Marsden, W 236, 253, 286
Marshall, A
Marshall, D
Marsico, J
Marsoner, S
Marte, J
Martel, A
Marthi, S
Martin, A
Martina, F
Martinavicius, A
Martin, B
Martin-Cid, A136
Martín-Cid, A112
Martin Cortes, G255, 298
Martin, E
Martinez, A 131, 184, 213, 233
Martínez, A
Martinez, D
Martinez, E
Martinez, L 123, 149, 301
Martinez, M
Martinez, M
Martin, H 92, 93, 107, 115, 131, 141,
168, 198, 200, 226, 296
Martini, R
Martin, L166

Martin, N111, 187
Martin, O269
Martin, S104
Martins, G
Martins, L195
Martins, R298
Martin Treceno, S
Martone, A249
Martukanitz, R137
Maruoka, N
Marussi, S139
Marvel, C234, 241
Marvila, M 297, 298, 299
Marzbanrad, B
Ma, S201
Maser, J163
Mashhadi Jafarlou, D
Mason, P194, 225
Masood, S133
Masserey, A
Massey, C161, 239
Masson, P107
Massot, L
Mastorakos, I104
Masuda, T188
Masurkar, N
Ma, T141, 267
Mataveli Suave, L
Mates, S
Mathaudhu, S96, 97, 102, 105, 108,
109, 117, 118, 123, 124, 132, 144,
145, 150, 156, 159, 171, 178, 180,
188, 199, 202, 203, 209, 216, 217,
220, 224, 230, 232, 238, 246, 248,
249, 253, 255, 258, 266, 267, 272,
280, 300, 301, 307
Matheny, M
Mather, P
Mathes, K
Mathew, K
Mathiot, D177 Máthis, K210, 262
Mathis, T
Matlock, D
Matoetoe, M
Mato, S
Matsui, I
Matsui, Y
Matsumoto, N
Matsumura, S
Matsunaga, H
Matsunami, H
Matsuo, M
Matsushita, A296
Matauura U 100 250
Matsuura, H

Matthew, K
Matthews, C97
Matthews, K
Matthews, M 89, 91, 137, 139, 163, 219
Matthies, C
Maud, K179
Maulbeck, T151, 179
Maurel, V
Ma, W 185, 244, 265, 306
Ma, X
Maxey, E
Ma, Y
Mayer, J
Mayer, M
Ma, Z
Maziasz, P 205, 208, 288
Mazur, K100
Mazzoni, A
McAllister, D146
McAllister, M
McAuliffe, T
McCabe, R 89, 98, 111, 135, 163, 184,
192, 217, 221, 248, 289, 295
McCall, S 112, 144, 196, 287, 302
McCarley, J119
McCartney, M188
McClelland, Z
McClellan, K
McCloy, J
McCluskey, P113
McCluskey, P113 McCue, I128, 188, 216
McCluskey, P
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K 244
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K 244 McDonald, S 180, 222
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K 244
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K 244 McDonald, S 180, 222
McCluskey, P. .113 McCue, I .128, 188, 216 McDermid, J .295 McDonald, K. .244 McDonald, S .180, 222 McDonell, V .261 McDonnell, S
McCluskey, P
McCluskey, P
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 316
McCluskey, P
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 244 McDonell, V 261 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R 177 McGinnity, T 114
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R 177 McGinnity, T 114 McGregor, M. 156
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 261 McDougall, A 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R 177 McGinnity, T 114 McGregor, M 156 McGuire, M 112
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 180, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R 177 McGinnity, T 114 McGregor, M 156 McGuire, M 112 McHenry, M 90, 249, 305
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J. 295 McDonald, K. 244 McDonald, S. 180, 222 McDonell, V. 261 McDonnell, S. 86, 109, 132, 160, 188, 217, 294 McDougall, A. 227 McDowell, D. 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B. 102, 219 McFadden, S. 257 McGee, R. 177 McGinnity, T. 114 McGregor, M. 156 McGuire, M. 112 McHenry, M. 90, 249, 305 McIntosh, A. 198
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McEniry, E 192 McFadden, S 257 McGee, R 177 McGinnity, T 114 McGregor, M 156 McGuire, M 112 McHenry, M 90, 249, 305 McIntosh, G 167
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 244 McDonell, V 261 McDonnell, S 180, 222 McDonell, V 261 McDonell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McEniry, E 192 McFadden, S 257 McGee, R 177 McGinnity, T 114 McGregor, M 156 McGuire, M 112 McHenry, M 90, 249, 305 McIntosh, A 198 McIntosh, G 167
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R 177 McGregor, M 156 McGuire, M 112 McHenry, M 90, 249, 305 McIntosh, A 198 McIntosh, G 167 McKay, M 137
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 244 McDonell, V 261 McDonnell, S 180, 222 McDonell, V 261 McDonell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McEniry, E 192 McFadden, S 257 McGee, R 177 McGinnity, T 114 McGregor, M 156 McGuire, M 112 McHenry, M 90, 249, 305 McIntosh, A 198 McIntosh, G 167
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R 177 McGregor, M 156 McGuire, M 112 McHenry, M 90, 249, 305 McIntosh, A 198 McIntosh, G 167 McKay, M 137
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R. 177 McGinnity, T 114 McGregor, M. 156 McGuire, M. 112 McHenry, M 90, 249, 305 McIntosh, A. 198 McIntosh, G 167 McKay, M. 137 McKeown, J. 134, 137, 156, 220 McKittrick, J 93, 115, 168, 226, 296
McCluskey, P. 113 McCue, I 128, 188, 216 McDermid, J 295 McDonald, K. 244 McDonald, S 180, 222 McDonell, V 261 McDonnell, S 180, 222 McDonnell, S 86, 109, 132, 160, 188, 217, 294 McDougall, A 227 McDowell, D 100, 102, 127, 149, 198, 209, 231, 251 McEnerney, B 102, 219 McFadden, S 257 McGee, R 177 McGinnity, T 114 McGregor, M 156 McGuire, M 112 McHenry, M 90, 249, 305 McIntosh, A 198 McIntosh, G 167 McKay, M 137 McKeown, J 134, 137, 156, 220 McKittrick, J 93, 115, 168, 226, 296

McNeice, J
McRoberts Amador, C
McWhorter, P
McWilliam, B107
McWilliams, B 134, 137, 185, 292
Meagher, R
Medasani, B230
Medina, F
Medina-Smith, A253
Medlin, D
Meduri, C
Medved, J
Meek, R
Meffert, B198
Megahed, M91, 163
Mehrani, K
Mehta, A
Meier, C
Meier, F
Mei, J
Meissner, T
Mei, Z
Mejía, I
Meka, V
Melchert, D
Mello, M
Mellor, I
Melz, T162, 235
Menasche, D 89, 119, 151, 216
1/10
Mendeley, M 201, 207, 231, 277
Mendelev, M 201, 207, 231, 277
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297Meng, L285, 290
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297Meng, L285, 290Meng, W168, 229
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297Meng, L285, 290Meng, X168, 229
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297Meng, W285, 290Meng, X188Meng, Y101
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297Meng, W168, 229Meng, X188Meng, Y101Menou, E235, 260Mensink, K220, 224
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297Meng, W285, 290Meng, X168, 229Meng, Y101Menou, E235, 260Mensink, K220, 224Mercardo Rojas, J224
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224
Mendelev, M201, 207, 231, 277Mendes, B297, 298, 299Mendes, E129Méndez, C288Mendis, C292Mendoza, M92, 165, 195Menet, P199Meng, C159Meng, F199, 214, 223, 249, 297Meng, W285, 290Meng, X168, 229Meng, Y101Menou, E235, 260Mensink, K220, 224Mercardo Rojas, J224
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 2885, 290 Meng, W 168, 229 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Mercer, B 248 Meredig, B 171, 172
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P. 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 285, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Mercer, B 248 Meredig, B 171, 172 Meredith, S 224
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 285, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercerdo Rojas, J 224 Mercer, B 248 Meredig, B 171, 172 Meredig, B 224 Mérida, D 112 Merkle, A 94, 259
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 285, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Meredig, B 171, 172 Meredig, B 224 Mérida, D 112 Merkle, A 94, 259 Merriman, C 95
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 285, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Meredig, B 171, 172 Meredig, B 224 Mérida, D 112 Merkle, A 94, 259 Merriman, C 95 Meslin, E 145, 172
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 2885, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Mercer, B 248 Meredig, B 171, 172 Meredig, B 171, 172 Meredith, S 224 Mérida, D 112 Merkle, A 94, 259 Merriman, C 95 Meslin, E 145, 172 Mesquita, A 298
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 285, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Meredig, B 171, 172 Meredig, B 171, 172 Meredig, B 224 Mérida, D 112 Merkle, A 94, 259 Merriman, C 95 Meslin, E 145, 172 Mesquita, A 298 Messe, O 147
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 285, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Meredig, B 171, 172 Meredig, B 171, 172 Meredig, B 224 Mérida, D 112 Merkle, A 94, 259 Merriman, C 95 Messin, E 145, 172 Messe, O 147 Messé, O 122, 147
Mendelev, M 201, 207, 231, 277 Mendes, B 297, 298, 299 Mendes, E 129 Méndez, C 288 Mendis, C 292 Mendoza, M 92, 165, 195 Menet, P 199 Meng, C 159 Meng, F 199, 214, 223, 249, 297 Meng, K 285, 290 Meng, W 168, 229 Meng, X 188 Meng, Y 101 Menou, E 235, 260 Mensink, K 220, 224 Mercardo Rojas, J 224 Meredig, B 171, 172 Meredig, B 171, 172 Meredig, B 224 Mérida, D 112 Merkle, A 94, 259 Merriman, C 95 Meslin, E 145, 172 Mesquita, A 298 Messe, O 147

Messner, M
Mester, K114
Metson, J167
Metzler, D98
Meydanoglu, O
Meyer, A
Meyer, B
Meyer, C
Meyer, F
Meyerink, J
Meyer-Kobbe, C 197
Meyers, J
Meyers, M 93, 99, 120, 147, 174, 205,
226, 228, 234, 272, 290
M'Hamdi, M 228, 247, 254, 302
Mhin, S
Mianroodi, J143
Miao, J100, 144, 146, 150, 173,
204, 290
Miao, Y 110, 134, 214
Michael, F
Michael, J
Michael, N 107, 130, 157, 186, 306
Michailidis, G174
Micha, J
Michalopoulou, E
Michel, B
Michie, R
Michler, J
Middleburgh, S 110, 134, 172, 219
Middleton, S
Mielnicka, J
Mikhailov, I
Mikhalev, Y
Mikler, C
Miles, M
Milicevic, K
Militzer, M90, 111, 136, 164, 192,
221, 249, 295
Miller, B 103, 152, 210
Miller, C
Miller, J
Miller, M 98, 119, 128, 146, 173,
184, 192, 204, 289
Miller, V100, 159
Milligan, B129, 248
Mills, D120, 233
Mills, G148
Mills, L
Mills, M 146, 148, 163, 173, 174, 204,
233, 260, 290, 303
Mills, S
Milshin, O
Mindt, H91, 163
Mingxin, H90

Min, K157, 296
Minku, C178
Minor, A151, 184
Minter, J
Miracle, D
Miranda, L
Mireles, O162
Mirkhalaf, M99, 120
Mishin, Y
Mishra, B 107, 238
Mishra, D
Mishra, R101, 114, 123, 131, 132,
134, 136, 161, 175, 178, 209,
217, 240, 248, 280, 281, 287
Mishra, S
Misra, A 95, 96, 149, 156, 292
Misra, D
249, 262
Misra, M
Missalla, M139
Mistarihi, Q125
Mistry, A
Mithieux, J
Mitra, A
Mitra, N
Mitra, R
Mitsuhashi, K
Mittelstadt, A
Miyamoto, G106, 136
Miyamoto, H
Miyanaga, M
Miyazaki, K
Miyoshi, E
Mizunoe, Y
M, N
Moatti, A
Mo, B
Mocko, M152
Modak, P
Moehring, S
Moelans, N
Moering, J
Mofor, E
Moghal, J
Mohagheghi, S
Mohamed, H
Mohamed, I
Mohamed, W
Mohammad, T
Mohandass, G
Mohan, J
Mohan, M
Mohanty, D
Mohri, T
Mohr, N

Möhwald, K	157
Moisy, P	
Mo, J	
Mo, K	
Mokmeli, M	
Molari, J	
Moldovan, D	
Molenaar, D.	
Molina-Aldareguia, J 105, 187,	
Mollaoglu Altuner, H	
0	
Molla, S	
Möller, B	
Möller, J	
Momayez, M	
Momen, A	
Monchoux, J	
Monclus, M	
Monclús, M	
Mondal, B	281
Mondal, J	295
Mone, R	.92
Mönig, R	277
Moniri, S	
Monte, F	
Monteiro, S 94, 116, 142, 170, 1	
200, 228, 229, 255, 256, 2	
290, 297, 298,	299
290, 297, 298, Montemagno, C	
Montemagno, C	140
Montemagno, C Montero, X	140 237
Montemagno, C	140 237 .87
Montemagno, C	140 237 .87 171
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F	140 237 .87 171 281
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L	140 237 .87 171 281 115
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montigl, D	140 237 .87 171 281 115 223
Montemagno, C	140 237 .87 171 281 115 223 171
Montemagno, C	140 237 .87 171 281 115 223 171 275
Montemagno, C Montero, X Monterosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montiel, D Montoya, J Montoya, J Monzen, R Monzen, R	140 237 .87 171 281 115 223 171 275 252
Montemagno, C	140 237 .87 171 281 115 223 171 275 252 241
Montemagno, C	140 237 .87 171 281 115 223 171 275 252 252 241 304
Montemagno, C	140 237 .87 171 281 115 223 171 275 252 241 304 257
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Monzen, R Moody, M Mook, W Moon, B Mooney, R Moon, J Moon, J	140 237 .87 171 281 115 223 171 275 252 241 304 257 276
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Monzen, R Mook, W Mooney, R Moon, J Moon, K Moon, K	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moon, B Moon, J Moon, J Moon, M Moon, M	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moon, B Moon, J Moon, J Moon, J Moon, S Moon, S Moon, S	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moon, B Moon, J Moon, J Moon, M Moon, M	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moon, B Moon, J Moon, J Moon, J Moon, S Moon, S Moon, S	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Monzen, R Moody, M Mook, W Mooney, R Moon, J Moon, S Moore, A	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Mooney, R Moon, J Moon, X Moon, S Moore, A	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moon, B Moon, J Moon, S Moon, S Moore, A Moore, I Moora, A	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193 283
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moon, B Moon, J Moon, J Moon, S Moore, A Moore, I Moosmann, J	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193 283 253
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moon, B Moon, J Moon, J Moon, S Moore, A Moore, I Moosmann, J Moosmann, J	140 2377 .877 2231 115 2231 171 275 252 241 304 257 276 300 303 223 1477 152 193 283 253 171
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Mooney, R Moon, J Moon, S Moore, A Moore, A Moore, I Moosa, A Moosmann, J Moorakabati, M Morakabati, M	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193 283 253 171 306
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moody, M Moon, R Moon, B Moon, J Moon, S Moore, A Moore, I Moosmann, J Moosmann, J Morakabati, M Morakabati, M	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193 283 253 171 306 227
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moody, M Moon, R Moon, S Moon, J Moon, J Moore, R Moon, S Moore, A Moore, I Moosa, A Moraes, Y Morales Espejo, J	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193 253 171 306 227 114
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moody, M Moon, S Moon, B Moon, J Moon, J Moon, S Moore, A Moorehead, M Moosa, A Moosmann, J Morakabati, M Morales Espejo, J Morales, S	140 2377 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193 283 253 171 306 227 114 293
Montemagno, C Montero, X Monterrosa, A Montes de Oca Zapiain, D Montes, F Montgrain, L Montiel, D Montoya, J Montoya, M Moody, M Moody, M Moon, R Moon, S Moon, J Moon, J Moore, R Moon, S Moore, A Moore, I Moosa, A Moraes, Y Morales Espejo, J	140 237 .87 171 281 115 223 171 275 252 241 304 257 276 300 303 223 147 152 193 283 253 171 306 227 114 293 139

Moreno, A	132
Moreno-Ramírez, L	
Moreno Tovar, R	299
Morgan, D 87, 110,	166
Morgan, Z	171
Morgeneyer, T	292
Mori, M163,	
Morimitsu, M	132
Mori, T92, 113, 138, 166, 195,	296
Morita, K	223
Mori, Y	
Morobayashi, M	199
Moroz, M	
Morral, J	123
Morris, J 97, 118, 129, 145, 146,	172,
202, 208, 231, 257,	258
Morrison, R	106
Morrow, B	135
Morscheiser, J	
Morsdorf, L	293
Mosbah, S	
Mostaed, E253,	
Mostafaei, A	
Mostafaei, M	
Mota, F	
Motallebzadeh, A	
Motamarri, P	
Motes, D	
Motkov, M	
Motta, A	
Mouche, P	
Mougin, K	
Mourad, H 100, 111,	155
Moura, E 255, 298,	
Mourão, M	167
Mousavi Anijdan, H	221
Moverare, J	282
Mozioglu, E	217
Mroz, M	102
Mrvar, P	245
Mubarok, A	200
Mueller, F	274
Mueller, J	
Mueller, T	117
Muhammed, M	186
Mujawar, M	
Mukai, T 180, 197,	253
Mukherjee, A	
Mukherjee, P 181, 263,	277
Mukherjee, S 174, 199,	260
Mukhopadhyay, A132,	
Mukhopadhyay, P	
Muktinutalapati, N	
Mule, N	
Müller, F	
Müller, L	254

Muller, S153, 155
Muller, T144
Mullholland, M136
Mullis, A 142, 212, 274
Mumm, D
Munitz, A123, 260
Munoz, A
Mun, S
Muntifering, B
Murakami, Y
Muralidharan, G205
Muralidharan, K 171, 248, 299
Murase, K
Murashkin, M
Murayama, M
Murch, G 209, 229, 238
Murcia, S
Murdoch, H 131, 238, 279
Murillo, D
Murphy, A 192, 206, 276
Murphy, M198
Murphy, N
Murphy, T
Murray, S
Murty, K
Mu, S 145, 237, 272
Musinski, B146
Musinski, W 89, 119, 122, 146, 147
Muszka, K
Muta, H
Mutlu, M167
Mu, W
Muylaert Margem, F117, 170
M.V.N, V
Myerberg, J
Myers, D102
Mykulowycz, N191, 212
Myung, N

Ν

Naakka, V
Nabavizadeh, S
Nacif el Alaoui, R
Nagabhushana Ramesh, N272
Nagao, S
Nagasaka, T169
Nagase, T
Nagaumi, H167, 196
Nagel, D
Nagra, J
Nag, S 106, 129, 145, 156, 173, 204, 232
Nair, A 140, 153, 155
Nair, S163
Na, J
Najmaei, S

Nakai, Y
Nakajima, K
Nakama, K
Nakamori, F
Nakanishi, B
Nakanishi, D257
Nakano, A120, 223
Nakano, J 193, 223, 250, 268
Nakashima, K
Nakata, T
Naleway, S93, 115, 141, 168, 198,
226, 296
Nallathamby, P114, 188
Nalon, G
Naioli, G
Nam, C 86, 109, 128, 132, 160, 188,
217, 294
Nam, J164
Nam, S
Nam, T
Nandwana, P91, 106, 129, 133, 156,
162, 173, 184, 214, 242,
243, 293, 306
243, 293, 300
Nandwanna, P102
Nan, G273
Nan, H
Nanstad, R 110, 210, 252
Nan, W
Napolitano, R 223, 269, 297
Naragani, D149, 295
Naraghi, R
Narayanan, B231, 295
Narayana, P237
Narayan, D
Narayan, J 100, 101, 123, 177, 301
Narayan, R 101, 114, 227
Nardi, A
Na, S
Nasara, R
Nascimento, L116, 298
Nasim, W252
Nassiri, A230
Nastac, L 93, 115, 116, 142, 170, 200
Nastar, M172
Nastasi, M121, 219
Natarajan, A
Natarajan, V136
-
Nataraj, C95
Natesan, K
Nath, A158
Nathaniel, J156
Nath, M
Naumenko, D
Naushima, T
Nautiyal, P 128, 281, 305
Navabi, A
Navale, S

Navrotsky, A125
Nayebi, N
Naze, L
Ncapayi, V
Ndefru, B 111, 182, 219
N'Dri, N
Neal, D
Neaton, J171
Needleman, A 122, 254, 257
Neelameggham, N 99, 103, 107, 121,
125, 129, 148, 157, 175, 180, 185,
215, 239, 244, 262, 265, 276, 279,
291, 292, 294, 306
Neelav, A277
Neffati, D127
Negre, C166
Neilson, H
Nellis, C
Nelson, A
190 219 285
Nelson, I
Nelson, T
Nelson Weker, J
Nemanich, R
Németh, K
Nene, S
Neogi, A
Néron, J
Nestler, B 95, 96, 172, 177, 242
Neuefeind, J
272, 299, 303
272, 299, 505 Neumann, J163
Neumeier, S
Neu, R
Neveau, M
Neves, A170
Neves Monteiro, S 117, 170, 229,
290, 297, 298
Neves, R
Newell, R103
Newkirk, J
Nezafati, M154
Ngan, A235
Ng, D190
Ngo, A
Nguyen, L 89, 237, 255
Nguyen, M144
Nguyen, Q102
Nguyen-Thi, H
Nguyen, V
Niane, N
Nian, Q
Niarchos, D112
Nibur, K
Nichols, B

Nichols, N
Nickolai, I116
Nidadavolu, E197
Niebroski, A
Niedling, J
Nieh, T 102, 124, 178
Nie, J106, 151
Nielsen, J
Niendorf, T
Niessen, F
Nie, X
Nie, Y
Niezgoda, S 107, 146, 173, 174, 204,
232, 290
Nigay, P
Nihei, T
Nikitina, M
Niklasson, A
Nikolic, V
Nimishakavi, K
Ning, C
Ningileri, S
Ning, L
Ning, Q
Nino, J
Nishikawa, H 213, 214, 242, 250,
264, 278, 305
Nishimura, T
Nishioka, K
Niu, C
Niu, L
Niverty, S
Nizolek, T147, 188
Nlebedim, C 112, 136, 287
Nlebedim, I
Nöbauer, C
Noble, D
Noebe, R90, 206
Noell, P
Nogita, K91, 112, 137, 165, 180,
193, 222, 250, 296
Noguchi, H169
Nogueira, R
Nohira, T129
Nohring, W
Nöhring, W256
Nolen, D
Nolze, G232, 258
Nomoto, K
Noraas, R
Norato, J174
Nordmark, A199
Nori, S
Norton, G
Nourian-Avval, A274
Novak, B 147, 229, 230

Nowak, A
Nowak, D
Nowak, W
Nuanez, C182
Nuggenhalli, R130
Nune, K168, 197
Nunes, E
Nunez, P 184, 213, 242
Nychka, J 93, 114, 140, 196, 198, 248
Nyman, F141
Nyo, T247
Nzihou, A238

Obaid, A
O'Bara, B
O'Bara, R
Obayemi, J
Oberdorfer, C
Obi, E
O'Brien, C
O'Brien, L
Obstalecki, M
Obulan Subramanian, G 161, 276
Ocelík, V
O'Connell, J
O'Connor, A
Odashima, N
Oddershede, J
Odette, G 87, 110, 161, 180, 181, 210,
239, 252, 262, 276
Odette, R
Oderte, R
Odqvist, J
Oelrich, R
Ogata, S 106, 128, 155, 176, 184
Ogawa, A
Ogbiye, A
Ogden, T115, 296
Oh, A
O'Hara, R
Ohashi, Y133
Ohba, Y104
Oh, C 96, 137, 185, 221, 296
Oh, H 123, 141, 274, 275, 303
Ohishi, Y 293, 296, 299
Ohizumi, A115
Oh, J 136, 288, 303
Oh, K
Ohkubo, I195
Ohkubo, T112
Ohkura, S136
Ohl, B
Ohligschläger, T
Oh, M 287, 288, 307
- ,,,,

Ohmoto, H
Ohmura, T248
Ohno, K
Ohno, M 236, 256, 257, 274
Ohodnicki, P90, 112, 136, 164, 186
193, 222, 249, 282
Oh, S
Oh, T
Ohtani, H 124, 201, 202
Oh, Y
Oide, M
Oikawa, I
Oikawa, K
Oilo, M168
Oishi, T129
Ojdanic, A
Ojo, O
Okamoto, N
Okanigbe, D259
Okayama, A
O'Keeffe, S
Okeniyi, J
Okita, S
Okita, T
Okokpujie, I
Okuda, K
Okuniewski, M
Oladipupo, S
Olaleye, S
Olarewaju, A
Olasumboye, A
Olejnák, J
Olejnik, L
Oleksak, R
Oleszak, D
Oliani, W
Olig, S
Oliveira, F
Oliveira, M
Oliveira Pereira, K
Olivetti, E 169, 233, 238, 239, 259
273, 289, 290, 29
Oliviera, M
Olles, J
Olsen, H
Olsen, R
Olsen, Z
Olson, G 96, 102, 117, 123, 144, 151
179, 194, 195, 198, 203, 214
219, 249, 270, 300
Olson, H
Olszewska, J
Oluwabunmi, K
Oluwatobi, O
O, M
Omdal Tveito, K

Omori, T108
Omotosho, O 126, 186, 200, 294
Omowa, O
Omrani, E155
Omura, N
Ondruška, J255
Ong, S 97, 108, 171, 299
Oni, A
Onken, D
Onofrio, N138
Ono, H
Onuike, B
Onuki, Y
Opie, S
Opila, E102, 275
Oppelstrup, T194
Opraus, T
Oquendo Berrios, Z281
Oraon, A144
Ordon, S
Orhan, G
Orimo, S
Orlov, A
Orlov, D 103, 125, 180, 239, 262,
27(202
270, 292
276, 292 Orme, C112
Orozco-Caballero, A 111, 146,
204, 216
204,210
Orsatti, P123
Orsatti, P
Orsatti, P
Orsatti, P
Orsatti, P
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293
Orsatti, P
Orsatti, P
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osen, K 131, 184, 225
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osen, K 131, 184, 225 Ose, S 252
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osen, K 131, 184, 225 Ose, S 252
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Osetskiy, Y 261 Oshima, R 96
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R. 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R. 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Oser, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P. 302
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R. 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P. 302 Osyczka, A. 210
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P 302 Osyczka, A 210 Otagiri, Y 109
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P 302 Osyczka, A. 210 Otagiri, Y 109 Otani, L 260, 287, 302
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P. 302 Osyczka, A. 210 Otagiri, Y 109 Otani, L 260, 287, 302 Otaviano, M 110
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P 302 Osyczka, A. 210 Otagiri, Y 109 Otani, L 260, 287, 302
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P. 302 Osyczka, A. 210 Otagiri, Y 109 Otani, L 260, 287, 302 Otaviano, M 110 Öter, Z 271
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P. 302 Osyczka, A 210 Otagiri, Y 109 Otani, L 260, 287, 302 Otaviano, M 110 Öter, Z 271 Otis, R 117, 154, 163, 238
Orsatti, P 123 Orsborn, J 214 Ortalan, V 129 Orta Rodriguez, L 281 Ortiz-Mariscal, A 129, 293 Osada, T 272 Osawa, M 290 Osawa, Y 180, 201, 203 Osborne, R 88 Osendorf, C 198 Osen, K 131, 184, 225 Ose, S 252 Osetskiy, Y 261 Oshima, R 96 Oshima, T 140 Oshin, T 186 Osorio Pinzon, J 229 Ossa, A 198 Ostergaard, H 162 Ostlind, A 198 Osuch, P. 302 Osyczka, A. 210 Otagiri, Y 109 Otani, L 260, 287, 302 Otaviano, M 110 Öter, Z 271

Ott, R 89, 139, 193, 199, 223, 247,
249, 297
Ouchi, T 107, 129, 157, 185, 294
Ou, L
Ouvarov-Bancalero, V
Ouyang, B145
Ouyang, F 91, 113, 193, 296
Ouyang, G 108, 222, 275
Ouyang, J
Ouyang, L
Ouyang, Q116
Overman, N 103, 159, 249, 255,
272, 280, 292
Owen, A
Owen, C
Owen, L
Owoeye, F
Owolabi, G
Oyarzabal, Í180
Øye, B169
Ozaki, J162
Ozaltun, H97
Özerinç, S105
Ozturk, T
P
P., A
Pacheco, R
Packard, C
Padilla, R 87, 109, 133, 160, 189, 218,
241, 247, 267, 283, 284
Paepcke, J

Pagan, D 98, 119, 134, 135, 146, 151,
192, 204, 207, 227
Page, K
Pagone, E142, 260
Pahlevani, F129, 194
Pai, E
Pai Kulyadi, E
Painter, B141
Paiva, L
Pakanati, A
Paktunc, D
Palacios, J
Palasyuk, O
Pal, D
Palkowski, H 107, 130, 157, 186,
272, 306
Pallett, L
Palmer, B
Palmer, J
Palmer, T 102, 111, 137, 190, 224, 273
Palomares, A
Palomares, R125
Pal, S 110, 161, 180, 239

Pal, U	
	147, 173, 265, 279, 306
Pan, C	
Panda, R	
Pande, C	
	.100, 103, 122, 126, 149,
152,	159, 177, 181, 187, 211,
216,	240, 244, 245, 263, 265,
	277, 278, 293, 301, 306
Pandia, I	
Pandolfelli, V	
Pandya, S	
Panetta, P	
Pan, F	
Pang, H	
Pang, S	
Pang, X	
Pang, Z	
Panias, D	
Panigrahi, S	
Panitz, J	
Pan, J	
Pankhurst, M	
Panov, A	113, 139, 196
Pantazopoulos, G	
Pantleon, W	89, 111, 135, 163, 192,
	221, 248, 295
Papanikolaou, S	
Papenberg, N	
•	
U U	
	110, 129, 151, 263
Darl C	
	183, 221, 267
Park, E	183, 221, 267

Parker, G	
Parker, S	
Park, H 296, 302, 303, 3	304
Park, I	
Park, J 103, 119, 136, 139, 147, 1	55,
161, 185, 204, 227, 240, 2	45,
275, 303, 3	304
Park, K	296
Park, M.	
Park, N	
Park, S 103, 127, 215, 227, 246, 2	
287, 3	
Park, W	220
Park, Y	
Parmar, H	
Parra, D	
Parr, I	
Parrilla Muñoz, I	
Parrish, R	
Parris, T	
Parry, G	
Parsi, A.	
Parson, N	
Partezana, J	
Parthasarathy, T 143, 179, 194, 208, 2	
Parviainen, S	
Parvinian, S	
Pascall, A	
Pasebani, S 161, 224, 2	
Pasini, W	
Paspaliaris, I	196
Passeri, D	107
Pastewka, L	
Pastore, G.	110
Patala, S 95, 109, 132, 159, 188, 2	
217, 232, 246, 266, 267, 280, 3	
Pate, A	
Patel, A	
Patel, A	277
Patel, D	277 220
Patel, D	277 220 292
Patel, D.	277 220 292 257
Patel, D.	277 220 292 257 .92
Patel, D.	277 220 292 257 .92 220
Patel, D. 2 Patel, J. 2 Patel, K. 130, 2 Patel, M. 2 Patel, R. 2 Patel, V. 2	277 220 292 257 .92 220 295
Patel, D. 2 Patel, J. 2 Patel, K. 130, 2 Patel, M. 2 Patel, R. 2 Patel, V. 2 Pathak, A. 2	277 220 292 257 .92 220 295 149
Patel, D.	277 220 292 257 .92 220 295 149 129
Patel, D.	277 220 292 257 .92 220 295 149 129 212
Patel, D.	277 220 292 257 .92 220 295 149 129 212 133
Patel, D.	277 220 292 257 .92 220 295 149 129 212 133 246
Patel, D.	277 220 292 257 .92 220 295 149 129 212 133 246 135
Patel, D.	277 220 292 257 .92 220 295 149 212 212 133 246 135 127
Patel, D.	277 220 292 257 .92 220 295 149 129 212 133 246 135 127 203
Patel, D.	277 220 292 257 .92 220 295 149 129 212 133 246 135 127 203 143
Patel, D.	277 220 292 257 .92 220 295 149 129 212 133 246 135 127 203 143 2295
Patel, D.	277 220 292 257 .92 220 295 149 129 212 133 246 135 127 203 143 295 143

Paudyal, D
Paul, J
Paul, P
Paulson, N
Paul, T
Pauly, S
Pavelich, J
Pavel, R
Pavlov, E
Pawlek, R
Pawlowski, A154
Pawlowski, A
Payant, A
Payne, T
Payton, E 107, 119, 204, 232
Payton, T
Payzant, E
Paz Soldan Palma, J
Paz y Puente, A243
Pearson, C
Peauroi, M137
Pechenkin, M113
Pedersen, S
Pedreira Oliveira, D
Pedroti, L
Peel, A141
Pegues, J
Pei, N
Peixoto, M
Pei, Y
Pei, Z91, 261
Pekguleryuz, M151
Peles, A
Pelletier, J
Pelletier, P
Pellet-Rostaing, S
Pellin. M
Pelt, D
Pelton, A
Peña, L
Peng, C
Pengcheng, X
Peng, H
Peng, J 157, 160, 166, 196, 256, 284
Peng, R
Peng, S
Peng, Y
Peng, Z 87, 94, 109, 116, 133, 142,
160, 170, 189, 196, 200, 218,
228, 229, 247, 255, 256, 259,
267, 271, 283, 284, 297, 299
Penmecha, B
Penny, R
Peralta, P 99, 125, 152, 267
Perander, L 113, 139, 195, 224

Pereda, J
Pereira, A
Pereira da Silva, P
Perepezko, J
Perez Beltran, S181
Perez, D
Perez, I
Perez, M
Pérez Pérez, M
Pérez Prado, M 159, 187, 216, 245
Pérez-Prado, T192
Pérez Trujillo, F
Pericleous, K 93, 94, 115, 116, 142,
170, 200, 236, 260
Perina, G
Perissé Duarte Lopes, F 117, 170, 229
Permann, C
Perng, S165
Perovic, D
Perram, G91
Perriere, L
Perrière, L
Perrin, A
Perriot, R
Perrodin, D
Perron, A 144, 196, 220
Perry, N145
Persdotter, A
Persson, K 97, 108, 117, 171, 206
Perugu, C
Peruzzi, N
Pesach, A
Pessoa, D
Peterlechner, M201
Peter, M155
Peterson, L
Peterson, R
Petho, L
Petric, M245
Petrov, R150
Petters, A
Pettit, R179
Peyre, P
Pezzotta, M
Pfeifenberger, M130
Pham, M
Phani, S
Phan, M
Phan, T
Phapale, K
Pharr, M181
Phatak, C251
Phelan, D223
Philips, B
Phillion, A
Phillips, G91

P1 111
Phillpot, S
Philo, A142
Phoenix, L
Phukan, H 204, 221, 227
Phung, B122
Piascik, R
Piazolo, S
Picak, S150, 178
Picard, D234
Picard, Y
Picasso, M
Piccione, B149
Pickering, E123
Pierson, K
Pietsch, U
Piglione, A
Pilania, G231
Pilchak, A100, 101, 102, 148, 149,
159, 232, 270
Pillai, R
Pillay, B
Pilz, S
Piña, C
Pineau, A
Pingin, V
Ping, W
Ping, Z120
Pinheiro, L
Pinho, V
Pinkney, J157
Pinomaa, T171, 172
Pinotti, V
Pint, B 161, 205, 237, 239
Pinz, M
Pippan, R 105, 130, 150, 159, 188, 266
Pirès, R
Pisa, A
Pissarenko, A
Pistorius, P134, 193
Pisupati, S
Pitera, J
Pityana, S
Piva, S
Pizzagalli, L
Pizzocri, D
Plancher, E
Plante, R
Plantz, P
Plapp, M 106, 177, 217
Platonov, V
Playford, H
Plimpton, S
Plotkowski, A92, 102, 139, 162,
167, 195, 247
Plotlowski, A102
Plovie, B

Podgornik, B	
Podmaniczky, F	
Pokharel R	
	107, 135, 214
Polcar, $1 \dots $	
Polley, A	
Pollock, T	89, 92, 95, 98, 100, 146,
	173, 174, 179, 188, 204,
	233, 245, 261, 269, 270
Polonsky, A	
Polyakov, A	
Polyakova, V	
Polyakov, M	
Polyakov, P	
	106, 140, 164, 197, 293
•	
	.88, 134, 162, 190, 219,
1001guilji, D	220, 247, 268, 285
Poozhikunnath A	126
Poplawsky I	A
1 opiaok/,)	236, 258
Popoff F	
Popoola A	
	100, 101, 179
	100 282 201
	148, 205, 276
rourniche, G	148, 205, 276

Pouladi, S
Poulon, A111
Poulon-Quintin, A112, 286
Poulsen, H
Pourboghrat, F151
Pourroy, G107
Poveda, P
Prabhakar, A
Prabhakaran, R103, 125, 151, 180,
210, 239, 240, 262, 263, 276, 293
Prabhu, A119
Prabhu, N
Prabhu, R
Pradeep, K101
Pradhan, S
Pramanik, B
Prasad, A
Prasad, Y
Prater, J
Preisler, D141
Prentice, L 91, 137, 157, 165, 194,
223, 250, 287
Presbitero, G168
Preston, A
Preuss, M 89, 111, 160, 189, 219, 262
P R, H
Pribram-Jones, A
Price, P
Prichard, P 195, 224, 251, 269
Priddy, M
Priedeman, J
Prima, F127, 243
Primig, S
Prisbrey, M
Priyadarshan, G
Priya, P248
Prokhorenko, M181
Promakhov, V
Prosa, T140
Prost, T 157, 224, 269
Proudhon, H
Provatas, N165
Prudil, A152
Puchala, B 166, 203, 253
Pugesek, H 148, 205, 276
Pukenas, A
Puncreobutr, C
Puro, C105
Purohit, P106
Pusztai, T
Putri, E148
Puzanov, I
Pyka, G
Pyun, Y
Q

Qadri, S
Qian, G
Qiang, J
Qiang, Y
Qian, L
Qian, M 111, 157, 167, 185, 191,
215, 223, 224, 244, 247,
264, 278, 294, 304, 305
Qian, X
Qiao, J 254, 260, 271
Qi, J
Qi, L 106, 128, 155, 184, 202, 216
Qin, F126
Qin, G144
Qing, G
Qin, H251
Qin, L121
Qin, M130
Qin, Q 99, 100, 121
Qin, Z
Qiu, D
Qiu, G
Qiu, J
Qiu, S
Qizhou, C
Q, J
Quadarkers, w
Quadit, Z
Quinta da Fonseca, J 89, 111, 216, 221
Quinta da Tonseca, J
Quintana, O
Quintero Garcia, A
Qu, J
Qu, K
Qureshi, A
Qu, X
Qu, Z
· · · · · · · · · · · · · · · · · · ·

R

Raab, A
Raabe, D 106, 112, 123, 124, 139, 140,
141, 146, 150, 164, 197, 215,
225, 226, 237, 243, 251, 268,
269, 293, 303
Raab, G
Rabbey, M
Rabbi, F
Rabeeh, B 108, 127, 270
Rabello, A
Rabkin, E
Race, C
Rack, P177
Radecka, A197

Rader, K
Radhakrishnan, B108, 117, 258,
268, 299
Radiguet, B
Radionov, E
Radonjic, M
Rae, C122, 147 Raeymaekers, B
Rafat, N
Rafique, M
Ragasa, E
Rager, M
Raghavan, N
Raghu, S
Rahamim, O
Rahbar, N 115, 226, 229, 257
Rahimi, A
Rahimi, R
Rahimi, S214
Rahman, M
Raihan, R257
Raiman, S
Rainforth, M243
Rainforth, W192
Rajagopalan, J 105, 264, 267, 301
Rajagopalan, S273
Rajendran, H174, 282
Raji, M186
Rajiv, M
Raju Natarajan, A203
Raju, S185
Ramajayam, M158
Ramakrishnan, A
Ramamurty, U
Ramana, C
Ramanathan, P
Ramanathan, S
Raman, S
Ramanujan, R 164, 193, 222
Raman, V167 Ramaswami Neelameggham, N215
Rame, J
Ram, F
Ramírez-Castro, J
Ramirez, J
Ramirez-Ledesma, A
Ramirez Ortega, P
Ramírez Ortega, P
Ramírez-Ortega, P
Ramos, E
Ramos, F
Ramos, S
Ramprasad, R
Ramsay, J
Ramstein, G

Rana, L	306
Ranganathan, R	138
Rangari, V	
Ranger, C	
Raninger, P	
Ran, L	
Ranno, L	
Rao, A235, 3	
Rao, J	
Rao, K	
Rao, M 196, 259, 267, 284, 2	
Rao, P	
Rao, W	
Rao, Y 163, 173, 2	
Rarhi, N	
Rasmussen, D	
Rasmussen, P	
Rathi, M	
Ratvik, A 86, 120, 147, 205, 206, 2	
Rausch, B	
Raush, J168, 2	
Ravi-Chandar, K	
Ravichandran, A	109
Ravi, D	
Ravindra, N100, 107, 108, 122, 1	30,
149, 157, 158, 177, 186, 2	44,
149, 157, 158, 177, 186, 2 265, 278, 301, 3	
	306
265, 278, 301, 3	306 295
265, 278, 301, 3 Ravi, P	306 295 301
265, 278, 301, 3 Ravi, P	306 295 301 300
265, 278, 301, 3 Ravi, P Ravi, V	306 295 301 300 164
265, 278, 301, 3 Ravi, P Ravi, V Rawat, S Ray, K Raynova, S	306 295 301 300 164 264
265, 278, 301, 3 Ravi, P Ravi, V Rawat, S Ray, K Raynova, S Ray, P 101, 108, 123, 208, 260, 2	306 295 301 300 164 264 275
265, 278, 301, 3 Ravi, P Ravi, V Rawat, S Ray, K Raynova, S Ray, P 101, 108, 123, 208, 260, 2 Ray, T	306 295 301 300 164 264 275 242
265, 278, 301, 3 Ravi, P Ravi, V Rawat, S Ray, K Raynova, S Ray, P 101, 108, 123, 208, 260, 2 Ray, T Razmi, J	306 295 301 300 164 264 275 242 286
265, 278, 301, 3 Ravi, P Ravi, V Rawat, S Ray, K Raynova, S Ray, P 101, 108, 123, 208, 260, 2 Ray, T Razmi, J Razumovskiy, V	306 295 301 300 164 264 275 242 286 230
265, 278, 301, 3 Ravi, P Ravi, V Rawat, S Ray, K Raynova, S Ray, P 101, 108, 123, 208, 260, 2 Ray, T Razmi, J Razumovskiy, V Ready, J	306 295 301 300 164 264 275 242 286 230 306
265, 278, 301, 3 Ravi, P Ravi, V Rawat, S Ray, K Raynova, S Ray, P Ray, T Razumovskiy, V Razumovskiy, V Razumovskiy, S Ready, J Rebak, R Rebak, R	 306 295 301 300 164 264 275 242 286 230 306 51,
265, 278, 301, 3 Ravi, P	 306 295 301 300 164 264 275 242 286 230 306 51, 39,
265, 278, 301, 3 Ravi, P	 306 295 301 300 164 264 275 242 286 230 306 51, 39, 301
265, 278, 301, 3 Ravi, P	306 295 301 300 164 264 275 242 286 230 306 51, 39, 301 102
265, 278, 301, 3 Ravi, P	306 295 301 300 164 264 275 242 286 230 306 51, 39, 301 102 283
265, 278, 301, 3 Ravi, P	306 295 301 300 164 2275 242 286 230 306 51, 39, 301 102 283 286
265, 278, 301, 3 Ravi, P 2 Ravi, V 2 Rawat, S 2 Ray, K 2 Ray, N 101, 108, 123, 208, 260, 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, T 2 Razumovskiy, V 201, 2 Razumovskiy, V 201, 2 Ready, J 244, 265, 278, 3 Rebak, R 103, 121, 125, 135, 1 175, 180, 206, 210, 235, 237, 2 240, 259, 262, 263, 276, 293, 3 Recihardt, A 110, 239, 281, 2 Redkin, I 247, 2 Redkin, K 116, 1	306 295 301 300 164 224 2286 230 306 51, 39, 301 102 283 2286 170
265, 278, 301, 3 Ravi, P	306 295 301 300 164 2264 230 306 51, 39, 301 102 283 286 51, 39, 301 102 283 286 170 172
265, 278, 301, 3 Ravi, P 2 Ravi, V 2 Rawat, S 2 Rawat, S 2 Ray, K 1 Raynova, S 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, T 2 Razmi, J 2 Razmi, J 2 Razumovskiy, V 201, 2 Ready, J 244, 265, 278, 3 Rebak, R 103, 121, 125, 135, 1 175, 180, 206, 210, 235, 237, 2 240, 259, 262, 263, 276, 293, 3 Recihardt, A 1 Reddy, R 110, 239, 281, 2 Redkin, I 247, 2 Redkin, K 116, 1 Reed, E 160, 1 Reed, R 94, 2	306 295 301 300 164 224 286 230 306 51, 39, 301 102 283 286 170 172 233
265, 278, 301, 3 Ravi, P 2 Ravi, V 2 Rawat, S 2 Ray, K 2 Raynova, S 2 Raynova, 2 Raynova, S 2 Raynova, 2 Raynova, S 2 Raynova, 2 Raynova, 2 Raynova, 2 Raynova, 2 Raynova, 2 Raynova, 2 Raynov	306 2295 301 300 164 2275 242 286 230 306 51, 39, 301 102 283 286 170 172 233 176
265, 278, 301, 3 Ravi, P 2 Ravi, V 2 Rawat, S 2 Rawat, S 2 Ray, K 1 Raynova, S 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, T 2 Razmi, J 2 Razumovskiy, V 201, 2 Ready, J 244, 265, 278, 3 Rebak, R 103, 121, 125, 135, 1 175, 180, 206, 210, 235, 237, 2 240, 259, 262, 263, 276, 293, 3 Recihardt, A 1 Reddy, R 110, 239, 281, 2 Redkin, I 247, 2 Redkin, K 116, 1 Reed, E 160, 1 Reed, R 94, 2 Reek, T 3	306 295 301 300 164 264 275 242 286 230 306 51, 39, 301 102 283 286 170 172 233 176 114
265, 278, 301, 3 Ravi, P	306 295 301 300 164 264 275 242 286 230 306 51, 39, 301 102 283 286 170 172 233 176 114 250
265, 278, 301, 3 Ravi, P	306 295 301 300 164 264 275 242 286 230 306 51, 39, 301 102 283 286 170 172 233 176 114 250 2253
265, 278, 301, 3 Ravi, P	306 295 301 300 164 224 2286 230 306 51, 39, 301 102 283 286 170 172 233 176 114 250 253 282
265, 278, 301, 3 Ravi, P 2 Ravi, V 2 Rawat, S 2 Ray, K 2 Ray, K 2 Raynova, S 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, T 2 Razumovskiy, V 201, 2 Razumovskiy, V 201, 2 Ready, J 244, 265, 278, 3 Rebak, R 103, 121, 125, 135, 1 175, 180, 206, 210, 235, 237, 2 240, 259, 262, 263, 276, 293, 3 Recihardt, A 247, 2 Reddy, R 110, 239, 281, 2 Redkin, I 247, 2 Redkin, K 110, 239, 281, 2 Reedk, R 160, 1 Reedy, E 160, 1 Reedy, E 160, 1 Reedy, E 160, 1 Reedy, E 2 Reedy, E 2 Reeve, K 2 Reeve, S 250, 2 Refat, M 2 Reggente, M. 1	306 295 301 300 164 2242 286 301 306 51, 39, 301 102 283 286 170 172 233 176 114 250 282 107
265, 278, 301, 3 Ravi, P 2 Ravi, V 2 Rawat, S 3 Ray, K 2 Ray, N 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, P 201, 108, 123, 208, 260, 2 Ray, T 2 Razmi, J 2 Razmi, J 2 Razumovskiy, V 201, 2 Ready, J. 244, 265, 278, 3 Rebak, R 103, 121, 125, 135, 1 175, 180, 206, 210, 235, 237, 2 240, 259, 262, 263, 276, 293, 3 Recihardt, A 2 Reddy, R 110, 239, 281, 2 Redkin, I 247, 2 Redkin, K 116, 1 Reed, E 160, 1 Reed, E 160, 1 Reed, E 160, 1 Reedy, E 1 Reedy, E 1 Reeedy, E 2 Reeve, S 250, 2 Refat, M 2 Reente, M 2	306 295 301 300 164 264 275 242 286 51, 39, 301 102 283 286 170 172 233 176 114 250 253 107 160
265, 278, 301, 3 Ravi, P 2 Ravi, V 2 Rawat, S 2 Ray, K 2 Ray, K 2 Raynova, S 2 Ray, P 101, 108, 123, 208, 260, 2 Ray, T 2 Razumovskiy, V 201, 2 Razumovskiy, V 201, 2 Ready, J 244, 265, 278, 3 Rebak, R 103, 121, 125, 135, 1 175, 180, 206, 210, 235, 237, 2 240, 259, 262, 263, 276, 293, 3 Recihardt, A 247, 2 Reddy, R 110, 239, 281, 2 Redkin, I 247, 2 Redkin, K 110, 239, 281, 2 Reedk, R 160, 1 Reedy, E 160, 1 Reedy, E 160, 1 Reedy, E 160, 1 Reedy, E 2 Reedy, E 2 Reeve, K 2 Reeve, S 250, 2 Refat, M 2 Reggente, M. 1	306 295 301 300 164 264 275 242 286 230 306 51, 39, 102 283 286 170 172 233 176 114 250 282 107 160 212

Reid, A
Reid, S
Reifsnider, K
Reinartz, M236
Reinhard, D140
Reinhart, G
Reinke, P160
Remington, B174, 272
Renaudier, S
Renaud, L
Renault, P
Ren, H
Ren, J
Ren, K247
Renk, O 159, 188, 266
Ren, L
Renn, M244
Ren, X243
Ren, Y 102, 137, 164, 239, 248, 290
Ren, Z251
Repper, S
Requena, G
Resende, C
Reshetnyak, O181
Ressel, G127
Ress, W
Restrepo Baena, O
Restrepo, D
Rettenmayr, M236, 278
Reulet, P
Reuter, M133
Reutzel, E
Reverdy, M
Revil-Baudard, B
Reyes D., I
Reyes Domínguez, I
Reyes, M
Reyes, R
Reynolds, L
Reynolds, T
Rezaii, N
Rezwan, A
R. Grosse, I
Rhamdhani, M133
Rhee, C258
Rhee, H
Rhein, R 95, 233, 270
Riano, J
Ribárik, G
Ribeiro, F
Richter, C118
Richter, M217
Ricker, R
Ricketts, N
Ricks, R
Rico, G

Ridhollah, A198
Riedemann, T
Riekehr, S
Riemslag, A
Riemslag, T
Rietema, C239
Rigby, M
Rigg, P
Rigo, E
Rijal, B145, 209
Rijkenberg, A192
Rillings, M266, 280
Ringer, S140, 159, 168, 197, 225,
252, 271
Rinko, E
Rios, E88
Rios, O 90, 112, 136, 144, 164, 193,
196, 222, 247, 249, 287, 302
Ripplinger, K
Risse, J
Risso, J
Ritchie, R 93, 101, 115, 159, 178, 227,
228, 254, 261, 275
Rittinghaus, S162, 168
Rivera, D
Rivera-Diaz-del-Castillo, P235, 260
Rivera-Díaz-del-Castillo, P235
Rivera, O
Rivoaland, L148
Roach, A
Roach, C
Robbins, B149
Robbins, J
Robbins, W
Robert, G
Roberts, A
Roberts, C
Roberts, D
Robertson, I121
Robertson, N
Roberts, R
Robinson, A
Robson, J
Robson, J
Rochette, P
Roddatis, V
Rodelas, J
Rodgers, T
Rodney, D
Rodrigues, D
Rodrigues, S
Rodriguez, M
Rodriguez, O
Rodriguez, R
Roeder, R 114, 188, 226

Roehling, J
Roehling, T
Rogal, L
Rogers, B
$\begin{array}{c} \text{Rogers, D} \\ \text{Degawa} \\ V \\ 152 \end{array}$
Rogers, K
Roh, A
Rohatgi, A159
Rohatgi, P154, 155
Rohen, L170
Roh, H97
Rohrer, G 128, 156, 216, 256
Roider, C
Rokkam, S121, 138, 175, 206, 235,
250, 201
239, 301 Rolandi, M
Rolchigo, M
Rollett, A91, 134, 135, 137, 192,
224 268 289
Romaner, L
Romaniszyn, D
Romero, J
Romero, T
Rometo, 1
Rometsch, P
Rommel, S158, 214
Ronevich, J175
Rong, Z
Roosendaal, T
Roper, C99
Rørvik, S120, 148
Rosalbino, F105
Rosales, J103
Rosalie, J
Rosario, C
Rose, D
Rosefort, M
Rosei, F
Rosenberger, A
Rosenberger, B91
Rosenberger, M
Rosenbrock, C128
Rosen, D
Rosewitz, J
Rosochowska, M264
Ross, A178
Rossi, M
Rossi, S207
Rosso, M
Ross, P169
Rostami, A259
Rotella, J 146, 179, 295
Roters, F146
Roth, R
Rouat, B
Rouffié, A
Rouleau, C
Rouse, J159

Rousselot, S
Rouxel, B
Rovinelli, A
Dovine D 266 200 207
Rovira, P
Rowbottom, C128
Rowenhorst, D 89, 190, 255
Roy, A143, 214
Roy, G
Roy, R
Roy, S
•
Roy, T109
Roytershteyn, V104, 221
Rozak, G130
Rozanska, A
Roze, M
Rozicki, R
Rozman, K 101, 119, 174, 223, 235,
260, 289 Rua, J
Rubel, O141
Rubenchik, A
Rubiolo, G
Rudraraju, S
Ruel, F131
Ruestes, C 174, 234, 272
Ruffini, A
Rugg, D
Ruggiero, A 99, 202, 205
Ruggles, T
Rui, F
Rui, H156, 306
Rui, Y195
Ruiz Colón, E
Ruiz, M241
Ruiz Ramirz, J
Runge, K
Runnels, B
Runyon, C
Rupert, T129, 153, 184, 188, 216,
245, 246, 265
Rupp, M
Rupp, R
Ruscitto, D
Russell, R
Russo Spena, P105, 127, 154, 182, 305
Rust, E
Ruxanda, R198, 297
Ryabov, D 158, 247, 286
Ryan, E
Ryan, M
Rydel, J
•
Ryman, S
Ryou, J
Ryu, C
Ryu, H 101, 125, 178, 285
Ryu, I 211, 212, 264

Ryu, S

S S

C., J., f., M. 117
Saadatfar, M 117
Saage, H
Saai, A
Saal, J 102, 123, 124, 150, 178, 179,
203, 209, 238, 270
Sabarou, H243, 305
Sabau, A93, 115, 142, 167, 170, 200
Sabet, F168
Sabisch, J
Saboo, A
Sabzi, M
Sachan, D
Sachan, R100, 101, 122, 149, 177,
211, 240, 301
Sadat, M171
Sadeghpour, S
Sader, J
Sadler, B
Sadoh, A130
Sadoway, D
Sadri, F107
Saedlou, S
Saeki, M
Saengdeejing, A272
Saenz, N
Sæter, J
Saevarsdottir, G 114, 175, 200
Safriet, S
Sagapuram, D
Saghafianlarijani, H
Sahajwalla, V129, 194
Saha, P
Saharan, A
Sahara, R
Sahlot, P
Sahni, K
Sahu, P174
Sahu, T
Saidi, P
Saito, K
Saito, N
Saito, T
Saiz, C149, 301
Saiz, D
Saiz Gutierrez, E115
Sajadifar, S
Sakane, S 236, 256, 257, 274
Sakano, M120
Sakaue, T193
Salahuddin, M191
Sala, K
Sala, K
Sala, K

8.1 B	
Salas, D	
Salas, E	
Salawu, E	126
Salazar, D112,	136
Salazar-Jaramillo, D	136
Saldanha, T	121
Saleem, S	200
Saleh, C	202
Salehinia, I	
Salehiyan, D	
Saleh, M 147, 173, 187,	
Saleh, T 180, 181,	
Salem, M	
Sales, B	
Salgado de Assis, F	
Salifu, A	
Salim, J.	
Salman, O	
Salmasi, A	
Salonitis, K	
Salowitz, N	
Salvador, C	
Salvador, H	
Salzbrenner, B	
Samali, B	
Samant, R	
Samei, J.	
Samimi, P161, Samolyuk, G129, 145, 237,	
Samolylik (+ 179.145.737)	0 2 2 0
Sample, C	124
Sample, C Samuel, E	124 167
Sample, C Samuel, E Samwer, K	124 167 169
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A	124 167 169 252
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R	124 167 169 252 298
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M	124 167 169 252 298 218
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R.	124 167 169 252 298 218 241
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sanchez, R Sandberg, R	124 167 169 252 298 218 241 163
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sandeman, K	124 167 252 298 218 241 163 164
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandeman, K Sanders, P	124 167 252 298 218 241 163 164 116
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sandeman, K Sanders, P Sanders, S	124 167 252 298 218 241 163 164 116 131
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sanderg, R Sanders, P Sanders, S Sandfeld, S173,	124 167 252 298 218 241 163 164 116 131 251
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandhu, N	124 167 169 252 298 218 241 163 164 116 131 251 152
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandhu, N Sandlöbes, S Sandlöbes, S	124 167 169 252 298 218 241 163 164 116 131 251 152 251
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sandeman, K Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandhu, N Sandlöbes, S Sandloebes, S	124 167 169 252 298 218 241 163 164 116 131 251 152 251 159
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sandeman, K Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandlöbes, S Sandloebes, S Sandoval, L	124 167 169 252 298 218 241 163 164 116 131 251 152 251 159 .95
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V	124 167 169 252 298 218 241 163 164 116 131 251 152 251 159 .95 142
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandfeld, S Sandfeld, S Sandhu, N Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V Sangid, M 98, 119, 134, 135, J	124 167 169 252 298 218 241 163 164 131 251 152 251 152 251 159 .95 142 146,
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandfeld, S Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V Sangid, M Sa, 173, 179, 192, 2	124 167 169 252 298 218 241 163 164 116 131 251 152 251 152 251 142 146, 204,
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandfeld, S Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L. Sa Neto, V Sangid, M 98, 119, 134, 135, 149, 162, 173, 179, 192, 2	124 167 169 252 298 218 241 163 164 116 131 251 152 251 159 .95 142 146, 204, 302
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sandeman, K Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V Sangid, M98, 119, 134, 135, 1 149, 162, 173, 179, 192, 2 289, 295, Sang, X	124 167 169 252 298 241 163 164 116 131 251 152 251 159 .95 142 146, 204, 302 277
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V Sangid, M98, 119, 134, 135, 149, 162, 173, 179, 192, 2 289, 295, Sang, X Sankaranarayanan, S	124 167 169 252 298 218 241 163 164 116 131 251 152 251 159 .95 142 146, 204, 302 277 231
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandfeld, S Sandlöbes, S Sandlöbes, S Sandloebes, S Sandloebes, S Sandoval, L. Sa Neto, V Sangid, M Sand, 199, 119, 134, 135, 149, 162, 173, 179, 192, 2 289, 295, Sang, X Sankaranarayanan, S Sankaran, S	124 167 169 252 298 218 241 163 164 116 131 251 152 251 159 .95 142 242 146, 204, 302 277 231 167
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandfeld, S Sandfeld, S Sandhu, N Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V Sangid, M Sandis, 119, 134, 135, 149, 162, 173, 179, 192, 289, 295, Sankaranarayanan, S Sankaran, S San Marchi, C San Marchi, C San Marchi, C	124 167 169 252 298 218 241 163 164 116 131 251 152 251 142 251 142 244, 204, 302 277 231 167 220
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandfeld, S Sandfeld, S Sandhu, N Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V Sangid, M Sand, 12, 173, 179, 192, 2 289, 295, Sang, X Sankaranarayanan, S San Marchi, C San, T San, T	124 167 169 252 298 218 241 163 164 116 131 251 152 251 142 251 142, 204, 302 277 231 167 220 229
Sample, C Samuel, E Samwer, K Sanaty Zadeh, A Sanaty Zadeh, A Sanches, R Sanchez, M Sanchez, R Sandberg, R Sandberg, R Sanders, P Sanders, S Sandfeld, S Sandfeld, S Sandfeld, S Sandfeld, S Sandhu, N Sandlöbes, S Sandlöbes, S Sandloebes, S Sandoval, L Sa Neto, V Sangid, M Sandis, 119, 134, 135, 149, 162, 173, 179, 192, 289, 295, Sankaranarayanan, S Sankaran, S San Marchi, C San Marchi, C San Marchi, C	124 167 169 252 298 218 241 163 164 116 131 251 152 251 152 251 159 .95 142 246, 204, 302 277 231 167 220 229 272

Sansoz, F 132, 182, 231
Santala, M 134, 212, 234
Santana, J
Santodonato, L 101, 260, 268, 286
Santofimia, M299
Santo, G
Santoki, J 95, 96, 242
Santos, A
Santos, C
-
Santos, D
Santosh, K160
Santos, J
Santos, M
Santos, R
Santos, V
Sanyal, S
Sapiro, D
A
Saraf, V
Saremi, M100
Sari, D
Sarikaya, M93
Sarkar, R171, 301
Sarma, M
Sarwono, D
Sasaki, K
Sasaki, T 112, 140, 179, 180
Sasikumar, K
Sato, A162
Sato, S
Sato, T
Sauceda, D
Saucedo-Muñoz, M
Saunders, C
Sauriol, P
Sauvage, X
Sauzay, M122, 155
Savage, D
Savage, G
Saxena, M
Saylor, J
Sayre, D
S. Azar, A
Scallon, P
Scanley, E141, 237
Scardi, P
Scarsella, A
Scattergood, R216
Scavino, G105
Scervini, M
Schaedler, T92, 99
Schaedler, T92, 99 Schaefer, R
Schaedler, T. .92, 99 Schaefer, R. .249 Schaffer, J. .243, 253
Schaedler, T. .92, 99 Schaefer, R. .249 Schaffer, J. .243, 253 Schaffner, K. .242
Schaedler, T. .92, 99 Schaefer, R. .249 Schaffer, J. .243, 253 Schaffner, K. .242 Schafler, E. .216, 276
Schaedler, T. .92, 99 Schaefer, R. .249 Schaffer, J. .243, 253 Schaffner, K. .242
Schaedler, T. .92, 99 Schaefer, R. .249 Schaffer, J. .243, 253 Schaffner, K. .242 Schafler, E. .216, 276

Schaper, J
Schappel, D
Scharf, T
Schäublin, R
Scheele, G252
Scheer, A
Scheiber, D
Schell, N
Scherrer, D
Scheu, T146
Schick, M117
Schiebel, F
Schlegel, M
Schliephake, D
Schlütter, R147
Schmerber, G
Schmid-Fetzer, R 151, 210, 278
Schmidt, E198, 297
Schmidt, K203
Schneider, D 95, 96, 242
Schneider, J
190, 219, 220, 234, 237,
247, 268, 285
Schneider, R
Schniepp, H140
Schoenung, J
188, 191, 247, 287, 302
Schoeppner, R
Schofield, K
Schöll, E
Scholz, R
Schönhobel, A136
Schönhöbel, A136
Schrandt, M244
Schreiber, D140, 189
Schreiber, J
Schrock, D259
Schroers, J 141, 191, 212, 227, 237,
271, 297
Schubbe, J
Schuh, B
Schuh, C 191, 212, 216, 248, 251
Schulz, B
Schulz, E
Schumacher, A
Schumacher, K
Schunk, P278
Schuster, B
Schuster, J108, 132
Schutz, J
Schvezov, C 108, 131, 132, 158, 186,
293, 307
Schwab, H
Schwaiger, R
Schwalbach, E. 88, 89, 134, 137, 147, 251
Schwaller, E

Schweiger, R
Schweitzer, E
Schwen, D
202, 215, 244 Scipioni Bertoli, U92
Scopel, A
Scott-Emuakpor, O
Scott, K
Scott, M
Scott, T
Scullin, W
Scurria, M
Seal, S
Seals, R
Seangatith, J
Sears, J 89, 135, 163, 191, 220, 248, 286
Sebastian, J
Sebeck, K90
Sediako, D 196, 210, 227, 252
Seelam, U
Seelig, K
Seetharaman, S
Segal, V
Seidensticker, J
Seidman, D 114, 140, 158, 168, 185,
197, 225, 247, 251, 252
Seifert, H
Seifi, M
Seitz, J
Seixas, M
Seki, T
Sellmyer, D
Selvamanickam, V
Selzer, M
Semenova, I
Semiatin, L
Semiatin, S
149, 159, 162, 188, 190, 216,
217, 219, 220, 246, 247, 266,
267, 268, 280, 285, 307
Senanayake, N
Sendek, A160, 172
Sen, F
Senkov, O101, 102, 119, 130, 149, 208
Sen, M
Senninger, O
Senol, M
Senor, D
Sen, P
Sentürk, B
Senyuta, A
Seo, J
Seol, J
Seo, S
Sepehrband,
Jepennound,

Sepehrband, P95, 137, 143, 171,
201, 229, 256, 272, 299 Sepehri-Amin, H112
Serbent, M
Sercombe, T
Serefoglu, M
Serrano Rodriguez, K
Serruys, Y
Sesana, R
Seshadri, A
Sethi, A
Šetina Batic, B
Setman, D
Setyawan, W 97, 218, 262
Sevecek, M
Sevecek, O
Severin, J
Severs, K
Severson, J
Sevsek, S90
Seydibeyoglu, M289
Sezer, R
Shaber, N
Shackleford, C
Shade, P 89, 98, 119, 146, 147, 149,
151, 173, 204, 289
Shadravan, A
Shafer, C133, 242
Shaffer, B
Shafirovich, E
Sha, G140, 168, 197, 225, 252, 265
Shahani, A 94, 106, 129, 156, 177,
184, 214, 243, 260, 293, 306
Shaha, S
Shahbazmohamadi, S
Shahbeigi Roodposhti, P266, 302
Shah, H
Shahin, M
Shah, J
Shah, K
Shah, R
Shahrezaei, S 105, 156, 199, 253
Shah, S
Shah, Z
Shahzad, M
Shaijumon, M
Shalaan, E
Shalan, K
Shamanian, M
Sham, K
Shammas, J
Shamsaei, N 88, 134, 162, 191, 194, 286
Shamsujjoha, M
Shan, G
Shang, C 95, 96, 117, 143, 171, 201,
230, 257, 300

Shangguan, H
Shang, J
Shang, S 150, 201, 202, 208, 238,
•
261, 301 Shang, X246
Shanhong, Z234
Shannon, S104
Shanthraj, P113, 146
Shao, D
Shao, L
Shao, X238
Shao, Y
Shapiro, A
Shapiro-Scharlotta, A219
Shapiro-Sharlotta, A102
Sharafi, P
Sharma, A 97, 101, 237, 261, 279, 281
Sharma, H 103, 149, 155, 161
Sharma, S 143, 158, 174
Sharma, V164
Sharon, J
Sharples, S
Sharypov, N
Shassere, B 129, 205, 221
Shaw, A
Shaw, L 133, 211, 244, 281
Sha, Z153
Shazli, M240
Sheikh, M165
Sheikh, S
Shen, C174
Shengzhong, B
Shen, H
Shen, Q
Shen, W
Shen, Y 89, 91, 118, 128, 156, 192, 216, 221, 268, 289
Shepard, M
Sherwood, A
She, X
Shibata, A
Shibata, H 101, 193, 223, 250, 268
Shibayama, A
Shibuta, Y
Shie, K
Shield, J 193, 272, 292
Shifler, D 208, 237, 261, 275, 304
Shi, G
Shih-kang, L
Shih, Z
Shijie, G196
Shi, L
Shi, M281
Shimamura, K120
Shimamura, Y104

Shimizu, K	135
Shimojo, F	
Shimokawabe, T 236, 257,	274
Shin, D 86, 102, 124, 129, 150, 1	66
171, 178, 198, 201, 209, 218, 2	
238, 241, 244, 253, 258, 270,	
Shin, H	
Shin, I	
Shin, J 114, 149,	
Shin, K	
Shinsuke, Y	
Shin, W	277
Shiomi, H	
Shipilov, S	206
Shippert, T	258
Shi, Q170,	
Shi, R106,	
Shiratori, H	
Shirayama, S	
Shirley, S	
Shirvan, K	
Shi, S	
Shi, Y 141, 169, 199, 207, 227, 2	
261, 265, 270, 271,	
Shi, Z 167, 196, Shofner, M 105, 128, 155, 183, 213,	225 205
Shojaei, K.	
Short, M 172, 189, 231, 240, 276,	
Shou, H	
Shower, P	
Shrestha, S142,	
Shuai, L	217
Shuchao, Z	175
Shu, D	.94
Shuh, D	152
Shu Jing, Z	
Shukla, S	
Shull, R	
Shurvinton, J	
Shu, S	
Shuva, M	
Shu, Y	
Shvindlerman, L	
Shyam, A 129, 154, 201, 208, 248,	
Siadati, M	
Siadati, S	
Siciliano, F	
Siddel, D133,	
Sidorenko, D	
Sidorov, A	
Siebeck, S	182
Siegel, D	
Sieja-Smaga, E 303, 304,	
Sienz, J	
Sieradzki, K	
Sierros, K	

Sietins, J
Sietsma, J
Sijabat, S
Sikora Jasinska, M253
Sikora-Jasinska, M253
Sikora, W121
Silaen, A110, 200
Sillars, S
Silva, A
Silva, E
Silva, J
Silva, L 283, 290, 298, 299
Silva, P
Silva Santisteban, T198
Silva Souza, J195
Silva, T
Silva Valenzuela, M
Silva-Valenzuela, M 256, 298, 299
Simonassi, N
Simonelli, M 212, 219, 222
Simonet Fotso, J
Simon, R
Simsek, E
Sims, H
Simsir, C
Sims, Z 196, 247, 302
Simunovic, S
Sinagra, B
Sinani, T168
Singamaneni, S 100, 122, 123, 149,
•
160, 177, 301
Singaravelu, A
Singer, J141
Singh, A 97, 117, 144, 172, 244, 249,
264, 281, 300, 306
264, 281, 300, 306 Singha, U
264, 281, 300, 306 Singha, U .132 Singh, C .289, 299 Singh, D .89, 150 Singh, G .88, 190 Singh, J .262 Singh, K .249
264, 281, 300, 306 Singha, U .132 Singh, C .289, 299 Singh, D .89, 150 Singh, G .262 Singh, K .262 Singh, K .249 Singh, P .101, 123, 126
264, 281, 300, 306 Singha, U .132 Singh, C .289, 299 Singh, D .89, 150 Singh, G .88, 190 Singh, J .262 Singh, K .249 Singh, P .101, 123, 126 Singh, R .97, 100, 122, 123, 142, 149,
264, 281, 300, 306 Singha, U .132 Singh, C .289, 299 Singh, D .89, 150 Singh, G .262 Singh, K .262 Singh, K .249 Singh, P .101, 123, 126
264, 281, 300, 306 Singha, U
264, 281, 300, 306 Singha, U .132 Singh, C .289, 299 Singh, D .89, 150 Singh, G .89, 150 Singh, G .262 Singh, J .262 Singh, K .249 Singh, P .101, 123, 126 Singh, R .97, 100, 122, 123, 142, 149, 177, 182, 186, 217, 261, 301 .301 Singh Raman, R .186 Singh, S .105, 163, 256, 293 Sinha, G .144 Sinha, S .221 Sinha, V .100, 204 Sinnott, A .258 Sinnott, S .171 Siqueira, G .281, 283 Sisson, R .203, 209, 228, 232
264, 281, 300, 306 Singha, U
264, 281, 300, 306 Singha, U .132 Singh, C .289, 299 Singh, D .89, 150 Singh, G .89, 150 Singh, G .262 Singh, J .262 Singh, K .249 Singh, P .101, 123, 126 Singh, R .97, 100, 122, 123, 142, 149, 177, 182, 186, 217, 261, 301 .301 Singh Raman, R .186 Singh, S .105, 163, 256, 293 Sinha, G .144 Sinha, S .221 Sinha, V .100, 204 Sinnott, A .258 Sinnott, S .171 Siqueira, G .281, 283 Sisson, R .203, 209, 228, 232
264, 281, 300, 306 Singha, U

Sittiho, A161
Siu, S115
Sivaprahasam, D138
Sivaprasad, S
Sivaswamy, G
Sivlin, D
Skinner, G
Sk., M
Skokov, K
Skomski, R
Skorvanek, I
Skrotzki, W
Skszek, T
Skybakmoen, E147, 225
Slaoui, A
Slocum, A
Slone, C
Slowing, I
Sluiter, M 124, 201, 203, 261
Small, K
Smid, M
Smilauerova, J
Šmilauerová, J
Smirnov, A
Smith, A 102, 171, 286
Smith, C
Smith, D
Smith, E
Smith, H
Smith, J
Smith, K
Smith, M
Smith, N
Smith, R118, 202, 210, 231, 245, 262
Smith, S
Smith, T134, 146, 162, 163, 173,
191, 204, 220
Smith, W
Smith, Y157, 233, 244, 265, 279, 306
Smoqi, Z
Smyrak, B
Snel, J
Snider, G
Snir, Y
Snook, G
Snyder, D
Snyder, G 138, 241, 296
Snyder, J
Snyder, K
Soare, M
Soares de Faria, J
Soares, L
Soares, P
Soares, R
Sobiesiak, A
Soboyejo, W 141, 226, 238
0000ycju, w 141, 220, 238

Sofinowski, K135, 262
Sofronis, P
Sohn, I 193, 223, 250, 268
Sohn, S 136, 181, 227, 237
Sohn, Y 103, 151, 190, 237, 248, 287
Soisson, F172
So, K 155, 189, 240
Sokalski, V
Sokolov, M
Sokolowski, J
Solanki, K
176, 180, 187, 235, 239, 257,
259, 262, 276, 292
Solari, P
Solberg, E141
S'O.Leary, T
Soler, M 107, 111, 112, 295
Soler, R
Solheim, A 148, 184, 225
Sologubenko, A
Soltanattar, S162
Soman, R
Somerday, B
Somers, M107
Somidin, F
Sommer, A105
Sommer, M105
Sommerseth, C
Somnard, B234
Son, C
Sone, M 195, 281, 296
Song, B247
Songca, S
Song, G 101, 205, 211, 236, 268, 271,
277, 286
Song, H 207, 208, 289
Song, J 272, 288, 290, 303
Song, M 121, 135, 180, 181, 239
Song, S
Song, W
•
Song, X
Song, Y 185, 236, 294
Son, H 281, 287, 288, 303
Sonia, F
Soni, V
Sonkusare, R
Sonoiki, O186
Son, W
Sooby Wood, E
Sorhuus, A252
Sorour, M
Sosimi, A
Soto Leytan, K261
Soto-Medina, S
Soto, S145
Soto Vargas, J

Sottar, R	
Soucy, G	
Sousa, B	
	.100, 122, 148, 149, 176,
Speal, A	206, 235, 291
Spoorot D	98, 166, 194, 264
Spowart, J	128, 183, 229
Spray, R	
Sprengel, W	
Sridharan, K	.88, 110, 133, 161, 190,
	219, 239, 263, 276, 285
Sridharan, N	106, 129, 156, 183, 239
Srikanth, H	
Srinath, K	
Srinath, P	
	122, 206, 257, 292
Srivatsan, T	101, 123, 149, 178, 182,
	207, 208, 236, 237, 260,
_00,	261, 274, 275, 303, 305
Srivilliputhur, S	
	106, 216, 279

Stannard, T 113, 241, 259
Stan, T
Star, K
Stark, F141
Staroselsky, A
Starr, S
Startt, J
Stasiak, T
Stauffer, D
Stauffer, T
Stebner, A 98, 135, 194, 206, 245
Stecker, S137
Steckley, T
Stefan, C
Stef, J
Steglich, D
Steglich, J
Stein, A
Steinberger, D
Steiner, M 103, 259, 263
Steingart, D
Steinmetz, P
Stekker, M
Stekovic, S
Stender, M
Sten, S
Stephens, R 148, 205, 276
Stepnik, B
Stermann, L
Steveler, E
Stevens, E
Stevenson, J
Stewart, C
Stewart, J
Stewart, R
Stilke, M
Stiller, K
Stinville, J
Stirrup, K
StJohn, D 92, 151, 167, 180
Stockman, T
Stocks, G 101, 145, 237, 261
Stocks, M
Stoica, A 135, 192, 268, 271, 286
Stoker, A
Stokes, A
Stoltz, G
Stone, H 123, 130, 156, 197, 208, 233
Stone, K
Stone, M
Stonkevitch, E
Stopher, M
Store, A
Store, A
Story, M 194, 198, 295
0.01), 101 174, 190, 295

Stoudt, M 88, 134, 162, 190, 219, 22	
221, 247, 268, 2	
Strachan, A 120, 138, 174, 253, 2	
Strantza, M1	
Stráský, D	
Strasky, J	67
Stráský, J 141, 265, 267, 2	78
Strassburger, P	
Straub, T1	
Straumal, B2	66
Strauss, M1	
Strawniak, M	98
Strickland, D2	
Strobel, T	
Stroh, J	
Stromme, E1	
Strother, J	
Strozi, R	
Strüder, L	
Stryzhyboroda, O 1	
Štubna, I	
Stucker, B163, 1	65
Stuckner, J	16
Stukowski, A	
Sturz, L	
Styles, M	
Suarez, O	
Suárez, O	
Suazo Tejeda, J1	
Subhash, G	
Subia, S	
Subramanian, M	
Subroto, T	
Su, C	93
Sucharitpwatskul, S2	15
Sudbrack, C88, 98, 119, 140, 14	
162, 168, 173, 197, 20	
220, 225, 233, 252, 2	
Suddell, B206, 2	
Suetake, A	
Su, F	68
Sufiiarov, V2	86
Sugahara, T	93
Suganuma, K 137, 193, 213, 2	
Sugar, J 134, 162, 2	
Sugiyama, N	
Sugizaki, M	
Su, H	
Suh, B179, 1	
Sui, T	
Su, J	
Sukhomlinov, D	
Suk, M	
Sukotjo, A2	
Suleiman, D3	
Sulzer, S	33

Suman, S
Sumikawa, H
Sumikawa, K
Summerfelt, S
Sunada, E
Sun, C 94, 160, 247
Sun, D200
Sundaram, S100
Sundaram Singaravelu, A
Sundararaghavan, V 143, 214, 282
Sundararahavan, V
Sundar, S
Sundar, V 94, 116, 297, 299
Sun, F
Sung, H
Sun, H 193, 289, 291
Sunil Dhumal, R101
Sun, J 128, 206, 243
Sun, K 87, 112, 196, 200, 288
Sun, L 130, 136, 140, 186, 247
Sun, M196
Sun, P 124, 244, 278
Sun, R
Sun, S
Sun, T 135, 140, 268
Sun, W
Sun, X 133, 245, 290
Sun, Y 92, 190, 191, 206, 207, 227,
250, 286
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Suresh, K147 Suresh, S185, 201 Suri, P245
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Suslu, Y167
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Susan, D219 Susan, D219 Suslu, Y167 Suss, A196
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Suslu, Y167
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Susan, D219 Susan, D219 Suslu, Y167 Suss, A196
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Suslu, Y167 Suss, A196 Sutcliffe, C142 Suter, R89, 128, 156, 192, 204,
250, 286 Sun, Z 99, 121, 148, 161, 175, 285, 291 Suo, X
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C219 Su, S299 Susan, D219 Suslu, Y167 Suss, A196 Sutcliffe, C142 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A147
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Susan, D219 Susan, D219 Susan, D219 Susu, Y167 Suss, A196 Sutcliffe, C42 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A147 Sutton, B212
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Susan, D219 Suslu, Y167 Suss, A196 Sutcliffe, C42 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A147 Sutton, B212 Su, W195
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Suslu, Y167 Suss, A196 Sutcliffe, C142 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A147 Sutton, B212 Su, W195 Suwas, S154
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Suslu, Y167 Suss, A196 Sutcliffe, C44 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A147 Sutton, B212 Su, W195 Suwas, S154 Su, X306
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Suslu, Y167 Suss, A196 Sutcliffe, C42 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A47 Sutton, B212 Su, W195 Suwas, S154 Su, X306 Su, Y204, 206, 221, 296, 297
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C29 Su, S299 Susan, D219 Suslu, Y167 Suss, A96 Sutcliffe, C442 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A47 Sutton, B212 Su, W95 Suwas, S154 Su, X306 Su, Y204, 206, 221, 296, 297 Su, Z87, 142, 273
250, 286 Sun, Z99, 121, 148, 161, 175, 285, 291 Suo, X202 Su, Q219 Su, R127 Surappa, M127 Surappa, M105 Suresh, K147 Suresh, S185, 201 Suri, P245 Surjoseputro, W107 Surta, W277 Suryanarayana, C129 Su, S299 Susan, D219 Suslu, Y167 Suss, A196 Sutcliffe, C42 Suter, R89, 128, 156, 192, 204, 216, 268, 289 Sutradhar, A47 Sutton, B212 Su, W195 Suwas, S154 Su, X306 Su, Y204, 206, 221, 296, 297

Suzuki, A 174, 232,	261
Suzuki, E	239
Suzuki, S	290
Suzuki, T	
Suzuki, Y	137
Svec, P	
Svec Sr, P	
Svendsen, B	
Svensson, A	
Sweatman, K	
Sweet, R	
Swenson, M	110
Swiler, L	
Sypek, J	
Syvertsen, M	
Szakacs, G	
Szczepaniak, A	
Szlezynger, M	
Szlufarka, I	
Szlufarska, I 104, 202, 229,	
Szymanek, M	
•	

Т

Tabandeh-Khorshid, M155
Tabatabaei, M144
Taber, G
Tabuchi, Y
Tada, S
Tafaghodi, L265
Taggart-Scarff, J137
Tahara, Y 195, 281, 296
Taheri, M106, 156, 167, 222, 245,
268, 274
Tahini, H
Tahmasebi, M
Taina, F
Takada, Y
Takahashi, K
Takajo, S91, 95
Takaki, T
Takamura, H
Takanashi, M
Takizawa, Y
Talapatra, A 172, 214, 253
Talebi-Esfandarani, M
Taleff, E
209, 255
Taller, S 87, 110, 210
Tamerler, C 93, 114, 140, 217
Tan, A166, 256
Tanaka, C
Tanaka, I
Tanaka, K
Tanaka, T
Tanaka, Y

Tan, C
Tancret, F
Tan, G
Tang, B
Tang, D
Tang, G
Tang, H 137, 191, 215, 223, 284, 299
Tang, J108, 121
Tang, K 110, 142, 160, 228
Tang, M134
Tangpatjaroen, C104, 229
Tangstad, M160, 200
Tang, W 112, 136, 193, 200, 222,
282, 287
Tang, Y
Tang, Z101
Tan, L
Tannenbaum, J
Tanrikulu, A88
Tan, W
217, 220, 294
Tan, X
Tan, Y
Tao, S
Tao, W
Tapia, J
Taptimthong, P157
Tarafder, S
Tarasek, A
Tarcea, G253
Tari, V
Tarleton, E
Tasan, C 89, 90, 111, 135, 136, 163,
164, 192, 221, 248, 249, 295
Taskaev, S
Tas Kavakbasi, B
Taskinen, P259
Tasooji, A
Tassey, G144
Tassone, C
Tasyurek, K
Tataurova, L90
Tatetsu, Y
Tatsh, F
Taub, A
Taupin, M
Taupin, V
Tavakoli, D
Tavares, M195
Tavazza, F97, 117, 118, 138, 144,
172, 203, 231, 258, 273, 300
Ta, Y
Taylor, C
Taylor, M 148, 191, 205, 208, 276, 304
Taylor, P233
Tea, E

Tehovnik, F
Teixeira, J
Teja Ruiz, A
Teke, E
Tekumalla, S183
Telang, A
Teles, M
Templin, B
Teng, C
Teng, F
Tenório, J
Terada, D
Tercelj, M
Terdik, J
Ter-Isahakyan, A
Terrani, K
219, 239, 240, 263, 276
Terrassa, K134, 287
Terrier, P
ter Weer, P195
Terynkova, A
Terynková, A
Tesfahunegn, Y
Tesfaye, F 181, 233, 241, 259, 273, 290
Tessier, J
Tessmer, J
Testa, G 99, 202, 205
Teuber, M
Tewari, R
Tewksbury, G
Texier, D
Teysseyre, S125, 158
Thadhani, N 99, 120, 147, 174, 205,
234, 290
Thakare, S126
Thampy, V
Thangavel, N
Tharpe, J
Thébaud, L
Theisen, E
Thenepalli, T
Theska, F
Thibeault, P
Thiel, G
Thiessen, R
Thilly, L 163, 187, 213
Thomas, B 93, 115, 142, 170, 200, 264
Thomas, D
Thomas, E152
Thomas, J 103, 166, 203
Thomas, K
Thomas, M
Thomas, S106, 216
Thomas, T
Thomas, V 93, 115, 116, 141, 168,
198, 226, 296

Thompson, A
Thompson, G 106, 129, 140, 145, 156,
1
168, 173, 184, 187, 197, 204,
214, 215, 225, 232, 243, 245,
252, 293, 306
Thompson, R237
Thompson, Z236
Thorne, R175
Thornley, L
Thornton, K 95, 96, 117, 143, 152, 171,
201, 214, 223, 230, 257, 300
Thundat, T177
Thuo, M151
Thurston, K
Tian, L
Tianping, T
Tian, W
Tian, Y 112, 186, 218, 229, 239, 285
Tian, Z
Tiarks, J157, 224
Tiejun, C
Tiferet, E91
Tiley, J
Tillman, G198
Timm, M
Timp, G
Ting'an, Z 104, 113, 139, 153, 157,
186, 195, 239, 241, 252
Tinka, D
Tin, S 119, 123, 146, 156, 179, 229, 233
Tirpak, J
Tirumalai, S 105, 127, 154, 182, 305
Tiryakioglu, M
Titus, M 95, 98, 119, 146, 173, 205,
233, 270, 289
Tiwari, S120
Tiwary, C
Tjong, J
Tlotleng, M
Tobia, J
Tobie, B
Tobo, H
Toda, H
Toda, I
Todaro, C
Todd, I
Todorova, M
Todt, J
Toffoli, S116, 255
Toghraee, A
Toji, Y136
Tokash, J131
Toledo, R
Tol, J
Tolnai, D
Toloczko, M 125, 140, 180, 189, 240

Toman, J	222
Tomar, M	306
Tomar, V107, 118, 130, 157, 1	181,
186, 212, 215, 240, 244,	306
Tomas, B	217
Tome, C 98, 143, 184, 192,	194
Tomkute, V	175
Tomsia, A	
Toney, M	
Tong, H	
Tong, V	
Tong, W	
Tong, X	123
Tong, Y	207
Tong, Z	175
Tonks, M	202,
231,	257
Tonn, B	
Topkaya, Y	131
Topping, T	105
Torabi Rad, M	282
Torres, E.	
Torres, M	
Torres Mora, K	
Tortorelli, D.	
Torunoglu, Z	
Toscano, D	
Tóth, G	
Tourki, Z	
Tourret, D 177, 207, 236, 260, 274,	
Toweri, H	
Towrie, M	
Towsey, N	
Tpping, M	189
Trabia, S	
Tranell, G233,	
Tran, H	
Tran, R	299
Tran, T	124
Tran, X	
Trapp, J	
Trautt, Z	
Treadwell, L	
Tredway, W	
Tréglia, G	
Trelewicz, J109, 130, 132, 159,	
188, 215, 216, 217, 218, 245, 2	
265, 266, 267, 279, 280, 294,	
Trembacki, B	
Tremblay, E	
Tremblay, S	
Tremsin, A	
	268
Tretivakov, Y	
Tretiyakov, Y	196
Tretiyakov, Y	196 .93

	. 95, 124, 143, 166, 171, 201, 229, 238, 256, 258, 272, 299
	<i>V</i> 255
	M261
Trujillo, C	
Tsakiropoulo	os, P108
Tsaknopoulo	os, D232
Tschopp, M	
	203, 223, 231, 246, 248,
	251, 258, 268, 273, 300
Tse, A	
	132, 136, 150, 302
Tsuji, Y	
Tsukada, Y .	
Tsuneyuki, S	
Tuck, C	. 89, 135, 163, 191, 212, 219,
	220, 248, 286
Tucker, G	104, 106, 126, 153, 182,
	211, 212, 215, 223, 241, 245,
	246, 263, 265, 277, 304
Tucker, J	
	190, 218, 285
Tulasigeri, S	
Tun, K	
	124, 144, 196, 220
Turner, J	

Turner, T 1	19, 146, 151
Tveito, K	
Tymiak Carlson, N	
Tzelepis, D	90
Tzimas, M	

U

Ubertalli, G
Uberuaga, B97, 118, 145, 156, 161,
172, 202, 216, 231, 246, 257, 262
Uchic, M 89, 146, 147, 204
Uddin, M
Ueda, K
Ueda, S104, 218
Ueno, T
Ueshima, N201
Uggowitzer, P209
Ugues, D
Ulate-Kolitsky, E266
Ulfig, R140
Ulhaq-Bouillet, C177
Ullah, M133, 150
Ulus, A
Umanzor, M110
Umeki, S115
Unal, K163
Underwood, O245
Unemoto, A181
Ungar, T 150, 219, 240
Ungár, T 160, 189, 267, 307
Unger, J134
Unocic, K 98, 119, 146, 173, 205, 208,
233, 237, 261, 275, 289, 304
Upadhyay, M
Upadhyay, P
Urade, T197
Urban, D144
Uribe, A
Usui, M165
Uzer, B150, 168
Uzonwanne, V141, 226

V

Väänänen, P218
Vaccarezza, V107
Vaclavova, K
Václavová, K
Vaidya, U115
Vainio, E
Vakanas, G165
Valdevit, L
Valdez, J 147, 161, 182
Valdimarsson, P175
Valentino, G188
Valenzuela Diaz, F116, 255

Valenzuela-Diaz, F 255, 256, 298, 299
Valenzuela-Díaz, F
Valiev, R 109, 205, 280
Vallenas Arévalo, A
Valle, V
Valloton, J158
Valluri, R
van Bloemen Waanders, B
Van Brutzel, L
Van Buuren, T
VanCoevering, G
Van der Biest, O
Van der Ven, A 95, 97, 166, 203
Vander Wiel, S
van de Walle, A 95, 144, 150
van Duysen, J
Vanfleteren, J244
VanGessel, F166
Van Horn, A
Vanka, S170
Van Lendeghem, H225
VanOosten, S
Van Petegem, S 135, 214, 245
van Rooyen, I 103, 134, 151
Van Swygenhoven, H98, 107, 135,
214, 245
Varanasi, K
Varanasi, V
Vargas, J
Vargas, J
Varga, T
Varghese, O
Varghese, T
Vargo-Gogola, T114, 226
Varma, S
Varvenne, C97, 274
Vashishta, P120
Vasquez, J
Vasudevan, V125, 158, 176, 204,
212, 290
Vaugeois, A143
Vaughan, J
Vaughan, M
Vaughn, M
Vazdirvanidis, A
Vaziri, A
Vecchiato, F
Vecchialo, F
Vecchio, K99, 120, 147, 174, 205,
234, 290
Vedani, M
Vedantam, A
Vedula, V
Vega-Baudrit, J266
Vega, D180
Vekilova, O136
Velasco-Hogan, A
Velisa, G 133, 150, 207, 218, 263

Velisavljevic, N	192
Veluvali, P	
Venaas, M	
Venancio, L	
Vendamani, V	149
Venkataraman, A	102
Venkatesan, K	
Venkatesh, V	
Ventura, K	
Ventzke, V	
Venugopal, A	
Vera, M	108
Verbaan, N	
Verduzco, M	105
Verho, T	171
Verhulst, D	
Vermaak, N 99, 120, 147, 174,	
Verma, N	
Verma, R	
Vermaut, P	
Veron, M	
Versino, D	
Vervliet, N	
Vesely, J	
Veselý, J	
Vetterick, G	
Viana, A	299
Vian, J	260
Viardin, A	
Vicente, R	
Victoria-Hernandez, J	
Vietoria (C	
Vieira Fernades, G	220
Vieira, J	
Vigilante, G	
Vignal, V	
Viguier, B	
Vijayan, S	156
Vijayaraghavan, L	167
Villalon, T	.87
Villalpando, M	162
Villa, M	107
Villani, A	221
Villareal, R	253
Villarreal, C	200 264
Villarreal, R	117
Villazón Amarís, H	
	11/
	133
Villechaise, P 89, 173,	133 174
Villechaise, P 89, 173, Villegas-Cardenas, J	133 174 129
Villechaise, P	133 174 129 268
Villechaise, P	133 174 129 268 293
Villechaise, P	133 174 129 268 293 241
Villechaise, P	133 174 129 268 293 241 166
Villechaise, P	133 174 129 268 293 241 166
Villechaise, P	133 174 129 268 293 241 166 274

Vish, A
Visús Pool, J
Viswanathan, G 214, 233, 295, 302
Viswanathan, K
Vitek, V 143, 208, 216
Vivek, A
Vlassak, J
Vode, F
Vogel, E160
Vogel, F
Vogel, H242
Vogelpoth, A162
Vogel, S 91, 95, 152, 217, 228
Vogle, S
Vo, H 173, 263, 276
Voisin, T 134, 137, 212, 234, 264
Volkenandt, T
Völker, B
Volkoff-Shoemaker, N
Vo, N 114, 177, 185, 247, 251
Voncina, M
Vonk, N
Voorhees, P
Vorontsov, V
Vorozhtsov, A
Voter, A
Voushel, J
Vozár, L
V.P., M
Vuksanovich, B153, 154
Vullum, P
Vurpillot, F168, 225
Vyatskikh, A
•

W

Wada, Y
Wade, A
Wadley, H
Wadsö, L
Wagener, R
Wagih, M
Wagner, G
Wagner, M
Wagoner, R 111, 155, 171, 227
Wagstaff, S104, 126, 153, 181, 198,
241, 254, 293, 297
Wakeman, T163
Walawalkar, M233
Walck, S
Walde, C228
Walker, E123
Walker, J 88, 89, 153, 154
Walker, K
Walker, M
Walkowicz, M

Wallace, G
Walsh, A144
Walters, D
Walters, J190
Walter, T116
Walther, F
Walton, O163
Wanderley, K
Wang, A
Wang, B 93, 95, 96, 113, 126, 153,
174, 196, 205, 216
Wang, C 87, 99, 121, 132, 133, 138,
140, 144, 148, 164, 175, 182, 195,
201, 207, 213, 214, 221, 227, 242,
250, 264, 278, 279, 281, 286, 291,
305
Wang, D153, 173, 202, 243, 252,
278, 300
Wang, E153
Wang, F 96, 110, 121, 126, 140, 180,
192, 218, 219, 230, 247, 272,
284, 292
Wang, G 92, 95, 101, 123, 141, 149,
•
162, 169, 178, 199, 207, 208, 227,
232, 236, 237, 254, 260, 261, 269,
270, 271, 274, 275, 284, 285, 297,
303
Wang, H 87, 94, 100, 110, 115, 118,
122, 124, 127, 130, 149, 175, 177,
178, 180, 181, 183, 186, 195, 215,
227, 240, 244, 267, 271, 279, 285,
292, 301, 302, 304
Wang, J 87, 89, 127, 136, 137, 139,
140, 158, 160, 189, 193, 195, 208,
215, 218, 223, 224, 225, 227, 229,
248, 255, 264, 267, 284, 285, 292,
297
Wang, K 110, 121, 221, 252, 263, 284
Wang-Koh, Y147
wang, L150
Wang, L 87, 113, 133, 139, 204, 207,
218, 239, 247, 271, 284, 285,
292, 304
Wang, M121, 134, 137, 151, 163,
180, 181, 186, 193, 214, 216,
229, 239, 263
Wang, N
Wang, P
Wang, Q202, 215, 254, 270, 284, 304
Wang, R 126, 131, 132, 188, 200, 201
Wang, S 87, 107, 109, 124, 129, 133,
157, 160, 185, 189, 201, 205, 211,
218, 247, 265, 267, 283, 284, 294
Wang, T 99, 121, 148, 175, 195, 227,
282, 291
202, 271

Wang, W108, 110, 123, 197, 208, 224, 238, 245, 250, 255, 256, 273
Wang, X 114, 124, 167, 169, 186,
188, 195, 199, 227, 230, 231,
254, 255, 271, 297
Wang, Y
111, 112, 113, 120, 123, 139, 146,
150, 155, 161, 173, 174, 180, 184,
195, 196, 202, 208, 209, 210, 227,
230, 232, 233, 238, 243, 247, 254,
261, 267, 270, 272, 279, 284, 285,
290, 300, 301, 302
Wang, Z 87, 110, 120, 131, 135, 147,
167, 175, 178, 205, 206, 230,
254, 265, 271, 285, 287, 300
Wani, I
Wan, J
Wan, L
Wan, X
Warh, X
Warchol, M
Ward, J
Warner, M
Warner, T
Warnen, G
Warren, J 106, 253, 273 Warren, R 102, 124, 191
Warren, R
Wasekar, N
Was G 87 110 121 133 180 181
Was, G 87, 110, 121, 133, 180, 181, 210, 219, 231, 239
210, 219, 231, 239
210, 219, 231, 239 Wasmer, K
210, 219, 231, 239 Wasmer, K
210, 219, 231, 239 Wasmer, K .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260
210, 219, 231, 239 Wasmer, K .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260 Waters, B .268
210, 219, 231, 239 Wasmer, K
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260 Waters, B .268 Waters, C .302 Watkins, J. .276
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C. .275 Watanabe, K .87 Watanabe, R .101 Waters, B .260 Waters, C .302 Watkins, J. .276 Watkins, T .201, 288
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C. .275 Watanabe, K .87 Watanabe, R .101 Waters, B .260 Waters, C .302 Watkins, J. .276 Watkins, T .201, 288 Watson, M .218
210, 219, 231, 239 Wasmer, K
210, 219, 231, 239 Wasmer, K
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260 Waters, B .268 Waters, C .302 Watkins, J. .276 Watkins, T .201, 288 Watson, M .218 Watson, T .158, 207, 214 Watt, G .228 Watts, S. .99
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260 Waters, B .268 Waters, C .302 Watkins, J. .276 Watkins, T .201, 288 Watson, M .218 Watson, T .158, 207, 214 Watt, G .228 Watts, S. .99 Watt, T .95
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260 Waters, B .268 Waters, C .302 Watkins, J. .276 Watkins, T .201, 288 Watson, M .218 Watson, T .158, 207, 214 Watt, G .228 Watts, S .99 Watt, T .95 Wazir Eddin, J. .148
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C. .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S. .260 Waters, B .268 Waters, C. .302 Watkins, J. .276 Watkins, T. .201, 288 Watson, M. .218 Watson, T. .158, 207, 214 Watt, G. .228 Watts, S. .99 Watt, T. .95 Wazir Eddin, J. .148 Weaver, C. .257
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C. .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S. .260 Waters, B .268 Waters, C. .302 Watkins, J. .276 Watkins, T. .201, 288 Watson, M. .218 Watson, T. .158, 207, 214 Watt, G. .228 Watts, S. .99 Watt, T. .95 Wazir Eddin, J. .148 Weaver, C. .257 Weaver, J. .147, 180, 211, 212, 218
210, 219, 231, 239 Wasmer, K
210, 219, 231, 239 Wasmer, K
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260 Waters, B .268 Waters, C .302 Watkins, J. .276 Watkins, T .201, 288 Watson, M .218 Watson, T .158, 207, 214 Watt, G .228 Watts, S. .99 Watt, T .95 Wazir Eddin, J. .148 Weaver, C. .257 Weaver, M. .208, 237, 261, 275, 304 Webber, D. .239 Webb, K .89
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C. .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S. .260 Waters, B .268 Waters, C. .302 Watkins, J. .276 Watkins, T. .201, 288 Watson, M. .218 Watson, T. .158, 207, 214 Watt, G. .228 Watts, S. .99 Watt, G. .228 Watts, S. .99 Watt, T. .95 Wazir Eddin, J. .148 Weaver, C. .257 Weaver, J. .147, 180, 211, 212, 218 Weaver, M. .208, 237, 261, 275, 304 Webber, D. .239 Webbr, K. .89 Weber, G. .146, 289
210, 219, 231, 239 Wasmer, K. .135 Wat, A .115 Watanabe, C .275 Watanabe, K .87 Watanabe, R .101 Watanabe, S .260 Waters, B .268 Waters, C .302 Watkins, J. .276 Watkins, T .201, 288 Watson, M .218 Watson, T .158, 207, 214 Watt, G .228 Watts, S. .99 Watt, T .95 Wazir Eddin, J. .148 Weaver, C. .257 Weaver, M. .208, 237, 261, 275, 304 Webber, D. .239 Webb, K .89

Webler, B 194, 266, 295
Webster, J
Webster, T
Wegener, K195
Wegener, M
Wehrenberg, C
Wehrs, J
Wei, C160, 263
Wei, D175
Weier, T
Wei, G
Wei, H
Weihs, T117, 120, 181, 185, 188,
192, 212, 234, 290
Wei, K
Wei, L
Wei, M 100, 121, 200
Weimer, M
Weinberg, A
Weinberg, D
Weinberger, C104, 126, 127, 143, 151,
153, 182, 211, 212, 215, 241,
248, 263, 277, 304
Weinberg, J
Wei, P138, 303
Wei, Q90, 292
Wei, R110, 142
Weisheit, A
Weiss, A
Weissbach, R
Weiss, D 144, 196, 302
Weiss, M213
Weissmüller, J104
Wei, T108
Weitz, D
Wei, X 126, 169, 290, 293
Wei, Y167, 267
Wei, Z
Weker, J
Welk, B 134, 165, 302
Welland, M152
Wellen, R
Weller, J103
Wells, H
Wells, P
Wen, B
Wendler, E
Wenger, D
Weng, W
Wen, H 140, 168, 197, 200, 225, 226,
246, 252, 282
Wen, J
Wen, L
Wenman, M
Wennerberg, A
Wen, T

Wen, W 98, 139, 289, 292	
Wen, X 114, 139, 167, 196, 225, 252,	
287, 288	
Wen, Y 143, 152, 231	
Werner, E	
Werner, J	
Weiner, J	
Werner, S	
Werner, T	
Wernicki, E	
Wesselmecking, S90	
Wessman, A100, 162	
Wesstrom, B 107, 129, 157, 185, 294	
West, E 87, 110, 133, 160, 189, 218, 285	
West, M	
Weston, N	
Weymouth, T253	
Whalen, S 159, 280, 292	
Whan, A	
Wharry, J 109, 110, 132, 159, 180,	
188, 189, 216, 217, 246,	
266, 267, 276, 280, 307	
Wheeler, B	
Wheeler, D	
Wheeler, J123, 159, 176, 187, 216,	
245, 260, 279	
Wheeler, R 159, 187, 216, 245	
Whetten, S 219, 220, 269	
Whipple, D141, 142	
Whitaker, D175	
White, C	
White, E112, 157, 193, 224, 269, 282	
White, J	
White, R	
White, W	
Whitfield, D	
Whiting, T145, 172	
Whitis, D	
Whittaker, M159, 304	
Whitt, H148	
Whitworth, H	
Wicke, M146	
Widom, M 101, 208, 231, 236, 275	
Wiebeck, H 256, 283, 298	
Wiedmann, M102	
Wieland, F253	
Wielweski, E	
Wierzbanowski, K	
Wiese, B	
Wiese, S	
Wiezorek, J156	
Wijayaratne, H167	
Wikström, L	
Wilde, G201, 299	
Wilford, K 110, 210, 252	
Wilke, B	
Wilkerson, J	

Wilkinson, A					
Wilkinson, D					.289
Willard, M				.183,	249
Williams, B					
Williams, C	. 183,	205,	206,	242,	292
Williams, D					
Williams, E					
Williams, J					
Williams, L					
Williams, M			190.	268	300
Williams, S			148	159	248
Williams, T	• • • • •	••••	110,	210	252
Willis, L					
Willumeit-Roem					
Willumeit-Röme					
Wilms, M					
Wilson, A					
Wilson, D					
Wilson, M					
Wilson, R					
Wimmer, S		• • • •		.145,	272
Windl, W					
Winiarski, B					
Winston, D	• • • • •	• • • •	• • • •	• • • • •	.108
Winter, I					
Winther, G					
Wirth, B 8	37, 88	, 97,	110,	133,	145
		219,			
Wisner, B					
Wissel, A					
Witbeck, B					
Withers, J					
Withers, P					
Withey, E					208
Withrow, T					168
Witkin, D					.220
Witte, F			197,	226,	291
Wittig, J					
Witzen, W					
Wojcik, M					
Wolf, D					
Wolfe, D					
Wolfe, T					
Wolff, M					
Wolff, S					
Wolfman, M					
Wollgarten, K					
Wolodko, J					
Wolverton, C					
Wong, C					
Wong, D	 86	166	 181	· · · · · 213	241
Wong-Ng, W	00,	100,	104,	<u>21</u> ,	112
Won, J	• • • • •	• • • •			221
Wood, B					
Wood, E					
Wood, J					
woou, J					エンク

Wood, K114
Woodley, D
Wood, M
Wood, R
Wood, S
Wood, W
Woodward, C 143, 149, 194, 208, 256
Woo, J
Woo, S
Woo, W
Worsley, D
Worswick, M
Worthington, M
Wright, J
Wronski, M
Wu, A 91, 92, 112, 137, 138, 165,
193, 222, 250, 296
195, 222, 250, 296 Wu, B92
Wu, C
Wu, D
Wu, F
Wu, G 163, 217, 284, 292, 298
Wu, H 92, 113, 138, 140, 166, 195,
224, 278, 296
Wu, J
Wu, K 166, 202, 230, 284
Wu, L191
Wu, M170
Wunderlich, R153
Wu, Q272
Wurlitzer, M272
Wurz, M157
Wu, S 91, 219, 260, 278, 284, 293
Wu, T242
Wu, X 132, 155, 165, 220, 251, 284
Wu, Y 121, 123, 124, 157, 161, 165,
178, 216, 240, 246, 276, 285, 304
Wu, Z 103, 149, 297
Wyatt, S221
Wynne, B
X
Xavier, G 297, 298, 299

Xavier, G 297, 298, 299
Xia, H157
Xia, J
Xiang, X
Xiang, Y
Xiangyu, G
Xian, J
Xiao, L
Xiao, S
Xiao, T
Xiao, X 120, 177, 223, 260, 282, 295
Xiao, Y
Xiao, Z118

Xia, Y	
Xia, Z	
Xie, B	
	. 101, 123, 141, 145, 149, 169,
1110, 11	178, 199, 207, 208, 227, 236,
	237, 254, 260, 261, 270, 271,
	274, 275, 297, 303
Xie V	
•	
•	
•	
•	
•	
•	
	109, 189, 284
	120, 175, 181, 189, 197, 206
Xue, S	
Xue, Y	
Xue, Z	
	97, 118, 145, 160, 172, 189,
	202, 231, 257
Xu, J	136, 247, 271, 284, 290
Xu, K	
Xu, L	
Xu, P	88, 110, 111, 133, 161, 190,
	219, 285
	189, 201, 306
Xu, R	163, 204, 221, 227, 251
Xu, S	. 126, 127, 136, 143, 161, 185,
	221, 231, 249, 251, 273, 293
	127, 133, 143, 223, 264, 278
Xu, Y	146, 160, 228, 234, 247

Xu, Z.....100, 108, 114, 128, 131, 175

Y

Yabansu, Y 172, 243, 273
Yablinsky, C103, 125, 151, 180, 210,
239, 240, 262, 263, 276, 293
Yabroudi, Y
Yacout, A 97, 108, 110, 134, 190
Yadav, A
Yadav, S
Yadong, L
Yahata, B92
Yalçinkaya, T289
Yamada, T
Yamaguchi, M145
Yamamoto, K
Yamamoto, T 110, 210, 252, 262, 285
Yamamoto, Y98, 119, 129, 146, 161,
171, 173, 205, 233, 285, 289
Yamanaka, K
Yamanaka, S
Yamasaki, M
Yamasaki, T
Yamauchi, S
Yan, C
Yan, D
Yan, F
Yang, B 93, 94, 105, 181, 188, 189,
207, 218, 239, 284
Yang, C
Yang, F 118, 145, 196, 244, 260, 264,
292, 294
Yang, G
Yang, H
Yang, J
Yang, K137, 197, 223, 226, 251, 304
Yang, L 105, 110, 168, 200, 257, 284
Yang, M 94, 209, 304
Yang, N
Yang, P
Yang, Q 120, 158, 172
Yang, R135
Yang, S 95, 116, 125, 137, 143, 193,
224, 305
Yang, T 87, 91, 95, 96, 103, 133, 207,
214, 218, 224, 227, 285
Yang, W 93, 130, 228
Yang, X
Yang, Y 130, 134, 143, 157, 167, 186,
188, 189, 194, 202, 206, 208,
215, 235, 239, 240, 267, 285
Yang, Z 107, 110, 112, 144, 185, 262,
279, 282, 284, 295, 301
Yan, H110
Yan, J164

Yan, L
Yan, M 215, 224, 278
Yan, N
Yannetta, C
Yano, K
Yan, P
Yan, W168
Yan-Wen, T
Yan, X121
Yan, Y92
Yan, Z
Yao, E
Yao, G159, 213
Yao, K 169, 199, 270
Yao, P126
Yao, S
Yao, T
Yao, X
Yao, Y
Yao, Z118, 145
Yapici, G 105, 159, 266
Yaqoob, K
Yardley, V232
Yasar, B95, 299
Yasinskiy, A
Yasuda, H
Yeager, J
Ye, B
Ye, C
Yedla, N
Yee, J 89, 191, 287
Ye, G218
Ye, H135
Yeh, A 123, 207, 278
Yeh, C214
Yeheskel, O
Yeh, H
Yeh, J101, 123
Ye, J134, 137
Ye, L
Ye, M
Yen, H192, 249
Yen, S
Yen, Y 213, 214, 242, 264, 278, 305
Yeole, S
Yeom, H190
Yeo, S
Ye, Q196
Yeratapally, S
Ye, X
Ye, Y
Yi, H196
Yi, J
Yi-kai, K
Yi, L
Yilmazer, H

Yilmaz, N	217
Yilmaz, O	
Yim, D	
Yin, B	
Yin, D	
Ying, T	
Yinhe, C	
Yin, S	
Yin, Z	
Yi, S 180, 234,	
Yi, Y	
Yiyong, W	
Yoder, S 91, 102, 173,	223
Yokokawa, T	290
Yokota, Y	133
Yokoyama, Y	169
Yonemura, M	
Yong, D	
Yoo, G	
Yoo, H	
Yoo, J	
Yoo, M	
Yoon, K 152, 274,	
Yoon, Y	
Yoo, S	
Yoo, Y	
Yoshida, K 163, 181,	
Yoshida, T	
Yoshikawa, A	
Yoshikawa, T	
Yoshimi, K	
Yoshimura, M 100, 283,	291
Yoshioka, T	104
Yost, A	
You, B	
You, M	
Youngblood, J	
Young, M	
Youn, J	
You, S	
Yousefiani, A	
Yousefi, M 230, 291,	
Youssef, H	
Youssef, K	
Youssef, S253,	
Youssif, K	
You, Z	246
Yrjas, P	259
Yu, A	253
Yuan, D	181
Yuan, L	
Yuan, R	
Yuan, T	
Yuan, X	
Yuan, Y123,	
Yu, B	
	104

Yu, C138, 227
Yucel, O110, 189
Yücel, O 87, 109, 133, 160, 189, 218,
247, 267, 283, 284, 285
Yu, D
Yudho, I
Yueh, K
Yue, S
Yu, F158, 167
Yu, G 103, 126, 152, 181, 211, 240,
263, 277, 293
203, 277, 293 Yuge, K
Yu, H 91, 120, 154, 169, 183, 188,
212, 215, 242
Yu Hsien, L
Yu, J
Yu-Jin, L
Yuji, O
Yu, K
Yu, L 200, 218, 252, 277
Yu, M92, 175
Yumoto, M109
Yun, D 145, 279, 293
Yun, F225
Yun, J
Yun, W189
Yunxia, W
Yun, Z284
Yu, P123
Yu, Q 99, 100, 101, 104, 121, 126,
153, 182, 211, 212, 241, 254,
263, 277, 297, 304
Yuryev, D
Yu, S
Yu, T132
Yu, W
Yu, X 108, 159, 197, 215, 232
Yu, Y 101, 136, 265, 273, 282
Yu, Z 123, 126, 258, 267
Z

Zadeh, A252
Zadoks, A253
Zaefferer, S
Zafalon, A170
Zaglafi, S234
Zaheri, A93
Zahiri Azar, M
Zakar, E
Zaldivar, R
Zaloznik, M274
Založnik, M
Zander, D
Zanelato, E
Zang, H
Zuiig, 11

Zapata, J
Zapolsky, H
Zarkadoula, E
Zarouni, A114, 167, 196, 225, 252,
269, 288
Zavadyak, A
Zavattieri, P
Zawada, L
Zbib, H 104, 173, 230, 257
Zebarjadi, M
Zecevic, M
Zega, T
Zehetbauer, M 216, 276, 280
Zeller-Plumhoff, B
Zeng, G
Zeng, J
Zeng, Q
Zeng, X
Zenk, C
Zentgraf, S
Zepeda-Ruiz, L
Zepon, G 207, 260, 287, 302
Zevalkink, A166
Zeytinci, A
Zghal, S243
Zha, G233
Zhai, T 100, 122, 148, 176, 196, 206,
235, 291
Zhai, Y124, 191
Zha, M197
Zhanal, P243
Zhanal, P
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Zhanal, P

Zhang, S......121, 157, 170, 185, 202, 284, 291, 294, 307 Zhang, T.... 95, 96, 117, 143, 150, 171, 199, 201, 202, 230, 257, 299, 300 Zhang, W.....113, 122, 139, 145, 148, 167, 168, 186, 195, 196, 205, 229, 252, 272, 278 Zhang, X108, 127, 153, 155, 161, 175, 177, 183, 219, 227, 229, 240, 285 106, 110, 113, 127, 129, 133, 134, 136, 142, 148, 150, 154, 158, 160, 161, 172, 182, 185, 189, 195, 196, 202, 207, 212, 215, 218, 221, 225, 227, 229, 231, 234, 240, 245, 249, 251, 252, 255, 257, 261, 263, 267, 273, 274, 279, 284, 285, 292, 296, 299, 305 Zhang, Z.....119, 126, 129, 132, 136, 148, 153, 161, 182, 185, 221, 231, 241, 249, 250, 266, 292, 293 Zhao, B..... 87, 109, 133, 160, 189, 218, 247, 267, 283, 284 Zhao, C..... 99, 125, 135, 140, 268 Zhao, G 142, 202, 260, 298 Zhao, H 120, 140, 197, 230, 281 Zhao, J 98, 118, 129, 195, 209, 215, 230, 245, 251, 263, 291 Zhao, L..... 128, 284, 285 Zhao, P..... 111, 174, 270 Zhao, Q 153, 195, 264 Zhao, R......92, 236 234, 272 Zhao, Y.....100, 102, 126, 136, 153, 161, 185, 212, 236, 249, 256, 284, 285, 293 Zhao, Z..... 112, 248, 291 Zheng, B.....134, 191 Zheng, C 87, 180, 285 Zheng, G 95, 118, 164 Zhengqing, M120

Zheng, X	Zhou, W 116, 265, 271, 285, 297
Zheng, Y 106, 129, 156, 173, 184, 214,	Zhou, X 152, 187, 206, 231, 262
243, 247, 253, 284, 293, 306	Zhou, Y 141, 160, 191, 224, 237, 246,
Zheng, Z 100, 119, 148, 175	295, 302
Zhichao, L	Zhou, Z
Zhi-Gang, M	Zhuang, H 97, 117, 144, 172, 300
Zhihe, D	Zhuangming Li, Z
Zhilaev, A246	Zhu, C
Zhilyaev, A246	Zhu, J
Zhirong, S	Zhukov, A90, 287
Zhitomirsky, I	Zhukova, V90, 287
Zhong, L 127, 132, 182	Zhukov, I
Zhong, R136, 285	Zhu, L
Zhong, W118, 219	Zhu, M
Zhong, Y 96, 121, 171, 175, 178, 193,	Zhuo, K195
213, 214, 230, 232, 242, 243,	Zhuolin, L186
264, 278, 285, 305	Zhu, P284
Zhou, B 145, 204, 238, 292	Zhu, R 121, 170, 284
Zhou, C 109, 110, 132, 155, 159, 188,	Zhu, S 134, 151, 180
200, 216, 217, 246, 266, 267,	Zhu, T 92, 95, 97, 113, 127, 138, 143,
280, 307	166, 171, 195, 201, 214, 229,
Zhou, D 148, 196, 292	248, 256, 272, 296, 299
Zhou, G126, 292	Zhu, X 239, 246, 288
Zhou, H 231, 284, 293	Zhu, Y 101, 120, 125, 132, 175, 183, 189
Zhou, J	Zhu, Z 116, 189, 256, 272
Zhou, L 112, 190, 222, 237, 250, 282,	Ziaei, S
287, 297	Ziegler, D234
Zhou, P110, 276	Ziegmann, G107
Zhou, Q186	Zielinski, J91, 167
Zhou, S 110, 186, 223, 290, 297	Zielinski, R92

Zikry, M204
Zimmenmann, G236
Zimmerman, J100, 104, 106, 122,
126, 138, 149, 153, 166, 176,
182, 194, 211, 212, 223, 241,
251, 263, 268, 277, 291, 304
Zimmermann, E228
Zimmermann, G165
Zimmermann, M 122, 154, 206
Zinkle, S 87, 133, 145, 161, 202, 227,
239, 261, 276
Zollfrank, C115
Zollinger, J
Zoqui, E
Zou, H
Zou, J 137, 304, 305
Zou, L116
Zou, X
Zou, Y 104, 126, 153, 178, 182, 211,
212, 241, 263, 277, 279, 286, 304
Zou, Z196, 288
Zukrowski, J
Zumdick, N
Zuo, D
Zuo, H
Zuo, Z100, 121
Zweiacker, K156
Zybala, R92
Zykov, S

NOTES		

5

A

CompuTherm, LLC

8401 Greenway Blvd. Suite 248 Middleton, WI 53562 USA
 Phone
 +1 (608) 203-8843

 Fax
 +1 (608) 203-8045

 Email
 info@computherm.com

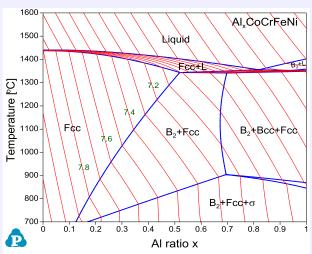
 Web
 www.computherm.com

An integrated platform for materials design and development *Please visit our booth # 318 for more information*

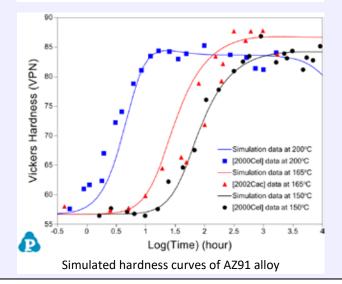
<u> Pandat[™] Software</u>

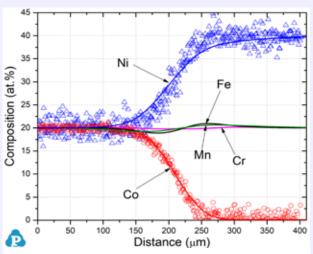
- PanPhaseDiagram for calculating multi-component multi-phase thermodynamic properties and phase equilibria
- PanPrecipitation for simulating precipitation kinetics of multi-component alloys during heat treatment processes
- **PanDiffusion** for modeling diffusion-controlled phase transformations in multi-component systems
- PanOptimizer for optimizing thermodynamic model parameters and thermophysical properties

<u> PanEngine API</u>

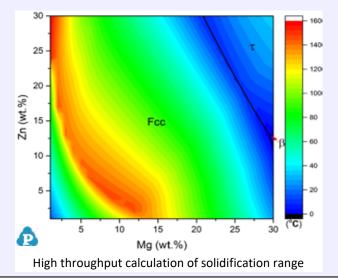

• Dynamic-linked library of thermodynamic functions and phase equilibria that can be integrated with user's in-house code

<u>Databases</u>


• Thermodynamic and mobility databases for variety of multi-component alloy systems


Consultation

- Provide materials solutions on multi-component phase equilibria, diffusion, precipitation, weldability, castability etc.
- Develop customized thermodynamic databases, mobility databases and thermophysical property databases and more
- Support software integration with PanEngine API to obtain instant thermodynamic input for custom applications

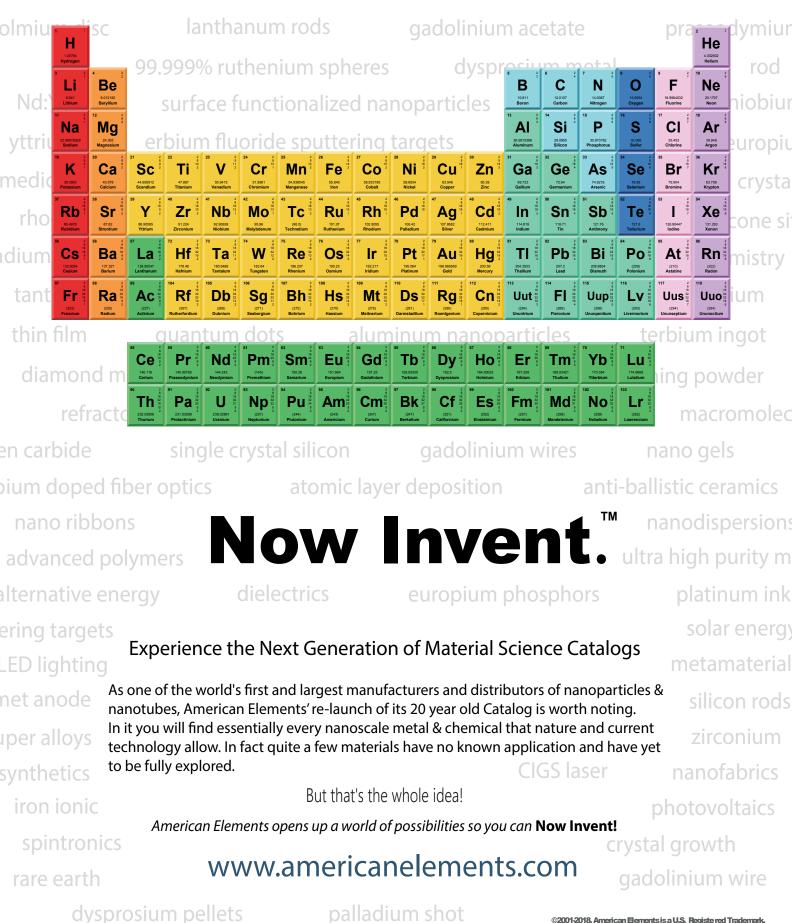


Design of light-weight high entropy alloys by phase diagram with density contour lines

Simulated concentration profiles of multi-component diffusion couple with experimental data

cerium sputtering target

europium phospho



THE ADVANCED MATERIALS MANUFACTURER ®

catalog:americanelements.com dielectrics

yttrium granules

©2001-2018. American Elements is a U.S. Registe red Trademark

